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Preface

Natural language processing (NLP) is one of the core subfields of artificial intelligence (AI).
For a long time, research in NLP primarily focused on solving specific problems in language
understanding and generation, such as parsing and machine translation. This task-driven
research approach dominated the development of NLP for several decades. However, with
the rise of deep learning, the research paradigm of NLP has undergone a fundamental trans-
formation. The application of deep neural networks has enabled us to tackle increasingly
complex tasks. More importantly, researchers have discovered that by conducting large-scale
pretraining on a base model with massive datasets, and then fine-tuning it with a small amount
of task-specific data and knowledge, it is possible to construct general-purpose models capable
of handling multiple tasks simultaneously. This new paradigm is greatly changing the research
landscape of NLP, and even the broader field of AI.

This book focuses on modern NLP methods centered around neural networks and founda-
tion models. It aims to provide a practical guide to understanding, building, and applying these
powerful models. Unlike traditional NLP textbooks that organize chapters based on specific
tasks, this book is structured from the perspective of constructing neural NLP models and is
divided into three main parts:

• Foundations of Machine Learning and Neural Networks (Chapters 1-2): This part
introduces the core concepts and methods of machine learning and neural networks,
laying a foundation for the subsequent chapters. It is relatively self-contained and can
be studied independently or used as background material when needed.

• Basic Neural Models for Natural Language Processing (Chapters 3-6): This part
explains the neural networks used in NLP tasks, including word representation models,
sequence models, and sequence-to-sequence models. In addition, Transformers are
introduced in a dedicated chapter. These models are not limited to individual NLP tasks;
rather, they serve as general-purpose tools across many applications.

• Large Language Models (Chapters 7-11): This part focuses on large language models
(LLMs), covering topics such as pretraining, generative models, prompt engineering,
alignment, and inference.

This book is intended for senior undergraduates, graduate students, researchers in related
fields, and anyone interested in NLP. We strive for clear and accessible writing, aiming to
introduce core concepts and fundamental methods rather than providing an in-depth exploration
of all cutting-edge techniques. Therefore, this book can serve both as an introductory text for
newcomers and as a reference manual for key concepts and methods in NLP.

The content of this book has gradually taken shape through our years of teaching and
research experience. Initially, we only planned to write the first two parts. However, the rapid
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rise and growing importance of LLMs led us to include this topic as a key part of the book. At
the same time, we are delighted to witness the rapid development of NLP, and the writing of
this book is also our response to this exciting trend.

Some chapters of this book have been previously published online, such as Introduction to
Transformers: An NLP Perspective (Chapter 6) and Foundations of Large Language Models
(Chapters 7-11), and we are grateful for the valuable feedback from many readers, which has
greatly contributed to the refinement of the book. Furthermore, during the writing process,
we drew significant inspiration from classic works, including Machine Learning by Mitchell
[1997], Foundations of Statistical Natural Language Processing by Manning and Schütze
[1999], Pattern Recognition and Machine Learning by Bishop [2006], and Speech and Lan-
guage Processing by Jurafsky and Martin [2008]. Many insights from these works profoundly
influenced the writing approach of this book.

Lastly, we would like to express our heartfelt thanks to all those who provided suggestions
and revisions to the content of this book. They are: Weiqiao Shan, Yongyu Mu, Chenglong
Wang, Kaiyan Chang, Yuchun Fan, Hang Zhou, Chuanhao Lv, Xinyu Liu, Tao Zhou, Huiwen
Bao, Tong Zheng, Junhao Ruan, Yingfeng Luo, Yuzhang Wu, and Yifu Huo.

Tong Xiao and Jingbo Zhu
June, 2025



Natural Language Processing Lab, Northeastern University

This book is dedicated to our families.
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Chapter 1

Foundations of Machine Learning

The goal of machine learning is to develop methods that can automatically
detect patterns in data, and then to use the uncovered patterns to predict
future data or other outcomes of interest.

– Murphy [2012]

Machine learning can be broadly defined as computational methods using
experience to improve performance or to make accurate predictions.

– Mohri et al. [2018]

Data-driven NLP fits the above definitions1. It teaches computers to learn language experience
from corpora, and to understand and utilize language based on that experience. Connecting
machine learning (ML) with natural language processing is much more than a means that
makes computers mimic human language intelligence from data. It is leading a revolution in
both areas: natural language processing evolves by using a powerful tool of deriving meaning
from corpora, and machine learning evolves by addressing the NLP challenges and testing on
real-world data.

In this chapter, we present several basic concepts and models in machine learning. There
are no tough bits but some preliminaries for the subsequent chapters. Here we focus on how
to apply machine learning to NLP problems, in particular how to define an NLP problem
as a statistical learning problem. To do this, we start with classification — one of the most
widely-used examples in most introductory books. We then present several fundamental issues
of machine learning. They are followed by a discussion on NLP problems from the machine
learning perspective.

1We drop the term data-driven from now on and assume that all NLP models are data-driven in the remainder
of this document.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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1.1 Math Basics

In the remainder of this chapter and the following chapters, we will talk about machine learning
problems using the tool of applied mathematics. Here are the math basics. If you find the
details trivial, you can skip to Section 1.2 directly.

1.1.1 Linear Algebra

1. Vectors and Matrices

Scalar may or may not be the simplest concept in linear algebra, but is surely the most common
concept that one learns in high school or in university. A scalar is a number. It is a quantity
that has a magnitude but has no direction. For example, height, weight, distance, temperature
are all examples of scalars. Here we use an italic number to denote a scalar, for example, a, b,
x, A, and so on.

Vector and matrix are defined on top of scalar. A vector is an array of scalars, or simply a
number list. A matrix is a rectangular array of scalars. In this book, we follow the convention
of using bold letters to denote vectors and matrices. For example, an n-dimensional vector can
be written as

a =
[
a1 a2 ... an

]
(1.1)

where {a1, a2, ..., an} are the elements (or entries) of the vector. Each indicates a dimension.
For convenience of notation, we write ai as a(i) sometimes. A vector is a real-valued vector
only if all the elements are real numbers (i.e., ai ∈ R for each i), denoted as a ∈ Rn. Likewise,
we can write an m×n matrix as

A =


A11 A12 ... A1n

A21 A22 ... A2n

... ... ... ...

Am1 Am2 ... Amn

 (1.2)

where m is the number of rows and n is the number of columns. Aij is the entry (i, j) of
the matrix. A real-valued matrix is denoted as A ∈ Rm×n. Occasionally, we use Am×n to
emphasize that the shape of the matrix is m×n.

There are a few special matrices. For example, a matrix whose elements are all zeros is a
zero matrix, denoted as 0. Another example is identity matrix, denoted as I. It is a square
matrix whose diagonal elements are all 1, and other elements are 0. Vectors can be treated as a
special sort of matrices, too. For example, the vector in Eq. (1.1) is a matrix with only one row.
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2. Matrix Transpose

The transpose of a matrix Am×n is a matrix Bn×m subject to Aij =Bji for each pair of i and
j. Often, A’s transpose is denoted as AT. For example, for a matrix

A =

[
8 0 0

2 9 7

]
(1.3)

the transpose is

AT =

8 2

0 9

0 7

 (1.4)

One can transpose a vector as well. For a vector

a =
[
1 9 7 3

]
(1.5)

the transpose is

aT =


1

9

7

3

 (1.6)

In general, a vector with only one row is called a row vector (as in Eq. (1.5) ), and a vector
with only one column is called a column vector (as in Eq. (1.6)). In this book, all vectors are
row vectors by default.

3. Element-wise Operations on Matrices

Suppose A and B are two matrices of the same shape, say A,B∈Rm×n. The matrix addition
of A and B is written as A+B. A+B is a matrix in Rm×n such that each element is the
sum of the corresponding elements of A and B. Here is an example.

A+B =

[
8 0 0

2 9 7

]
+

[
1 1 1

1 0 4

]

=

[
9 1 1

3 9 11

]
(1.7)

In a similar way, we can define element-wise minus (A−B), product (A⊙B), division
(A⊘B) and other operations. A special case of element-wise product is that we multiply a
matrix A with another matrix whose elements are all the same (say k). It is equal to scaling A

with a scalar k, denoted as k×A or kA. This is also called scalar product. See below for an
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example for k = 2 and A =

[
8 0 0

2 9 7

]
.

kA = 2

[
8 0 0

2 9 7

]

=

[
16 0 0

4 18 14

]
(1.8)

Let A, B and C be matrices in Rm×n, and k and l be scalars in R. Some properties of the
matrix operations are:

• Property of the zero matrix:

A = A+0

= 0+A (1.9)

• Commutativity:

A+B = B+A (1.10)

klA = lkA (1.11)

• Associativity:

(A+B)+C = A+(B+C) (1.12)

(kl)A = l(kA) (1.13)

• Distributivity:

k(A+B) = kA+kB (1.14)

(k+ l)A = kA+ lA (1.15)

4. Dot Product

The dot product of two same-sized vectors a=
[
a1 a2 ... an

]
and b=

[
b1 b2 ... bn

]
is defined to be:

a ·b =
[
a1b1 a2b2 ... anbn

]
(1.16)

In geometry, a real-valued vector a can be seen as a geometric object having both magnitude
(denoted as |a|) and direction. The dot product of a and b can also be defined as

a ·b = |a|× |b|× cos(θ) (1.17)

where θ is the angle between a and b.
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5. Matrix Product

Matrix product (or matrix-matrix product) operates on two matrices. Given a matrix
A ∈ Rm×p and a matrix B ∈ Rp×n, the matrix product of A and B produces a matrix
C ∈ Rm×n whose elements are defined as:

Cij =

p∑
k=1

Aik×Bkj

= Ai1×B1j+Ai2×B2j+ ...+Aip×Bpj (1.18)

Matrix product requires that the number of columns in A is exactly the same as the number
of rows in B. In this book we use AB to denote the matrix product of A and B. Here are a
few properties of matrix product.

• Distributivity. For A ∈ Rm×p and B,C ∈ Rp×n, the left distributivity is defined as

A(B+C) = AB+AC (1.19)

For A,B ∈ Rm×p and C ∈ Rp×n, the right distributivity is defined as

(A+B)C = AC+BC (1.20)

• Associativity. For A ∈ Rm×p, B ∈ Rp×q and C ∈ Rq×n, the associativity defines

(AB)C = A(BC) (1.21)

• Transpose. For A ∈ Rm×p and B ∈ Rp×n, we have

(AB)T = BTAT (1.22)

Matrix product is not commutative, i.e., we do not have AB=BA for all A and B even
if A and B are square matrices with the same shape. Based on matrix-matrix product, we can
define vector-matrix product and matrix-vector product accordingly. This is trivial because all
we need is to see a vector as a matrix in multiplication.

6. Norm

In a vector space, norm is a measure of vector “length”. Given a vector a=
[
a1 a2 ... an

]
∈

Rn, the norm on a is a function that maps from Rn to R. It is written as ∥ · ∥p, or lp for short.
∥a∥p is defined as

∥a∥p =
(∑n

i=1 |ai|p
)1/p

(1.23)

It is called p-norm or lp norm. The popular versions of p-norm are those when p= 1,2 and
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∞:

∥a∥1 =
n∑
i=1

|ai| (1.24)

∥a∥2 =

√√√√ n∑
i=1

|ai|2 (1.25)

∥a∥∞ = max{|a1|, |a2|, ..., |an|} (1.26)

2-norm and∞-norm are also called Euclidean norm and maximum norm. p-norm can also
be used in measuring the distance of two points in an n-dimensional space. Let b be another
vector in Rn. The p-norm distance between a and b is given by the equation:

∥a−b∥p =
(∑n

i=1 |ai− bi|p
)1/p

(1.27)

1.1.2 Probability and Statistics

1. What is Probability

Probability is a matter of uncertainty. It is a quantity that describes how likely an event is to
happen. For example, if the event is certain to happen, we will say that the probability is 1; if
the event will never happen, we will say that the probability is 0.

Then, what is an event? In short, an event is an experimental outcome. It could be simply
the result of everything. For example, an event could be the action that you raised your
arms, the scene that you were seeing the sunset, the result that you figured out for a math
quiz, and so on. A set of related events is described by a random variable or variable for
short. For example, we can define the outcome of tossing a coin as a variable x. As there
are two outcomes (heads or tails), we have two choices for the value of x. We can define
that x= 1 when the coin lands heads, and x= 0 otherwise. Hence, x is a binary variable or
more precisely a 0-1 variable. A variable choosing a value means that an event happens. For
example, x= 1 means the event of the coin landing heads.

In mathematics, probability is a measure on the probability space comprising events (call
it a probability measure). As a measure, probability should satisfy certain properties, such
as countable additivity [Ash and Doléans-Dade, 1999]. This means that not all functions
defined on the interval [0,1] could be a probability measure. Here we do not discuss the precise
definition of probability measure. We just simply treat it as a function that outputs a real
number in [0,1].

Usually, a probability measure is denoted as a function Pr(·), called a probability function.
When the input of Pr(·) is defined on a discrete set of events, the output of the function is
the probability that an event happens. For example, Pr(x = 1) means the probability of x
equalling 1. Note that Pr(x) is a function that varies its output by choosing different values
of x. Suppose x1 is a value that x can take. When we write Pr(x1), it means Pr(x = x1).
Because the probability over all events should be 1, any probability function should be subject
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to: ∑
xi∈X

Pr(xi) = 1 (1.28)

where X is the set of all events. A probability function can be defined on two variables or
more. Here are a few widely-used cases.

• Joint Probability. It is the probability that two events x1 and y1 happen at the same
time, denoted as Pr(x1,y1). As a special case, the joint probability will be decomposed
into the product of the probabilities of x1 and y1, if x1 and y1 are independent of each
other.

Pr(x1,y1) = Pr(x1)Pr(y1) (1.29)

• Conditional Probability. It is the probability that x1 happens in the presence of y1
happening, denoted as Pr(x1|y1). Pr(x1|y1) can be defined as:

Pr(x1|y1) =
Pr(x1,y1)

Pr(y1)
(1.30)

• Marginal Probability. It is another way to define the probability of a single variable.
Given the joint probability on two variables, the marginal probability defines that

Pr(x1) =
∑
yj∈Y

Pr(x1,yj) (1.31)

where Y is the event space of yj . Eq (1.31) says that Pr(x1) is unconditioned on Y .

Another note on joint probability. In some cases, one would like to use conditional
probabilities to represent a joint probability. To this end, one can rewrite the joint probability
by the product rule or the chain rule, like this

Pr(x1,y1) = Pr(x1|y1)Pr(y1) (1.32)

So far, we have defined several kinds of probability on discrete variables. For continuous
variables, we do not have a “probability” at a certain point. Instead, we have a density for that
point. More formally, given a continuous variable x, a probability density of x is written
as Pr(x). Suppose x ∈ R. The probability of x lying in the interval [a,b] is defined via an
integral:

Pr(x ∈ [a,b]) =

∫ b
a
Pr(x)dx (1.33)
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Obviously, we have ∫+∞

−∞
Pr(x)dx = 1 (1.34)

For other properties, such as joint probability and conditional probability, the forms for
continuous variables are almost the same as those for discrete variables. We just need to replace
the sums in the formulas with the integrals.

2. Distribution and Expectation

A probability distribution (or distribution for short) is the probabilities of different values
for a variable. It is defined by probability functions (for discrete variables) or probability
density functions (for continuous variables). For example, a uniform distribution on a discrete
variable x that chooses values from {x1,x2} can be described as Pr(xi) = 1/2 because
Pr(x1) = Pr(x2) and Pr(x1)+Pr(x2) = 1; A uniform distribution on a continuous variable
in [−2,2] can be described as Pr(x) = 1/4 because Pr(x) is a constant for any x ∈ [−2,2] and∫2
−2Pr(x)dx = 1. Statisticians have developed many distributions for describing the world

we are living in, such as binomial distribution, Bernoulli distribution and Gaussian/normal
distribution. One can find details of these distributions in most textbooks on statistics [McClave
and Sincich, 2006; Freedman et al., 2007].

For describing properties of a variable, a popular means is to compute the expected value
or expectation of the variable. Let x be a discrete variable that takes values from {x1, ...,xn},
and Pr(x) be a distribution on x. The expected value of x is defined to be

Ex∼Pr(x)(x) =
n∑
i=1

xi ·Pr(xi) (1.35)

where the subscript x∼ Pr(x) indicates that x follows the distribution Pr(x). In many cases,
we can drop the subscript and rewrite it as E(x). E(x) is essentially the weighted average
value of x under the distribution Pr(x). It is a measure of central tendency, and is sometimes
called the mean of a variable (denoted as µ).

Then, we can define the variance of a variable as the squared variation of the variable
from the mean value, like this

Var(x) = E[(x−E(x))2] (1.36)

Informally, it describes how far the values are from the mean. Var(x) is usually written as σ2,
where σ is called standard deviation.

For a continuous variable x ∈ R, the expected value is defined as:

E(x) =

∫+∞

−∞
x ·Pr(x)dx (1.37)

where Pr(x) is a probability density function. For computing the variance of x, we just reuse
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Eq. (1.36).

3. Entropy

Entropy is one of the most important tools of describing random variables and processes
[Shannon, 1948b]. It is a measure of expected surprise. The more deterministic the events
occur, the less surprise and less information there will be. For simplicity, we restrict the
discussion on discrete variables here2. Let x be a variable and Pr(x) be a distribution on x.
The entropy is written as:

H(x) = −
n∑
i=1

Pr(xi) · logbPr(xi) (1.38)

where b is the base of the logarithm function. The value of b is typically set to 2, 10 and e.

In addition to obtaining the entropy of a single distribution, we can determine the similarity
of two distributions from the entropy point of view. Suppose p(x) and q(x) are distributions
on x. The relative entropy of p with respect to q is defined to be:

Db(p||q) =
n∑
i=1

p(xi) · logb
p(xi)

q(xi)
(1.39)

We can treat p(xi) as a weight to the log likelihood ratio logb
p(xi)
q(xi)

. Hence, Db(p||q) is a
weighted sum of the likelihood ratios over all possible values. A smaller value Db(p||q)
indicates that distributions p and q are closer. For example, p and q will be identical if
Db(p||q) = 0. The relative entropy is also called the Kullback-Leibler (KL) divergence. Note
that the relative entropy is asymmetric, i.e., we cannot guarantee Db(p||q) =Db(q||p).

Another concept that is popular in machine learning is cross-entropy. It is a measure of
the information (in terms of the total number of bits) that we need to transit the events from a
source in one distribution with another distribution. More formally, we write the cross-entropy
of the distribution p with the distribution q as Hcross(p,q). It is defined to be:

Hcross(p,q) =
n∑
i=1

p(xi) · log2 q(xi) (1.40)

Like relative entropy, cross-entropy is asymmetric too. Both relative entropy and cross-entropy
are widely used in designing the objective of learning NLP systems although they are different
quantities. The difference lies in that relative entropy calculates the average number of bits
when replacing p with q, while cross-entropy calculates the total number of bits in the same
process.

2For continuous variables, we have similar calculations.
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1.2 Designing a Text Classifier
Classification is one of the most common problems in machine learning. It aims at automat-
ically categorizing something into a set of classes. These classes are called labels, or tags,
or categories. In general, a program of classification is called a classifier or classification
system. There are a vast number of practical applications of classifiers. A simple example is
spam filtering in that one needs to label an email as “spam” or “not-spam”. More challeng-
ing examples include classifying computed tomography images of organs into “normal” or
“not-normal”, determining whether a piece of Chinese text is written by native speakers or not,
labeling a patent application with a set of IPC codes it belongs to, and so on.

Many machine learning theories and algorithms are modeled and tested on classification
tasks. Following this convention, we consider text classification as an example to get started.
Assume that we have a corpus like this.

Text Label
The game was wonderful. Not-food
I’ve tried my best to recreate it in my kitchen. It tastes heavenly. Food
For centuries seaweed was considered a food for normal people. Food
Have you finished your coding work today? Not-Food
I was wondering how you could miss the bus. Not-Food
I like fruit because it is good for health. Food
Natural language processing research is amazing. Not-Food
... ...

Each line of the corpus is a tuple of a piece of text (we simply call it a document) and a
label that indicates whether the text is about food or not. We call such tuples samples, or more
precisely labeled samples. Labeled samples are essentially question-answer pairs although
they do not strictly follow the general forms of questions and answers. For example, in the
samples presented above, one can take a document as a question and take its label as the
answer. In the next few chapters, we will show that such a form of describing machine learning
problems is general and fits most problems in NLP.

Next, let us assume that we have a classifier that learns from those samples the way of
labeling documents. The classifier is then used to label every new document as “Food” or
“Not-Food”. For example, for the text

Fruit is not my favorite but I can enjoy it.

the classifier would categorize it as “Food”.
However, text classification, though seems simple on the surface, is much more than

classifying or sorting unlabeled samples into classes. It presents a wide variety of issues,
especially when considering the ambiguities and richness of language. Modern classifiers are
not a system comprising a set of hand-crafted rules. They instead model the classification
problem in a probabilistic manner, making it possible to learn the ability of classification from
large-scale labeled data.
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1.2.1 Problem Statement

Let x be a document and c be a label. Here we assume a probabilistic classifier which would
estimate how likely we choose c as the label of x, denoted as Pr(c|x). Pr(c|x) is in general a
classification model. It describes a distribution over the set of all possible labels, satisfying∑

c∈C
Pr(c|x) = 1 (1.41)

where C is the label set. For any document, we choose the most probable label as output via
the classification model, like this

ĉ = argmax
c∈C

Pr(c|x) (1.42)

where ĉ is the “best” label predicted by the model. argmax is the abbreviation of the arguments
of the maxima. It returns the value of the argument that maximizes some function.

Eq. (1.42) is the fundamental equation of classification. It implies three problems

• The modeling problem. Pr(c|x) is a computational challenge because it is not obvious
how to obtain the value of Pr(c|x) for each pair of x and c. To make an adequate
model, one may need to represent x and c in some way that is easy to use, and may need
to develop some mathematical form connecting x and c together with the algorithms
necessary to compute the form.

• The learning problem. From a statistical learning point of view, the general form of
Pr(c|x) represents a range of models configured with different variables or parameters.
These models are essentially of the same form but would behave differently if we choose
different values of those parameters. Thus, we need to choose a “good” model among
them. This is typically addressed by optimizing the parameters on labeled data by some
criterion.

• The prediction problem. We are addressing a binary classification problem here.
Predicting document class is thus trivial as we just need to determine which class is more
probable than the other. However, one can hardly imagine how difficult the prediction
problem is in the real world, especially when predicting tree or graph-like structures and
other non-linear structures3. For many NLP problems, prediction needs effective and
efficient search algorithms.

These problems are general and cover many machine learning and natural language
processing tasks. Binary classification, though is one of the simplest cases, can fully complete
the goal of getting familiar with machine learning. On the other hand, classification has several
variants. Here are two examples.

• Multi-class classification. It is an updated version of binary classification. In multi-class

3Predicting trees or other structures is not recognized as a standard sub-problem of classification. It is typically
referred to as structure prediction. We will show in the later sections that both classification and structure
prediction can share a similar machine learning paradigm.
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classification, one needs to classify samples into one of three or more classes.

• Multi-label classification. This might be confusing because multi-class classification
and multi-label classification seem to be the same thing. By conventional use of the
terms, multi-label classification is referred to as assigning multiple labels to a sample.
By contrast, the problem presented in Eq. (1.42) is a single-label classification problem.

Classification would be more interesting and challenging if we extend it to the case of
dealing with hierarchical data. For example, for biological and patent data, some classes can
be grouped into a super-class. This makes a hierarchy of the classes and requires a hierarchical
classification schema.

1.2.2 Documents as Feature Vectors

The first problem we confront in designing text classification models is how to represent a
document. Treating x as a string is simply not a good solution. One may want a representation
by which a human being can understand the text. For example, we can parse each sentence in
a document into a syntax tree and use trees as a text representation. This, however, requires
efforts for developing additional NLP tools (such as syntactic parsers).

Representation, of course, is a fundamental issue in NLP. We skip here those diverse,
state-of-the-art models, but present a simple and effective model — the bag-of-words (BOW)
model. The bag-of-words model is a feature-based model of representing documents. In
machine learning, a feature is a property of a sample. One can define a feature not only as
some concrete attribute, such as a name and a gender, but also as a quantity that is countable
for machine learning systems, such as a real number.

In the bag-of-words model, a feature corresponds to the occurrence times of a word. Let V
be a vocabulary. A document can be represented as a |V |-dimensional feature vector. Each
dimension describes a word count feature. It counts the occurrence of the i-th word of V in the
document. More formally, let x be a feature vector. The i-th entry of x is defined as:

xi = count(Vi) (1.43)

where count(·) is a counting function. Consider, for example, the following lines of text4.

As I went to Bonner

I met a pig

Without a wig,

Upon my word and honor.

4The text is from Mother Goose rhymes.
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We then have a vocabulary extracted from the corpus5, like this

V = {“a”, “and”, “as”, “Bonner”, “honor”,

“I”, “met”, “word”, “my”, “pig”,

“to”, “upon”, “went”, “wig”, “without”,

“,”, “.”}

Each line of the text can be seen as a document and represented as a feature vector. See
below for the feature vectors generated by using the bag-of-words model.
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As I went to Bonner [ 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 ]
I met a pig [ 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 ]

Without a wig, [ 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 ]
Upon my word and honor. [ 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 ]

The bag-of-words model defines a vector space6. In this space, the similarity of two vectors
is measured in some way like dot-product. It helps when one wants to establish the relationship
between documents — two documents with more overlapping words are more similar. This
intuitive picture has guided many people when building classification systems.

The beauty of the bag-of-words model comes from its simple form in that any word
is independent of other words. The independent assumption makes it possible to encode a
document with almost infinite word relations as a countable, feasibly sized vector. On the
other hand, representing a document as a feature vector of word counts is not the only option.
As an improvement, one might take more context into account, and/or design more powerful
features. This leads to an active line of research on text representation methods, ranging from
heuristics-based methods to representation learning methods. We will see a few of them in the
subsequent chapters.

1.2.3 Linear Classifiers
Linear classifier is one of the simplest classification models. Suppose we take a feature vector
x =

[
x1 ... xn

]
as input, and take a weight vector w =

[
w1 ... wn

]
and a scalar b as

parameters. A linear function has a form like this

s(x,w, b) = w ·x+ b
= w1x1+w2x2+ ...+wnxn+ b (1.44)

where b is a bias term. The dot product x ·w is a linear combination of
[
x1 ... xn

]
where

each xi is weighted by wi. For a more condensed formulation, we can define a new input vector
5We removed the case of the word at the beginning of each line.
6A vector space should be closed under vector addition and scalar multiplication.
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x′ =
[
x1 ... xn 1

]
and a new weight vector w′ =

[
w1 ... wn b

]
. We then rewrite Eq.

(1.44) as:

s(x′,w′) = s(x,w, b)

= w′ ·x′ (1.45)

In the following, we drop the bias term b for simplicity and use s(x,w) to denote a linear
function. For classification, a linear function is used to describe class membership. Each class
is assigned a score by the function equipped with a unique weight vector. Consider again the
binary classification as an example. Let ca and cb be two classes. We can define two weight
vectors wa and wb so that the function can discriminate between ca and cb.

For prediction, we can infer a class based on s(x,w). To achieve this, activation functions
ψ(·) are in general used for mapping the value of s(x,w) to a class. For example, for binary
classification, we can define an activation function like this,

ψ(x) =

{
ca x > 0

cb otherwise
(1.46)

Then, we make a prediction by

ψ(s(x,wa)−s(x,wb)) =

{
ca s(x,wa)−s(x,wb)> 0

cb otherwise
(1.47)

As s(x,wa)− s(x,wb) = s(x,wa−wb), the final prediction function is ψ(s(x,wa−wb)).
We call it a discriminant function. Note that s(x,wa−wb) is linear. So this is a linear
discriminant function.

A discriminant function assigns an input vector x directly to a class but it does not describe
how likely a class would appear given x. There are other activation functions for generating a
desirable output. For example, we may want a probability-like output (see Eq. (1.42)), and
thus define ψ(·) as a normalized function7. Then, the classification probabilities are given by
the equation [

Pr(ca|x) Pr(cb|x)
]

= ψ
([
s(x,wa) s(x,wb)

])
=

[
s(x,wa)

s(x,wa)+s(x,wb)
s(x,wb)

s(x,wa)+s(x,wb)

]
(1.48)

where ψ(·) is a vector function8. It normalizes the entries of the input vector by the sum
of these entries. The decision rule is simple: we predict ca if Pr(ca|x) > Pr(cb|x), and
cb otherwise. Since s(x,wa)

s(x,wa)+s(x,wb)
and s(x,wb)

s(x,wa)+s(x,wb)
share the same denominator, the

prediction can also be made by comparing the numerators, i.e., we are doing the same thing
as that in Eq. (1.47). In subsequent chapters, we will show that the trick of transforming

7A normalized function is a function whose integral over its domain is equal to 1.
8A vector function reads a vector and returns a new vector.
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Figure 1.1: Data points and separating hyperplanes in two dimensions. There are two classes
of data points (food and non-food). Both hyperplanes 1 and 2 separate the space into two
sub-spaces where the two classes of data points are isolated. In this sense, the problem here is
linearly separable. On the other hand, hyperplane 3 fails to separate the two classes, that is, the
data points in the same class are classified into two different classes.

comparing probabilities to comparing real-valued scores is frequently used for addressing NLP
problems.

For ease of understanding, one can see a linear classification model as a hyperplane (or
decision surface, or decision boundary) that separates data points into different groups.
Figure 1.1 shows example hyperplanes in a 2D space where each x is a data point. Hyperplanes
1 and 2 successfully separate the data points into the correct classes, while hyperplane 3 fails
to do so. In this sense, the task of classification is to find hyperplanes that make the correct
separation of data points.

«««< HEAD It is worthy of note that linearity is the basis of many classifiers although most
of them do not in the same form as Eqs. (1.44 - 1.45). A linear model can be nearly a perfect
solution if the problem is linearly separable9. Even for non-linearly separable problems, linear
models can be married to other models with a non-linear separation ability. A good example
is that one can achieve non-linear classification by marrying a linear model with a non-linear
activation function. ======= It is worthy of note that linearity is the basis of many classifiers
although most of them do not exist in the same form as Eqs. (1.44 - 1.45). A linear model

9Linear separability checks if there is a way that we put a hyperplane to reside a group of data points from the
remaining data points. For example, the problem shown in Figure 1.1 is linearly separable.
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can be nearly a perfect solution if the problem is linearly separable10. Even for non-linearly
separable problems, linear models can be married to other models with a non-linear separation
ability. A good example is that one can achieve non-linear classification by marrying a linear
model with a non-linear activation function. »»»> origin/master

1.2.4 Generative vs Discriminative
There are two ways, though not restricted to linear models, to make use of linearity in
classification — generative models and discriminative models. While most statistical
classifiers are of the modeling variety, they choose the backbone design from either or both of
these two types of models.

1. Generative Models
A goal of classification is to learn Pr(c|x). Generative models do not explicitly model this
conditional probability. Instead, they model the joint probability Pr(x, c), and use the Bayes’
rule to compute Pr(c|x). This is given by the following equation.

Pr(c|x) =
Pr(x, c)

Pr(x)

=
Pr(c)Pr(x|c)

Pr(x)
(1.49)

where Pr(x, c) is rewritten as Pr(x|c)Pr(c). For an optimal class ĉ, we choose a class c by
maximizing Pr(c|x) (see Eq.(1.42)). Since the denominator x is a constant for any c, we just
need to maximize the numerator. Then, we rewrite Eq.(1.42) in the form

ĉ = argmax
c∈C

Pr(c|x)

= argmax
c∈C

Pr(c)Pr(x|c)
Pr(x)

= argmax
c∈C

Pr(c)Pr(x|c) (1.50)

where Pr(c) is the prior of c, and Pr(x|c) is the conditional probability of the input document
vector x given c. Computing Pr(c) is easy. For example, the maximum likelihood estimation
(MLE) defines Pr(c) as a relative frequency:

Pr(c) =
count(c)∑

c′∈C count(c′)
(1.51)

where count(c) counts the occurrences of c in a corpus.
But computing Pr(x|c) is non-trivial as data sparseness prevents us from accurately

estimating the probability of a high-dimensional document vector. Recall that the bag-of-words
model defines xi as the word frequency of Vi in the document. We assume here that the feature

10Linear separability checks if there is a way that we put a hyperplane to separate a group of data points from the
remaining data points. For example, the problem shown in Figure 1.1 is linearly separable.
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vector x=
[
x1 ... xn

]
is generated by a multinomial (p1(c),p2(c), ...,pn(c)), where pi(c)

is the probability of Vi occurring given c. Based on MLE, we can estimate pi(c) by the relative
frequency estimation:

pi(c) =
count(Vi, c)∑

1≤i′≤n count(Vi′ , c)
(1.52)

where count(Vi, c) is the number of occurrences of Vi in all documents labeled as c. Then,
Pr(x|c) is given by

Pr(x|c) =

(∑n
i=1xi

)
!

x1! ·x2! · ... ·xn!
·
n∏
i=1

pi(c)
xi (1.53)

Substituting Eq. (1.53) into Eq. (1.50), we have

ĉ = argmax
c∈C

Pr(c) ·
(∑n

i=1xi
)
!

x1! ·x2! · ... ·xn!
·
n∏
i=1

pi(c)
xi (1.54)

Note that
(∑n

i=1 xi

)
!

x1!·x2!·...·xn! is independent of any c. We drop it in argmax, and rewrite the
right-hand side of the equation in log scale:

ĉ = argmax
c∈C

log(Pr(c))+

n∑
i=1

xi · log(pi(c)) (1.55)

Obviously, this is a linear model. It defines the feature vector and weight vector as below

x =
[
1 x1 ... xn

]
(1.56)

w =
[
log(Pr(c)) log(p1(c)) ... log(pn(c)

]
(1.57)

Such a form is sometimes called a log-linear model, as the linearity comes from transforming
the original problem via a logistic function.

In general, Eq (1.55) is called the multinomial naive Bayes approach. There are, of course,
the naive Bayes variants for other types of feature vectors. For example, for binary value
feature vectors, one can assume a Bernoulli distribution on each entry of a vector and design
a Bernoulli naive Bayes classifier; for vectors with continuous features, one can assume a
Gaussian distribution over continuous data and design a Gaussian naive Bayes classifier.

2. Discriminative Models
The model defined by Pr(c|x) = Pr(x,c)

Pr(x) = Pr(c)Pr(x|c)
Pr(x) (see Eq. (1.49)) is called generative

because it assumes some way of generating data x given label c. The idea is to use Pr(x, c) as
a pivot to compute Pr(c|x). As an alternative possibility for modeling Pr(c|x), discriminative
models do not try to model the distribution of x but estimate Pr(c|x) directly. An example is
logistic regression. For binary text classification, a naive Bayes classifier predicts label ca for
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a given document x only if the following function is positive:

fa(x) = log
Pr(ca|x)
Pr(cb|x)

(1.58)

One can assume that this quantity follows a linear model:

log
Pr(ca|x)
Pr(cb|x)

= w ·x (1.59)

Since Pr(cb|x) = 1−Pr(ca|x), we have

Pr(ca|x) =
1

1+exp(−w ·x)
(1.60)

This is a logistic function, or more precisely a Sigmoid function. With such a model, we
predict ca only if w ·x is positive. Eq. (1.60) is also called the logistic regression classifier. It
is simply a discriminative analog of the naive Bayes classifier.

An advantage of discriminative models is that they offer flexibility in viewing classification
(or other machine learning problems) from different angles. While generative models try to
estimate the data distribution of x, discriminative models try to find a good boundary between
classes. Discriminative models, therefore, care more about which class is prioritized over
another given x, or in possibility language which class is more likely to appear, instead of
making assumptions on individual data points. This makes it possible to learn a classifier by
minimizing the number of some errors, not necessarily guaranteeing the maximum likelihood
on those data points. This approach is generally called error-driven learning.

There are many ways to define errors. Like generative models, one can learn a discrim-
inative model by fitting parameters w to maximize the likelihood on the training data. Let
{(x(1), c(1)), ...,(x(K), c(K))} be a set of labeled documents, where x(k) is a document and
c(k) is the corresponding class. The best parameter vector ŵ is given by the equation

ŵ = argmax
w

K∑
k=1

logPr(c(k)|x(k)) (1.61)

Taking Eq. (1.60), the process can be seen as maximizing the likelihood

ŵ = argmax
w

K∑
k=1

logδ(ca, c
(k))Pr(ca|x)+ logδ(cb, c

(k))Pr(cb|x)

= argmax
w

K∑
k=1

logδ(ca, c
(k))

1

1+exp(−w ·x(k))
+

logδ(cb, c
(k))
(
1− 1

1+exp(−w ·x(k))

)
(1.62)

where δ(·, ·) is an indicator function that returns 1 if the two arguments are equal, and 0



1.2 Designing a Text Classifier 35

otherwise.
Alternatively, we can train the model by minimizing 0-1 errors, that is, we count an error

when the output is not the correct label. This process can be formulated as

ŵ = argmin
w

K∑
k=1

δ(ĉ(k), c(k)) (1.63)

where ĉ(i) is the prediction made by the classifier. The 0-1 error can be further extended by
taking the posterior into account:

ŵ = argmin
w

K∑
k=1

Pr(ĉ(k)|x(k)) · δ(ĉ(k), c(k)) (1.64)

The training objective plays an important role in discriminative models. This topic, however,
is so broad and beyond the scope of this section. We will present some in Section 1.3.4.
As another bonus, discriminative models do not restrict features to forming a probabilistic
generative story. In a broader sense, x could be any feature vector that is designed by
researchers and engineers. One does not even need to guarantee the probabilistic meaning
for these features. For example, let g(x) be the output of another system, say some scores.
Following Eq. (1.60), a new binary classification model can be designed in a logistic regression
manner:

Pr(ca|x) =
1

1+exp(−w ·g(x))
(1.65)

For learning g(x), one can either pre-train it on some additional data, or train it jointly with w

(i.e., the parameters of the upper-level model Pr(ca|x)).

1.2.5 OOV Words and Smoothing

The out-of-vocabulary (OOV) problem occurs when some of the words of a document are not
found in the vocabulary. OOV words are common in NLP because new words are always there
no matter how much text we have seen. Figure 1.2 gives two curves to illustrate this problem.
As shown in Figure 1.2 (a), new words continuously appear when more data is available. When
we fix the data that is used for testing the coverage of a vocabulary, OOV words remain even if
we have an extremely large vocabulary (Figure 1.2 (b)).

For practical systems, OOV words are common because the vocabulary is often restricted
to a “small” number of entries. A standard method is to keep the top-n most frequent words
and discard the rest. In this case, OOV words are treated as unknown words. For example,
a new symbol <unk> is introduced into the vocabulary so that all OOV words are denoted
as <unk>. A more aggressive idea is to build an open-vocabulary system that accepts every
possible word, but it would require more sophisticated algorithms and probably a task-specific
design of data structures. The <unk> trick is still the de facto standard for the development of
current NLP systems.



36 Chapter 1. Foundations of Machine Learning

200 400 600 800 1,000 1,200

0

4

8

12

16

20

Data size

Vo
ca

bu
la

ry
si

ze
(·104)

(·105)
0 4 8 12 16 20

20

40

60

80

100

Vocabulary size

O
O

V
pe

rc
en

ta
ge

(%)

(·104)

Figure 1.2: Data size (in number of words), vocabulary size and percentage of OOV. The
statistics are collected on the English data provided in the WMT21 Zh-En translation task. The
more data we use, the larger vocabulary we have. The increase in vocabulary size continues
even if we build the vocabulary on data of more than 100 million words. However, the slope
of the curve tends to be smaller as more data is involved. Interestingly, the OOV percentage
converges to a certain level as the vocabulary size increases, indicating that new words always
occur no matter how many words we have observed.

For words that are already in the vocabulary, there are also unseen words that are absent
in the parameter estimation phase but appear in a new document. A naive implementation of
the model described in the previous section would be tough when dealing with unseen words.
For example, Eq. (1.52) will simply give a zero probability if the word Vi does not occur in
any training example labeled with c. In consequence, for a new example containing Vi, Eq.
(1.53) will assign it a zero probability. This result is obviously unreasonable. However, we
should not simply attribute it to the model design itself. Instead, a primary reason for this is
the insufficient data used for parameter estimation. This is also explained by Zipf’s Law: a
small number of words occur quite often, while a large number of words occur rarely.

However, we cannot suppose that we always have access to some data where every word
occurs sufficiently. Alternatively, one could adopt smoothing techniques to redistribute the
probability over the vocabulary. Consider Eq. (1.52) as an example. We can add a small
number to each Vi, and rewrite the equation as:

pi(c) =
count(Vi, c)+α∑

1≤i′≤n count(Vi′ , c)+n ·α
(1.66)

where α is the default count that we assign to each word. In this way, pi(c) gives a non-zero
probability even if count(Vi, c) = 0. Eq. (1.66) is doing something like subtracting word
counts from high-frequency words and reassigning the subtracted counts to low-frequency
words. This method is called additive smoothing or add-α smoothing. It is one of the
simplest smoothing methods. For other methods, we refer the reader to language modeling
papers where smoothing is in heavy use [Chen and Goodman, 1999].
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1.3 General Problems
Building a simple text classifier is a good start but not enough for solving complicated, diverse
real-world problems. For a more general picture of how modern machine learning systems
work, we now discuss some problems that are important when designing such systems.

1.3.1 Supervised and Unsupervised Models
Supervised learning deals with labeled samples, by which we mean that an input x is
associated with an output y. Given a set of input-output pairs {(x(1),y(1)), ...,(x(K),y(K))},
the task here is to learn a function f(·) that maps each x(k) to y(k):

y(k) = f(x(k)) (1.67)

This process is called supervised because learning f(·) is guided by the manually annotated
answer y(k) for x(k). In general, y(k) is called the ground-truth or gold-standard label of x(k).
After that, when a new input xnew comes, we use the learned function f(·) to predict the output.
We will say that the supervised learning succeeds if the prediction f(xnew) is the same as the
ground-truth ynew.

The vast majority of NLP can be framed as supervised learning problems. Assigning a
class to a document is no doubt one of the simplest cases. Other NLP tasks include but are not
limited to producing a sequence of labels, a piece of text, a syntax tree, and a graph.

In contrast to supervised learning, unsupervised learning deals with unlabeled samples, in
other words, for each sample, we have an input x in the absence of the correct output y. In this
case, we need an algorithm that learns from the unlabeled data {x(k)} the mapping function
from x(k) to some output. Since there is no human intervention on the output of the function,
algorithms of this kind need to discover patterns in {x(k)} and optimize the way we represent
{x(k)} and function outputs by some criteria. These criteria are typically inspired by human
prior knowledge so that the resulting function could output something that we expect.

A common example in unsupervised learning is word clustering. It groups a set of words
by assigning similar words into the same cluster11. Based on such a criterion, we can bias f(·)
towards outputting the same cluster for similar words. A more difficult case is unsupervised
bilingual dictionary induction. It learns a word-level mapping between two languages
without the need of parallel data. The problem is usually addressed, in part, by making use of
the isomorphism of word representation spaces of different languages.

A halfway between supervised learning and unsupervised learning is semi-supervised
learning. It deals with the case in which some of the input data is labeled and the rest is
unlabeled. Thus, it can receive benefits from both supervised and unsupervised learning.
For example, in machine translation, we may have a certain amount of parallel data (i.e.,
labeled data) and orders of magnitude larger monolingual data (i.e., unlabeled data). Often,
a base system is learned on the parallel data in a supervised learning fashion. On top of
it, improvements can be made from training components of the base system on large-scale

11It might be difficult and ambiguous to determine if two words are similar or not. We leave this issue to Chapter
3.
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monolingual data. This is implemented by either combining a translation model learned on
the bilingual data and a language model learned on the target-language monolingual data,
or pre-training parts of the translation model on monolingual data and fine-tuning the entire
model on the bilingual data.

Broadly speaking, all learning algorithms need supervision. This sounds weird because
unsupervised learning seems to not be signaled by any ground-truth data. However, from a
general learning perspective, we should not restrict ourselves to labeled data for receiving
supervision signals. Even for an unsupervised learning problem, we still need to supervise the
learning process by prior knowledge and hidden patterns in the input data {x(k)}. In this sense,
unsupervised learning is not “learning without supervision”.

Taking “supervision” as a concept in a broader sense, more paradigms can be seen as
instances of machine learning, though not necessarily belonging to either supervised learning or
unsupervised learning. An example is reinforcement learning. It models how a system makes
a sequence of decisions. This is achieved by operating an agent in an environment. The agent
receives a feedback (or a reward) from the environment when making a decision (or taking an
action). The goal of reinforcement learning is to learn a decision model that maximizes the
reward along the steps the agent takes. The real reward here is available only when the agent
reaches some state, such as the end of a game. As such, reinforcement learning can describe
problems where the reward is over a longer period (call it distant reward). This differentiates
reinforcement learning sharply from standard supervised learning, traditionally concerned with
instant supervision signals that are encoded in labeled data in advance. This characteristic fits
many NLP problems. For example, a text generation system generally generates a sequence of
words from left to right, but it is hard to determine if a word is properly predicted until the
whole text has been generated.

Another example is self-supervised learning. It addresses unsupervised learning problems
in a supervised learning manner. A general idea is to frame the unsupervised learning task as a
pretext task that can be used in solving the original problem. In the pretext task, ground truth
can be generated from input data. The learning therefore receives supervision from self-made
signals instead of manual labels.

Self-supervised learning has indeed been quite successful in NLP. Perhaps pre-training
is one of those which have made the most incredible progress. In pre-training, one can train
some model (such as a language model) via self-supervised learning, and then apply parts of
the model to some downstream system (such as a sentiment analysis system). It offers two
advantages. First, the self-supervised, pre-trained models can be scaled to a huge amount of
data because they require no labeled data. Second, pre-training is general itself and can be
applied to a wide range of downstream tasks. In Chapter 7, we will see a few examples of
applying self-supervised learning to NLP models.

1.3.2 Inductive Bias
We informally describe (supervised) machine learning problems as an inductive reasoning
(or inductive inference) process: we use specific observations (such as labeled documents)
to make a generalized model (such as a classifier). For example, we may observe that word
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cooking frequently occurs in some documents talking about food. We would say that, based on
inductive reasoning, cooking is an important indicator for all food documents. This “specific-
to-general” method is also called induction sometimes. Once we have an induced model, we
can apply it to describe new observations, as a deduction process.

Induction is the most widely-used principle in designing learners of modern machine
learning systems12. Imagine that there is a hypothesis space (or model space, or learnable
function space) consisting of all possible models that we could make. Learning a model is
thus the same as selecting a model in the hypothesis space by inducing from the given training
samples. However, we cannot simply assume an oracle model that works well on all unseen
samples. A reason for this is that searching for the “best” model in a huge hypothesis space is
computationally infeasible. There would be an infinite number of dimensions along which we
can design models if the hypothesis space is unconstrained. This problem is essentially some
sort of the curse of dimensionality13. Another reason is that many models in the hypothesis
space can fit training samples well, but only some of them can fit unseen samples. There is a
risk that we select a “weak” model for test data although it is “strong” for training data. This is
relevant to overfitting, a concept that we will discuss later.

A natural solution is to define priors on the hypothesis space in a way that allows some
models to be more preferable than others. A simple example is that we restrict classifiers to
linear models (see Section 1.2.3). It is doing something like we impose a prior that excludes
all non-linear models from the hypothesis space.

Such a prior is generally called an inductive bias. In a nutshell, an inductive bias is a set
of assumptions on the problem14. For example, one can design models in certain mathematical
forms (i.e., model bias); one can choose specific algorithms for learning a model (i.e, algorithm
bias); one can assume the way of generating samples (i.e, sample bias), and so on15.

Inductive biases try to tell in what way we should describe a problem. Better results
are generally favorable when inductive biases meet what really happens. This explains why
solutions to some problems prefer certain model architectures (or model biases). Of course,
more and stronger inductive biases could make it easier to solve a problem. However, inductive
biases are not always helpful, especially when they are not close to the reality.

Let us consider a dice rolling game. Suppose you have a 6-sided dice. Before rolling the
dice, you guess a side (say a number from 1 to 6). You will win if the dice lands on the same
side you guess. You are a gambler and try to win as many times as possible. In your experience,
a random guess is the best choice in this game because all sides should have an equal chance
of appearing (i.e. a chance of 1/6). This is true when you play fair dice. However, one day,

12Not all machine learning methods should follow an induction process for learning a model. There are other
options for different types of problems, including deductive reasoning, abductive reasoning, analogical reasoning
(or transduction), and so on [Hurley, 2011].

13The curse of dimensionality refers to the problems that generally appear as the dimensionality of the hypothesis
space increases. For example, data sparseness is a common problem that arises when processing high-dimensional
data, and is thus a kind of the curse of dimensionality.

14A more formal definition can be found in machine learning textbooks [Mitchell, 1997]
15As an aside it is worth noting that the term bias is used in many different ways, and there are other meanings

for bias in certain contexts. We will make it clear when a different meaning is used.
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we played weighted dice, and it was not easy to win as before. You found that the appearance
of different sides did not follow a uniform distribution. Then, you assumed a multinomial
distribution (because you had the experience of developing naive Bayes classifiers). Before the
game started, you rolled the dice 100 times. You chose the most frequent side for new games,
and you won more. In this example, you made an initial assumption that all six of the sides are
equally likely to occur. This is a very strong inductive bias because your model has 0 degrees
of freedom. It seems to be obvious but does not work for weighted dice. The second inductive
bias, though seems more complicated, is actually a weaker assumption, because a multinomial
distribution defines a larger family of models and gives room to finding appropriate models.

In general, all machine learning models need some sort of inductive bias. Many of them are
implicit assumptions. Sometimes, we are even not aware that we are making these assumptions
because they are so “obvious” and “logical”. On the other hand, if the assumption is wrong then
it is harmful to problem-solving. So we still need some experience to avoid easily neglected
mistakes.

1.3.3 Non-linearity

Non-linearity is the nature of most real-world problems, whereas it is not easy to use a linear
model to solve a non-linear problem. See Figure 1.3 for examples of varying degrees of
classification difficulty. In Figure 1.3 (a), the two classes can be separated by a hyperplane. In
this case, the problem is linearly separable because the decision boundary can be represented
as a linear function. In contrast, in Figure 1.3 (b), we cannot draw hyperplanes to perfectly
separate the two classes. Instead, we need some non-linearity for better separation, such as
hyperspheres. A more difficult case is shown in Figure 1.3 (c) where the decision boundary is
highly complex.

Although the theory of non-linear systems still has not been fully studied, there are several
methods that help us introduce non-linearity into machine learning systems.

• Feature mapping and kernel methods. Recall that a linear classifier can be formulated
as a function f(w ·x), where w is the weight vector, x is the feature vector, and f(·)
is the function that returns one class (say ca) if its argument > 0 and the other class
(say cb) otherwise. The idea of feature mapping is that we map the feature vector x
into a higher-dimensional space so that the problem is linearly separable in the new
space. For example, let ϕ(·) : R2→ R4 be a mapping function and x=

[
x1 x2

]
be a

2-dimensional vector. We assume that

ϕ(
[
x1 x2

]
) =

[
x21+x

2
2 x1 x2 1

]
(1.68)

By choosing w =
[
1 −8 −8 28

]
, we get a new classifier:

f(w ·ϕ((x))) = f
([

1 −8 −8 28
]
·
[
x21+x

2
2 x1 x2 1

])
= f

(
(x1−4)2+(x2−4)2−4

)
(1.69)
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Figure 1.3: Linearity and non-linearity in binary classification. The first problem (left) is
linearly separable because there exists (at least) a hyperplane that perfectly separates the data
points in the two classes. The property of linear separability does not hold in the second
problem (middle). Rather, we need a circle-like decision boundary. The decision boundary
would be more complex if there are areas where the two classes of the data points are mixed
and more or less indistinguishable (right).

It defines a decision boundary (i.e., a hypersphere (x1 − 4)2 + (x2 − 4)2 = 4) that
perfectly classifies the samples in Figure 1.3 (b). In other words, we use a linear model
on the mapped feature space to create a non-linear model. However, computing the
mapping function might be inefficient. This is typically addressed by using kernel
methods. In kernel methods, the calculation of vector dot-product in the new space is
performed efficiently by using a kernel function in the old space. This method is called
the kernel trick. It has been successfully adopted in classification and other machine
learning models, such as support vector machines [Cortes and Vapnik, 1995].

• Non-linear activation functions. Another way to add non-linearity is to use activation
functions. A common method is to stack a non-linear activation function on top of a
linear model. For example, the function f(·) used in the above example is itself a non-
linear function. There are many kinds of non-linear activation functions. We can choose
from them, depending on what form of the output we want. For more sophisticated
models, more activation functions can be inserted into the intermediate computing steps
to develop a more powerful and expressive model. For example, a deep neural network
is a stack of sub-models (call them layers) where each sub-model may involve one or
more activation functions.

• Non-parametric methods. Non-parametric is a term that is originated from statistics.
In non-parametric statistics, statistical inferences are made without any assumption on
underlying distributions of data. In machine learning, non-parametric methods follow
the same idea. They do not assume any mapping function from input to output as
Eq. (1.69). This differentiates them from parametric methods that explicitly learn a
mathematical form of variables (or parameters) to describe the problem. An example of



42 Chapter 1. Foundations of Machine Learning

non-parametric methods is k-nearest neighbors. It makes a prediction for a new sample
based on the k nearest neighboring samples in training data. Note that non-parametric
does not mean parameter-free. Rather, it means that parameters can change. On another
hand, non-parametric methods do not ensure a fixed model. They grow in model size
as more training samples are available. As a reward, they can handle highly non-linear
problems when training samples are sufficient.

Still, non-linear methods do not work alone. Linearity is surely an important component
for most practical machine learning systems. This has two flavors. First, more non-linearity is
not always better. We do not need to complicate the modeling if a linear model is enough for
solving the problem. An example is that most state-of-the-art machine learning models are a
combination of linear and non-linear sub-models. This is also an instance of Occam’s Razor —
the simplest solution is almost always the best. The second flavor is the linear approximation of
non-linear behaviors. Linear models are a good alternative if the non-linearity of the problem is
not obvious. In such cases, using linear functions to approximate precise solutions is probably
more efficient for practical purposes.

1.3.4 Training and Loss Functions

Almost all machine learning algorithms involve a training step. Typically, it refers to the process
of estimating the mapping function and the associated parameters from data. Here we follow
a conventional definition of the training problem: given a model or mapping function, we
improve some objective by evaluating the model through some training experience [Mitchell,
1997]. For example, training a naive Bayes text classifier requires maximizing a likelihood
function (i.e., the objective) on a number of labeled documents (i.e., the training experience).

Often, the training problem can be framed as an optimization problem. As such, we
optimize some objective function via some training algorithm. Although an ideal objective
function is a performance measure on test samples, we cannot take it in optimization since the
test samples and corresponding labels are assumed to be inaccessible in the training phase.
Practical objective functions are instead defined as a surrogate for the measure on test data. On
the other hand, these objective functions are not necessarily some sort of performance measure,
but some metrics that are assumed to correlate with the performance on test data.

Let us consider a general case. Suppose yθ = fθ(x) is a model that reads a feature vector
x and produces an n-dimensional vector yθ. For example, in text classification, x is the
bag-of-words representation of a document, and yθ is a distribution over a set of classes. θ
is the parameters of the model. The subscript emphasizes that the model is determined by
θ. We further suppose that ygold is the gold-standard vector. Then, we define the objective
function as a function that counts errors in yθ with respect to ygold, denoted as L(yθ,ygold). It
measures how bad it would be if we predict yθ instead of ygold. Given a model, the training
problem can be described as finding the “best” parameters θ̂ so that L(yθ̂,ygold) is minimized:

θ̂ = argmin
θ

L(yθ,ygold) (1.70)
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This formulation can be easily extended to the case of K training samples:

θ̂ = argmin
θ

1

K

K∑
k=1

L(y
(k)
θ ,y

(k)
gold) (1.71)

Once we obtain θ̂, we can use fθ̂(x) as a fixed model for prediction.

L(yθ,ygold) and 1
K

∑K
k=1L(y

(k)
θ ,y

(k)
gold) are usually called loss functions (or cost func-

tions). A loss function can be defined in many ways, depending on what type of problem
we address and what prior we want to impose upon training. Here, we first consider the case
in which yθ is a probability distribution. It is quite common in NLP, e.g., yθ could be a
distribution over a vocabulary, a distribution over a list of documents, a distribution over a set
of syntactic labels. For such a type of model output, the most commonly-used loss functions
are measures of divergence:

• Divergence-based Loss. Divergence-based loss functions compute the degree of dif-
ference between the two distributions yθ and ygold. For example, cross-entropy (see
Section 1.1.2) is one of the most popular loss functions used in NLP. One can, of course,
choose other divergence-based measures, such as the KL divergence and the Jensen-
Shannon (JS) divergence, which can be found in most statistics textbooks. Note that
MLE is also a special instance of the divergence-based objective. It is the same as the
cross-entropy loss if ygold is a one-hot vector where the entry of the correct label is 1
and other entries are all 0.

However, machine learning systems are not always restricted to distribution-like output.
Rather, yθ could be a vector in Rn. An example is the discriminant functions used in clas-
sification (see Section 1.2.3). They assign a score to each class, indicating how strong the
model believes it is the answer. One way to define the loss functions on real-valued vectors
is to transform them into distribution-like forms16, and resort to the divergence-based loss.
However, normalization is not always necessary, especially when we need a score out of the
range of [0,1]. It is more common to compute losses on the raw output of these models. Here
are some examples.

• Distance-based Loss. It is natural to take loss as some sort of distance in geometry. A
general example is the p-norm distance (see Section 1.1.1):

L(yθ,ygold) =
( n∑
i=1

|yθ(i)−ygold(i)|p
)1/p

(1.72)

For example, we would have a Euclidean distance-based loss function if p = 2. The
distance-based loss intrinsically describes a curve fitting problem: we learn a curve
yθ = fθ(x) to fit the points {(x(k),y

(k)
gold)}. It is also called regression 17. A simple

16For example, we can normalize the entries of a vector by the sum of these entries.
17When the model output is a vector with two or more dimensions, the problem is called multivariate regression.
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example is quality estimation of machine translation18. It learns to predict translation
quality (i.e., yθ) for any pair of source and target sentences (i.e., x). We would say
that the prediction is accurate if the predicted score is close to that made by humans.
By using Eq. (1.72), one can design many loss functions for regression models. For
example, mean square error (MSE) is a popular regression loss function. It is the sum
of squared Euclidean distances between the prediction and the gold standard:

L(yθ,ygold) =

n∑
i=1

|yθ(i)−ygold(i)|2 (1.73)

Another example is mean absolute error (MAE). It is precisely the form of Eq. (1.72)
when p= 1.

• 0-1 Loss. The 0-1 loss is widely used in classification problems. It chooses a value
of either 1 (penalty) or 0 (no penalty), and penalizes the case in which the predicted
label and the gold-standard label are not the same. Let cθ = argmaxc yθ(c) be the
label that is predicted by selecting the entry in yθ with the highest value. Likewise, let
cgold = argmaxc ygold(c) be the gold-standard label. The 0-1 loss is defined to be:

L(yθ,ygold) = L0-1(cθ, cgold)

=

{
1 cθ ̸= cgold

0 cθ = cgold
(1.74)

• Margin-based Loss. A margin is the difference between the predicted scores of the
correct label cgold and an incorrect label c:

magin(c,cgold) = yθ(cgold)−yθ(c) (1.75)

It indicates a distinction between cgold and c. So, a natural idea is to ensure that the
margin is sufficiently large, or at least exceeds a minimum. This is called large-margin
training. Let △(c,cgold) be a predefined cost of replacing label cgold with label c,
satisfying△(c,cgold)≥ 0, and△(c,cgold) = 0 only if c= cgold. Our goal is to enlarge
margin(c,cgold)−△(c,cgold), in other words, the larger this value is, the smaller the
loss is. Then, the margin-based loss is given by:

L(yθ,ygold) = max
(
0,max

c
−
(
magin(c,cgold)−△(c,cgold)

))
= max

(
0,max

c

(
yθ(c)−yθ(cgold)+△(c,cgold)

))
= max

c

(
0,yθ(c)−yθ(cgold)+△(c,cgold)

)
(1.76)

18In machine translation, quality estimation comprises several different tasks (see https://www.statmt.
org/wmt21/quality-estimation-task.html). Here we use the term to refer to the task that predicts
an evaluation score directly.

https://www.statmt.org/wmt21/quality-estimation-task.html
https://www.statmt.org/wmt21/quality-estimation-task.html
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Designing△(c,cgold) depends on the problem. A simple choice is△(c,cgold) = 1 for
c ̸= cgold. This makes Eq. (1.76) a type of the hinge loss. Another variant of Eq. (1.76)
is using a sum instead of a max:

L(yθ,ygold) =
∑
c

max
(
0,yθ(c)−yθ(cgold)+△(c,cgold)

)
(1.77)

• Ranking-based Loss. Ranking-based loss (or ranking loss) is used in several different
areas, such as information retrieval, classification and metric learning. It deals with
the problem where we want to order a set of scored items. Suppose the model output
yθ corresponds to a set of n items {ci}, each for an entry of yθ. We define {ψθ(ci)}
as the order of {ci} by {yθ(i)}. For example, given {yθ(i)} = {0.3,−2,1}, we have
ψθ(c1) = 2, ψθ(c2) = 3 and ψθ(c3) = 1. Likewise, we can define {ψgold(ci)} as the
gold-standard ranks. Note that {ψgold(ci)} can be induced in some way without the need
of ygold if the problem only requires orders, rather than scores. An idea of ranking-based
loss is to model the ranking mistakes in {ψθ(ci)} with respect to {ψgold(ci)}. There are
many ways to “count” the mistakes. A simple method is to penalize the case in which a
pair of items are ordered incorrectly. As such, the ranking-based loss somewhat shares
the same spirit of that used in binary classification — we categorize a pair of items as
correct or incorrect. Let Ω be a set of ordered item pairs:

Ω = {(i, j)|ϕgold(i)< ϕgold(j)} (1.78)

The loss function is given by the equation:

L(yθ,ygold) =
∑

(i,j)∈Ω

Lpair(yθ(i),yθ(j)) (1.79)

where Lpair(yθ(i),yθ(j)) is a classification loss, such as the hinge loss used in [Collobert
and Weston, 2008]:

Lpair(yθ(i),yθ(j)) = max
(
0,yθ(i)−yθ(j)+1

)
(1.80)

This method is called the pairwise method. Also, one can define the ranking-based
loss in a pointwise or listwise manner. These loss functions are extensively used in
developing systems to rank objects.

• Contrastive Loss. Contrastive loss is typically used in contrastive learning. It assumes
that, given a sample, there is a similar sample that is labeled as “positive”, and there
are a number of dissimilar samples that are labeled as “negative”. A natural idea is
to minimize the distance between similar samples and simultaneously maximize the
distance between dissimilar samples. Return to the formulation here. For a model output
yθ, let y+ be the positive output and Y− = {y−} be the set of negative outputs. Also,
we use ygold to denote the tuple of y+ and Y− instead of a single gold-standard vector.
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A form of the contrastive loss function is given by the equation:

L(yθ,ygold) = L(yθ,y
+,{y−})

= logD(yθ,y
+)− log

∑
y−∈Y−

D(yθ,y
−)

= log
D(yθ,y

+)∑
y−∈Y−D(yθ,y−)

(1.81)

where D(α,β) is a measure of the distance between α and β. For example, we can
define D(α,β) as the Euclidean distance (see Eq. (1.72)). A problem here is how to
generate positive and negative model outputs. In the supervised learning setup, one can
simply treat the gold-standard vector as the positive output. For negative outputs, the
model f(x) can output a number of y through accepting different x. In the unsupervised
learning setup, y+ and Y− are often defined based on some “natural” annotation. For
example, f(·) can be a function that maps x to something and back to x (call it auto-
encoding). Then, y+ is x itself or some neighbors of x, and Y− is a set of randomly
generated vectors.

• Error-based Loss. Evaluation metrics, as generally used in counting errors in system
output, can also be taken to be part of a loss function. For example, in machine translation,
a popular evaluation metric is BLEU19. Thus, we can take minimizing 1−BLEU as the
objective. Let Error(yθ,ygold) be the “number” of errors in comparing yθ with ygold.
The error-based loss is just the same as this number:

L(yθ,ygold) = Error(yθ,ygold) (1.82)

So far we have presented several loss functions for a wide variety of problems, such as
classification, regression, and ranking. As we will see in this book, different loss functions
have different effects on model behavior. However, testing all possible loss functions is simply
impractical because there are so many of them. Users instead need to choose or design the
most suitable loss functions for their own problems. This may take time but is necessary.

On another hand, there are general methods to improve the design of loss functions. For
example, we can assume that the model output yθ is not a single vector but a variable with
some probability. The loss L(yθ,ygold) is thus treated as a variable too. Then, we redefine the
loss function as the expectation of L(yθ,ygold) under the distribution of yθ:

L({yθ},ygold) = Eyθ∼Pr(yθ|x)
[
L(yθ,ygold) ·Pr(yθ|x)

]
(1.83)

where the use of {yθ} means that yθ is not fixed. By accessing the space of possible yθ, it
offers a better estimation of the loss. This is essentially an instance of the Bayesian approach.
L({yθ},ygold) is called the Bayesian risk or risk for short, sometimes.

Another way to improve training is introducing priors into the objective. A typical method

19BLEU is a precision-like score between 0 and 1. The higher the better.
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is to add a regularization term R to the objective, like this:

θ̂ = argmin
θ

L(yθ,ygold)+α ·R (1.84)

where R could be another function that describes some aspect of the problem, such as the
number of parameters. α is a hyperparameter controlling how much we respect R in training.
The design of R is itself an important problem for many practical machine learning systems.
Although we do not discuss them here, we will look at a few later in this book.

Once the objective is determined, we need some training algorithm to perform optimization.
This is a very broad topic in machine learning, such that we do not even try to describe any of
them in detail in this chapter. Anyway, one should not expect a universal algorithm that can
solve all training problems, and there are indeed some algorithms that are suitable for certain
types of problems. For example, we can use gradient descent to train a neural language model
with the cross entropy-based loss [Bengio et al., 2003a], can use quadratic programming to
train an SVM model with the hinge loss [Cortes and Vapnik, 1995], and can use minimum
error-rate training (MERT) to train a statistical machine translation model with the 1−BLEU
loss [Och and Ney, 2002].

1.3.5 Overfitting and Underfitting
The standard process of (supervised) machine learning comprises a training step and a test
step. While one may try to minimize the loss on training samples, the learned model is used
to deal with new samples that are never seen before. It is like what we experienced in our
lives, for example, a student studies hard and wishes to get good grades in final exams. Yes,
studying hard = good grades should always be true, but it does not mean that memorizing
all the questions and answers in textbooks is a good way to perform well in exams. It always
happens that the test questions are something different from what we learned. We therefore
need some ability of generalization .

In machine learning, generalization is used to describe how well a model learned through
experience predicts on new data. A system is thought to be of excellent generation performance
if it learns little from training data but forms its prediction ability based on some “god” inductive
biases on the problem. However, good generalization does not mean less training. Instead,
practitioners would like to train a machine learning model on more training data to prevent
it from memorizing all the things. Generalization is a very complex issue determined by
several factors, including problem complexity, model architecture, amount of training data,
training algorithm and so on. While there are no standard rules to ensure good generalization,
researchers always try to address it somehow.

To describe how well a model generalizes to new data, there are two important terms,
underfitting and overfitting. Underfitting refers to the phenomenon that a model does not learn
sufficiently from the training data and thus has poor performance on new data. For example,
we interrupt training accidentally and deploy the immature model for prediction. The model
cannot perform well on either the training data or the test data. If a model underfits the training
data, then one could improve it in some simple ways. For example, one could train the model
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Figure 1.4: Decision boundaries of a binary classification problem. left = underfitting, right =
overfitting, and middle = fitting just right. In the underfitting case, there are several obvious
mistakes that are made in separating the two classes of data points. By shifting the decision
boundary up a bit (middle), we obtain a satisfactory separation result, where most of the data
points belonging to the same class are placed on the same side of the decision boundary. By
contrast, a perfect separation requires a highly complex decision boundary instead (right).

for a longer time; one could remove unimportant portions from the training data; one could
use a model with a simpler architecture instead.

In contrast to underfitting, overfitting refers to the phenomenon that a model fits the
training data well but generalizes poorly on the test data (see Figure 1.4). A simple example
of overfitting here is the OOV problem (see Section 1.2.5). It would be a disaster if a text
classification model just fits those words that have been seen but gets stuck when new words
appear.

The causes of overfitting are diverse. An example is learning a complex model on a small
training dataset. The model complexity often matters when we design a machine learning
model. If the model is complex and has many parameters, then it would be much easier to
overfit a small number of samples (see Figure 1.4). The problem would be more difficult if
there is noisy data, because of the errors of “garbage in, garbage out“ in training. In addition,
excessive training is another cause of overfitting. For example, we can heavily tune a system
to enforce it to model the data with no errors. The system would be fragile for new samples,
even when there are small fluctuations in input.

Overfitting can be alleviated in many ways. Here are some commonly-used techniques.

• Using more (high-quality) training data. Large-scale training helps the model capture
the true patterns in data. However, adding noisy data would do this in a negative way.

• Using validation data. Validation data is some test data but used in training. For
example, a dataset can be divided into held-out data and training data. One can simply
early stop the training process when the performance drops on the held-out data.

• Using simpler model architectures. As noted previously, Occam’s Razor is a principle
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we can follow in model design. Models with more complex architectures, though
powerful, would be more likely to fit the noisy data points if the problem is not so
difficult itself. Using a simpler model architecture instead could make it easier to model
the dominant patterns in the data.

• Regularization. Regularization is another way to control the model complexity. Typi-
cally, it regularizes model parameters by priors. An example is smoothing (see Section
1.2.5). It re-estimates the distribution of words after training. A more general method
is regularized training (see Eq. (1.84)). For example, we can define the regularization
factor as the l1 norm of the parameters, and bias the model to those whose parameters
are not in large absolute values.

• Combining multiple models. A better prediction can also be made by ensembling
multiple models. These models (call them component models) are in general of different
parameters or architectures, and/or are trained with different portions of the data. The
variance in models can reduce the risk that all these models overfit the data in exactly
the same manner. These models are, therefore, less likely to make similar mistakes in
prediction.

1.3.6 Prediction

Although we restricted our discussion to classification in previous sections, (supervised)
machine learning is not just a task of predicting a label for an input object. There are many
types of machine learning problems, depending on what form of the prediction is defined.

• Classification. Classification is perhaps one of the most common machine learning
problems. A classification system is required to assign one or more classes to an input
object.

• Regression. In statistics, regression studies the relationship between a dependent
variable (or an outcome) and an independent variable. While regression has many
applications, it is often framed as score prediction in NLP. For example, taking a movie
review as input (i.e., an independent variable), the regression model learns to predict a
recommendation score (i.e., a dependent variable).

• Ranking. A ranking model is to predict the order of a set of input objects. For example,
a model ranks a number of translations in terms of translation quality.

• Structure prediction. Many machine learning models are required to output not only a
real value or a class but a tree or a sequence. The task of predicting structured outputs
is called structure prediction. For example, a syntactic parser is a structure prediction
system, as its output is a tree structure.

In addition to these, mining is a term that is frequently used in the community, although
it is somehow not a standard machine learning problem. The problem of mining refers to
discovering unknown patterns in the data. An example we would like to categorize into this
is word clustering. Given a number of words, the clustering system “predicts” the cluster for
each word. The output of such systems is not pre-defined. Patterns in data are themselves hard
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to describe. Thus, the term “mining” could cover a range of problems. To avoid confusion, we
will use more specific terms (such as word clustering) to refer to mining-related problems.

Despite a fundamental aspect of machine learning, prediction is conventionally assumed
to be trivial, given that many models and methods are tested on standard classification and
regression tasks. On the other hand, prediction is non-trivial in structure prediction, such as
parsing and machine translation, which are very common in NLP. Essentially, predicting a tree
or a sequence is a search problem. For example, there exist a theoretically infinite number
of translations given a source-language sentence. Even if we have a model to evaluate every
translation, finding the optimal translation in the search space is obviously a computational
challenge. In such cases, we need some way to make it feasible to perform search. This is
implemented by either resorting to the general search algorithms in artificial intelligence or
developing new algorithms for specific problems. As an aside, the study on the search problem
offers a new view on the mistakes made by a machine learning model: some of the errors are
due to inaccurate modeling (call them model errors), and the rest are due to inaccurate search
(call them search errors). For prediction, eliminating search errors is a goal but often at the
cost of a considerably large amount of search effort. We sometimes must trade off between
efficiency and accuracy if a machine learning model is deployed for practical purposes. We
will see a few examples in Chapter 5.

1.4 Model Selection and Evaluation
For most machine learning problems, the goal is to find a model that would perform the best
on new data. Two problems can be separated out from this goal [Hastie et al., 2009]:

• Model selection. Selecting the best model on training data by some criteria.

• Model evaluation. Estimating the performance of a given model on new data.

As noted in Section 1.3.4, loss functions (or error functions) are common ways of measuring
errors in a prediction yθ = fθ(x) with respect to a gold-standard ygold. Given K labeled
training samples {(x(1),y

(1)
gold), ...,(x

(K),y
(K)
gold)}, the training error is given by

Errtrain = L({y(k)
θ },{y

(k)
gold}) (1.85)

where {y(k)
θ } are the predictions over the training dataset, and {y(k)

gold} are the corresponding

gold-standards. L({y(k)
θ },{y

(k)
gold}) is in general defined as the averaged loss over all training

samples:

L({y(k)
θ },{y

(k)
gold}) =

1

K

K∑
k=1

L(y
(k)
θ ,y

(k)
gold) (1.86)

or defined as a single measure on the entire set of training samples. Likewise, we can define the
test error on the test dataset, denoted as Errtest. Errtest is also called generalization error.
It indicates how well a model generalizes to new data.
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Figure 1.5: Curves of training error and test error for a machine learning system. The training
error is measured in terms of the cross-entropy loss, and the test error is measured in terms of
1−BLEU. All statistics are collected by running a neural machine translation system on the
IWSLT De-En benchmark. The training error continues to drop as more training epochs are
involved. The test error, on the other hand, follows a trend of first going down and then going
up. When the test error starts to increase, the model is likely to overfit the training data.

In the preceding sections we assumed that minimizing Errtrain is the objective of training,
i.e., θ̂ = argminθErrtrain. However, we cannot assume that fθ̂(·) can obtain the minimum
Errtest in the same way. See Figure 1.5 for learning curves of a machine translation system.
Clearly, Errtest does not correlate with Errtrain well. The training error keeps reducing as
training proceeds. However, the test error goes up after following the same trend as the training
error for a period of time, indicating overfitting of the model. This makes the problem a bit
more complicated, as we cannot always trust Errtrain although it is and should be the measure
of the goodness of training. Surely, we need some way to select a better model, in addition to
looking at Errtrain only.

1.4.1 Strategies for Model Selection
Choosing the optimal model on the training data is challenging because the motivation here is
“greedy” itself — we hope that a machine learning model can generalize from a finite, even a
“small” number of samples. From the statistical learning point of view, the challenge is due to
the way we define the learning problem. An implicit assumption in machine learning is that all
data is generated by some distribution. Thus, the learning problem is determined by generating
the training data via a data-generation distribution and the test data via another distribution.

For example, if both the training and test datasets are sufficiently large and obtained via the
same data-generation distribution, then the learned model can perform on the test data as well
as on the training data. In this case, it is easy to generalize the model from the training data to
the test data. By contrast, if all training and test data is generated in an arbitrary manner (say a
uniform distribution over the entire space of data points), then the model will fail to generalize,
as everything learned on the training data does nothing with the test data.
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It will be more interesting if we consider all possible problems. The no free lunch theorem
states that all learning algorithms will perform equally well if we average the test error over
all problems20. In other words, all learning will make no sense if there is no preference for
certain problems. However, developing a universally good machine learning model on all
problems is idealistic. In real-world applications, the training and test data is always assumed
to at least in part follow some distribution. Therefore, there are indeed some ways to capture
this distribution and improve the generalization ability of a model. Two scenarios are generally
considered in improving machine learning systems:

• Given the model design and the training algorithm, how to develop or select training
data to reduce the test error.

• Given the training data, how to develop or select a model to reduce the test error.

The first scenario is complicated and relates to many practical issues, e.g., annotation, data
cleaning, data quality estimation and so on. Since these issues are not the focus for model
selection, we do not discuss them but leave some to subsequent sections. Here, we focus on
the model selection problem in the second scenario.

1. Model Complexity
The simplest method of model selection might be testing the models on validation data.
Typically, this data does not overlap with either training or test data, but is assumed to be
generated in the same way as the test data. However, such data is not always available. In some
cases, we do not even know anything about the test data. So many model selection methods
are validation-free.

A common way is to use model complexity (or model capacity) as an indicator of the
selection. In machine learning, model complexity can be interpreted in several different ways.
For example, a non-linear model is intuitively more complex than a linear model. Also, a
model with more parameters is more complex than a model with fewer parameters under
the same model architecture. More formal definitions could be found in the theoretical part
of machine learning, such as the Vapnik-Chervonenkis dimension or the VC dimension
[Vapnik and Chervonenkis, 1971]. Here we simply treat model complexity as a measure of the
expressive power of a model, i.e., a higher model complexity indicates more hypotheses that
the model can express.

While complex models are usually assumed to be more powerful, higher model com-
plexities are not always helpful. In fact, complex models are more likely to overfit the data,
especially when a small dataset is used for training. By contrast, too simple models are often
prone to underfitting. We therefore need to seek an “optimal” level of model complexity. Figure
1.6 plots training and test errors against model complexity. An “optimal” complexity can be
chosen when the training error tends to convergence. While Figure 1.6 shows an intuitive
example, it is still hard to say at what point we can choose the model. The common practice,
though not formally described in most cases, is to choose among those “good” models by using

20The no free lunch theorem was originally presented in a classification scenario [Wolpert, 1996], and was
further extended to search and optimization problems [Wolpert and Macready, 1997].
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Figure 1.6: Curves of training error and test error under different model complexities. Complex
models help in reducing the training error as they can compute complex functions in fitting
data points. However, a too large model complexity is more likely to lead to overfitting and is
harmful to the generalization ability of the models. For example, the test error increases as
more complexity is added.

Occam’s Razor. Suppose we have a set of models that perform comparably well on the training
data but are of different complexities. According to Occam’s Razor, the simplest model is the
“best” choice. Many criteria are available to measure the model complexity. For example,

• Number of parameters. Though very simple, counting the number of parameters is the
most intuitive yet effective method. It can be extended to counting the effective number
of parameters which is defined to be the trace of the matrix used to transform ygold to
yθ.

• p-norm of parameters. The p-norm of a parameter matrix is also an indicator of how
complex a model is (see Section 1.1.1). For example, according to the l1 norm, a model
with larger absolute values for parameters is more complex.

• Description length. Description length is a term used in data compression. For example,
it could be the number of bits used to store a model. Thus, the minimum description
length (or MDL) indicates the most compressed model.

• The VC dimension. It is originally from computational learning theory. In short, the VC
dimension can be defined as the maximum number of data points that can be shattered
by the classifier.

In addition, there are other choices for defining the criterion, including the Akaike infor-
mation criterion (AIC), the Bayesian information criterion (BIC), the minimum message
length (MML) and so on. They can be found in most textbooks on statistics and/or statistical
learning [Burnham and Anderson, 2002; Konishi and Kitagawa, 2007; Hastie et al., 2009].
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2. Bias-Variance Tradeoff

Controlling model complexity to avoid overfitting and underfitting is also linked to the tradeoff
between bias and variance. Bias (or prediction bias) is the amount that the model prediction
differs from the true value. In statistics, bias is a systematic error that cannot cancel out
even if we run a large number of repeated experiments. In general, bias error results from the
wrong assumptions about the problem, such as approximating a non-linear problem via a linear
model. This is very interesting! We can establish the connection of the bias error here with
the inductive bias used in mode design (see Section 1.3.2). For example, given training data,
a large bias model is usually due to the fact that there are more assumptions and the model
is not complex enough. To make it simple, we would say that more (or stronger) inductive
biases can result in a lower model complexity and more bias error in prediction. Occasionally,
the term bias is used as a short for both bias in prediction (from a statistics perspective) and
inductive bias (from a model design perspective), although they are considered to have different
meanings21.

Variance, on the other hand, describes how spread the prediction is when there are variations
in training data. The variance error also correlates with model complexity. For example, a
complex model tends to exhibit higher variance.

Both bias and variance are sources of errors of a system. A common example is the
bias-variance decomposition of mean squared error. Here we use some notation that differs
slightly from that used in previous sections. Let D be a set of K training samples and fθ̂(D)(·)
be a model leaned on D. Further, given a new sample x, let yθ̂(D) = fθ̂(D)(x) be the model
prediction and ygold be the “true” prediction. The bias and variance are defined as:

bias = ED[yθ̂(D)]−ygold (1.87)

variance = ED
[(
ED[yθ̂(D)]−yθ̂(D)

)2] (1.88)

where ED[yθ̂(D)] is the mean of yθ̂(D) over all possible K sample training datasets. Thus, the
bias is some sort of difference between the mean and the true value, and the variance is some
sort of difference between the mean and the predicted value. Taking the mean squared error as
the error measure, we can write the expected error as:

error = ED
[(
yθ̂(D)−ygold

)2]
= bias2+variance (1.89)

For lower mean squared error, reducing both bias and variance simultaneously is obviously
an ideal goal. However, it is difficult to make a model that exhibits both low bias and variance.
When one of the two decreases, the other increases (see Figure 1.7). Researchers must
choose the optimal level of model complexity while preventing training from overfitting and
underfitting. This also depends on the problem we intend to solve. For example, a simple

21Bias is more often used in statistics to describe some aspect of an estimator.
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Complexity

Bias
Test Error

Variance

Figure 1.7: Bias and variance against model complexity [Goodfellow et al., 2016]. The curves
show a conflict in reducing the bias error and the variance error simultaneously. By varying
the model complexity, one can obtain either a low-bias, high-variance model or a high-bias,
low-variance model. Both of the two cases exhibit high test error. For example, a high-variance
model is often of a larger model complexity. While such a model is able to deal with complex
problems, it is more likely to overfit the data. On the other hand, a high-bias model often
means a simpler model but tends to underfit the data. To improve the generalization on test
data, one can seek a tradeoff between bias and variance. For example, there is low test error
when a “middle sized” model is chosen.

model generally has low variance but high bias. However, if we use the simple model (say
a linear model) to describe a complex problem (say a non-linear problem), then underfitting
would probably occur because the problem is too “hard” for the model.

Returning to the model selection problem, the bias-variance tradeoff is not a rule for model
selection, but a principle we must keep in mind. Often, one needs to make compromises to
create a model that makes reasonably good predictions. It is also worth noting that, in many
applications, complex models are usually accompanied with the inefficiency problem. An
appropriate method might be to start with a simple model and only add complexity when it is
needed.

3. Model Combination

Selecting from a set of models is not the only way to reduce generalization error. Alternatively,
one can do this in the opposite way, and combine these models for a “stronger” model. Such a
method is called ensemble learning [Seni et al., 2010; Zhou, 2012a]. A key idea of ensemble
learning is to create a set of component models (or ensemble models), such that they can vote
for a better prediction. The simplest of these is a mixture model that averages the predicted
scores of multiple component models (call it model averaging), whereas a more sophisticated
method can combine the sub-structures of these models.

Component models are in general generated in some way that they can exhibit some
diversity. For example, they can be learned on different portions of the training data, or by
using different initializations for model parameters. Interestingly, it is found that such methods
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can guarantee the reduction of generalization error somehow. For example, bagging helps to
lower variance [Breiman, 1996], and boosting helps to lower bias [Schapire, 1990]. These are
linked back to what we presented in Section 1.4.1: the generalization error can be reduced by
either reducing the bias error or reducing the variance error.

But discussing how to combine models is beyond the scope of this chapter. While it is even
not appropriate to categorize model combination as a topic related to model selection, it can be
seen as a means of improving the generalization ability. In this sense, both model combination
and model selection address problems on a similar theme. In fact, model combination is
remarkably effective for many NLP tasks. For example, most state-of-the-art systems in NLP
are based on the combination of multiple models.

1.4.2 Training, Validation and Test Data
We turn now to the data problem. As discussed in the previous sections, in the training stage, a
training dataset is used to fit the parameters of the model. In the test stage, a test dataset is used
to evaluate the learned model. Closely related to test data is validation data, which has come
up a few times in this chapter. A validation dataset is a test dataset as well but can be used in
the training stage. It is commonly used for model selection and tuning hyperparameters.

In many cases, one may imagine that there is some data for training and some additional
data for validation and test. This assumption, however, is not realistic in many real-world
applications. For example, developers cannot always access the data of system use after
deploying a system. From a scientific point of view, there is no “real” new data for test —
when you see new data, it is not new anymore. Therefore, what we address is essentially an
analogue of the problem.

A simple method, as in many research papers, is to verify machine learning models on
benchmark tasks. In these tasks, all data is prepared in advance, and all you need is to run your
models on the data. Such a method makes it easy to compare different systems directly, as all
these systems are trained and tested on the same datasets. Occasionally, we are just given a
number of samples but not told which are for training and which are for test. In such cases, the
data can be divided into parts each of which is used for some purposes. For example, a split
could be 60% for training, 20% for validation, and 20% for test.

While data splitting provides a way to assess the performance of a model, the assessment
result is not always stable due to sampling bias. Sometimes, the performance varies greatly
across different runs of data splitting. The problem is more obvious when the dataset is too
small to perform sufficient training or test.

A common way to weaken the effect of this bias is cross-validation. Cross-validation is a
resampling method. Each round of cross-validation is a new split of data and the result is the
combination of the assessment over the rounds. A simple method is random subsampling that
repeats random partition of the data and averages the performance over runs. Another method
is k-fold cross-validation. It divides the data into k parts. In each round of cross-validation,
some parts are used as training data, and other parts are used as validation and test data. For
example, in 10-fold cross-validation, a model can be trained and validated/tested for 10 times,
each choosing one of the ten parts as the test dataset.
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Another note on the scale of data. For practitioners, one of the most frequent questions
is how many samples are enough for learning a good model. This may be the most difficult
question on which different people can have consensus answers. There are many theoretical
results that can tell the bound of errors given a certain amount of data, whereas in most cases
we just simply follow the “the more the better” idea. In another line of thought, a system
could be sample efficient. In general, a sample efficient system can reach a good level of
performance by using fewer samples or seeing the same sample for fewer times. For example,
tuning a pre-trained model is sample efficient because the samples are not used for learning
from scratch but a modest update of the model. Another example is few-shot learning. It aims
to generalize from observing very few samples for a task.

1.4.3 Performance Measure

As an essential part of every machine learning problem, a performance measure describes how
well a system performs given some data. Usually it is used in either designing the training
objectives or evaluating the result of the final system. For example, all those loss functions
described in Section 1.3.4 are some kinds of performance measures.

As for evaluating the performance on test data, a measure is often designed in a way that
we can count the real errors. Thus, re-using the loss functions in training might not be a good
choice for reporting the final score. For example, the widely-used measures for classification
problems are precision, recall and F1 score. They are proposed to quantify the ability of a
classification system in certain aspects: given a class c, precision computes the fraction of
correct predictions in predicting c, and recall computes the fraction of correct predictions on
all samples labeled as c. The F1 score is a measure that combines precision and recall.

Notice that performance measures are not necessarily designed for optimization. In this
sense, they may not guarantee some mathematical properties, such as differentiable and
continuous functions. An example is the BLEU metric used in machine translation. BLEU is a
function combining precision scores and a penalty score [Papineni et al., 2002]. This in turn
makes the metric non-differentiable and discontinuous. In NLP, there are many such evaluation
measures that are ad-hoc for certain tasks. These raise an interesting problem that the loss
function used in training may differ from what we actually use in evaluating the final model.
Thus, one sometimes needs to take into account the discrepancy between the objectives of
training and test.

Another problem with performance measures in NLP is that there might be two or more
“answers” for the same “question”. For example, there are generally multiple good translations
for a source-language sentence. One solution is to take multiple gold-standards into account
when designing a performance measure. BLEU is such a case. It counts the maximum number
of the correct translation segments over all reference translations. The second solution involves
human evaluation. Such a way of evaluation is more accurate but of course is more expensive.
When developing practical systems, practitioners usually train and tune the systems using
automatic measures, and call for human evaluations for the final test.
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1.4.4 Significance Tests
Now, assuming you are improving a system in some way, you might be wondering if the
improvement is significant enough or not. All you have is a performance measure. So you
can tell the performance difference between any two points in developing the system, but you
cannot tell if the difference is real or happens by chance.

In this example, you implicitly try to reject or accept a claim that a system is better than
another system (or not). In statistics, significance tests are a method to model this problem.
Suppose we have two systems A and B. And there are a number of datasets on each of
which we evaluate the two systems via the same performance measure. Then, we make two
hypotheses

H0: System A performs worse than or equally well as system B.

H1: System A performs better than system B.

where H0 is the null hypothesis, and H1 is the alternative hypothesis that is contradictory to
the null hypothesis. By testing these hypotheses, we can claim that system A is significantly
better than system B (i.e., reject H0 and accept H1) or not (i.e., accept H0 and reject H1).
We probably make errors in the test, for example, incorrectly rejecting a true null hypothesis
(type I error), or incorrectly accepting a false null hypothesis (type II error). The two types
of errors are at odds with each other. A decrease of one may lead to an increase of the other.
Alternatively, we can decrease one while guaranteeing that the other is upper bounded. For
example, we can reduce the type II error as much as possible, and keep the type I error below
a constant α. α is typically called the significance level of a test. It is standard practice to
choose the significance level in the interval [1%,5%]. When conducting statistical testing,
we can obtain the probability of the type I error (call it a p-value). A p-value that is lower
than the significance level can make a rejection of the null hypothesis. For example, in the
above example, with a significance level of 5%, a p-value = 3% means that the improvement
is statistically significant. For more information about the p-value, we refer the reader to other
books on statistics [McClave and Sincich, 2006; Freedman et al., 2007; Freedman, 2009].

Note that the conclusion of significance tests depends on several factors, such as the
number of experiments and the variance in the results of experiments. A problem with
applying significance tests to NLP tasks is that there are often very few datasets for running the
experiments [Dror et al., 2020]. Ideally, we know the true data distribution and can consider
it in the test. This method is called the parametric test. If we cannot find the true data
distribution, then, as a non-parametric test method, we can generate a number of experiments
by sampling over a dataset or adding randomness into the test.

Significance tests are important for drawing convincing conclusions in developing machine
learning systems, although they are often ignored unintentionally. Figure 1.8 shows evaluation
results of three models. Each of them is run for several times with different initial parameters.
While system A is superior to system B in terms of the averaged performance, there are large
variances in their results. The significance test indicates that the difference is not significant.
By contrast, the difference between system A and system C is significant because their
performance differs greatly enough in most cases. On the other hand, researchers have found
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Figure 1.8: Performance of three machine learning systems. For each system, there are many
different results because we introduce some randomness into training (e.g., data shuffling,
random starting points, etc). Although it seems that System A outperforms System B, there
is no real distinction between them, because they overlap a lot in the distributions of the
performance (see the bottom of the figure). When comparing System C with System A or B,
the difference in performance is significant because we could accept the H1 hypothesis (i.e.,
System C outperforms System A or B) given a large number of experiments.

that there are indeed some thresholds of performance gain to indicate significance under certain
circumstances. For example, we would say that the significance can be roughly indicated by a
certain metric gain if we compare similar systems [Berg-Kirkpatrick et al., 2012].

1.5 NLP Tasks as ML Tasks
While there are a wide variety of NLP tasks, many of them can be formulated as the same
machine learning problem. This enables a universal solution to a group of NLP problems
by using a general machine learning approach. Typically, an NLP task can be described as
learning to map language units to some output. Following the notation used in this chapter, we
use x to denote the input feature vector (or matrix) of an NLP task, and use f(x) to denote the
function that is learned to process x. Here are some of the common tasks in NLP.

1.5.1 Classification
Suppose there are a set of classes or labels C. Each class is represented by a distinct integer in
{1, ..., |C|}. A classification model is a function that maps the input x to a |C|-dimensional
vector y, i.e., y = f(x). Each entry of y is a score corresponding to class i, denoted by
y(i). The task here is to assign x to one or more classes having the highest scores. Consider
single-label classification as an example. The prediction is given by the equation

ĉ = argmax
1≤i≤|C|

y(i) (1.90)

where ĉ is the “best” class assigned to x. Sometimes, one needs a probability-like output (see
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Section 1.2.1). Let ψ(·) be a function that normalizes a vector into a distribution22. We then
obtain a probabilistic classifier:

y = ψ(f(x)) (1.93)

Classification may be the most common problem in NLP. There are many applications
in addition to categorizing documents into predefined classes. Among them are choosing a
sense for a word [Yarowsky, 1994], determining the polarity of a sentence [Pang et al., 2002],
checking whether two entities should be linked [Krebs et al., 2018], classifying the way of
associating a semantic argument with a verb [Gildea and Jurafsky, 2002], and so on. When
adapting a classification model to these tasks, all you need is to design the form of x and the
set of classes.

1.5.2 Sequence Labeling

An extension to standard classification is to classify a set of samples simultaneously. Sequence
labeling is an example of such a problem. In sequence labeling, the input is a sequence of n
tokens, such as a sequence of n words. A sequence labeling system is required to assign each
input token x(i) a label l(i). Here the boldface in x(i) is used to emphasize that the token
is represented as a feature vector. For convenience, we write x(i) as xi and l(i) as li. The
function f(·) maps the sequence x1...xn into another sequence y1...yn, where yi is the output
vector corresponding to xi. This can be formulated as:[

y1 ... yn

]
= f(

[
x1 ... xn

]
) (1.94)

For vector yi, each entry yi(c) corresponds to the prediction score of a class c ∈ C. Note
that f(·) allows for the use of a larger context. For example, one can condition the prediction
yi on the entire input sequence [Lafferty et al., 2001]. The final output of the system can be
defined as the “optimal” label sequence induced from y1...yn. A simple method is to choose
the label sequence that maximizes the sum of the scores over all positions, like this

[
l̂1 ... l̂n

]
= argmax

l1,...,ln∈C

n∑
i=1

yi(li) (1.95)

A straightforward application of sequence labeling to NLP is to tag each token of the input
sequence, such as part-of-speech tagging (or POS tagging). Furthermore, sequence labeling

22A similar idea can be found in Eq. (1.48). Given a vector a=
[
a(1) ... a(n)

]
, the normalization function

has the form:

ψ(a) =
[

a(1)∑n
i=1 a(i)

...
a(n)∑n
i=1 a(i)

]
(1.91)

Another way is using the Softmax function:

ψ(a) =
[

exp(a(1))∑n
i=1 exp(a(i))

...
exp(a(n))∑n
i=1 exp(a(i))

]
(1.92)
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Figure 1.9: An example of sequence labeling for POS tagging and chunking. The example
is from the training data of the CoNLL 2000 shared task. Each token is labeled with a POS
tag and a chunk tag. A chunk tag has an initial character chosen from {B, I,O}, where B =
beginning of a chunk, I = inside a chunk, and O = outside a chunk. So, a chunk always starts
with a “B” tag, optionally followed by “I” tags. For example, the VP (verb phrase) chunk in
the example spans over the chunk tag sequence “B-VP I-VP I-VP I-VP”.

is able to deal with more complex problems by using labels in a clever way. A well-known
example is the use of the “IOB” label format in identifying chunks spanning multiple tokens
(call it chunking). In this method, “I”, “O” and “B” stand for a token inside a chunk, a token
outside a chunk, and the leftmost token of a chunk [Ramshaw and Marcus, 1995]. As such, a
chunk always starts with a “B“ and ends just before the next “B” or a new “O”. See Figure 1.9
for POS tagging and chunking results on an example sentence. As sequence labeling allows
the labeling of both tokens and spans, it has been applied with strong results to many tasks,
including POS tagging [Bahl and Mercer, 1976], chunking [Tjong Kim Sang and Buchholz,
2000], named entity recognition (NER) [Tjong Kim Sang, 2002], and so on.

1.5.3 Language Modeling/Word Prediction
Statistical language modeling (or language modeling for short) is a task of assigning a
probability Pr(w1, ...,wn) to a sequence of words w1...wn. This joint probability is generally
decomposed into a product of conditional probabilities, by using the chain rule:

Pr(w1, ...,wn) = Pr(w1) ·Pr(w2|w1) · · ·Pr(wn|w1, ...,wn−1)

=

n∏
i=1

Pr(wi|w1, ...,wi−1) (1.96)

Eq. (1.96) describes a procedure that generates a word sequence from left to right (call
it auto-regressive generation). Estimating Pr(wi|w1, ...,wi−1) is essentially a missing word
prediction problem: we mask out the last word of a sequence and guide the language model to
predict the correct word at that position. See below for a word sequence where the last word is
missing.

Pride and prejudice is one of the best known

We can reuse the idea in classification to model the probability distribution Pr( |
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Pride,and, ...,known). Let xi be the vector representation of wi. We can define a function that
reads x1...xi−1 and produces a vector hi:

hi = f(x1, ...,xi−1) (1.97)

where hi is the intermediate states of the word distribution at position i. For a sounding
distribution, we normalize hi by some normalization function ψ(·). Thus, the distribution at
position i would be

yi = ψ(hi)

= ψ(f(x1, ...,xi−1)) (1.98)

Obviously, yi(wi) is the probability ofwi given previous words, i.e., yi(wi)= Pr(wi|w1, ...,wi−1).
Note that Eq. (1.96) only considers the left context when predicting a word. A natural extension
to this is to condition the prediction on all available context. Consider, for example, a sentence
with a masked word in the middle.

Pride and is one of the best-known novels

In this example, we can predict the masked word by using both the left context (Pride and)
and the right context (is one of the best known novels):

yi = ψ(f(x1, ...,xi−1,xi+1, ...,xn)) (1.99)

This is a bidirectional model, and is commonly used in auto-encoding methods for learning
sequence representation models [Devlin et al., 2019].

1.5.4 Sequence Generation

Sequence generation covers a range of NLP problems, including machine translation, sum-
marization, question answering, dialogue systems, and so on. Usually, it refers to mapping
some data to a sequence. Here we focus on the sequence-to-sequence problem, in that a
source-side sequence is transformed to a target-side sequence, although sequence generation is
not specialized to work with chain structures on the source-side.

For notation convenience, we use boldface variables to denote sequences from now on.
For example, a is a sequence of size n. It can be written as either

[
a1 ... an

]
or a1...an.

Let s= s1...sm and t= t1...tn be the sequences to transform from and to. The sequence-to-
sequence problem can be described as finding a target-side sequence that maximizes Pr(t|s):

t̂ = argmax
t

Pr(t|s) (1.100)
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Like language modeling, Pr(t|s) can be formalized in an auto-regressive fashion:

Pr(t|s) = Pr(t1, ..., tn|s)
= Pr(t1|s) ·Pr(t2|s, t1) · · ·Pr(tn|s, t1, ..., tn−1)

=
n∏
i=1

Pr(ti|s, t1, ..., ti−1) (1.101)

Eq. (1.101) differs from Eq. (1.96) only in the additional condition (i.e., s) introduced
to these probabilities. In this sense, we can use Eqs. (1.97-1.98) to solve Pr(ti|s, t1, ..., ti−1).
On the other hand, involving s makes the problem more difficult, as we need to model the
cross-sequence relationship between s and ti. A recent trend in sequence generation is to
formulate Pr(ti|s, t1, ..., ti−1) in the encoder-decoder paradigm. There are two steps: an
encoder is first used to represent s as some intermediate form (e.g., a vector), and a decoder is
then used to model both the target-side words and the correlation between the encoder output
and the target-side words. Putting these together, the output of the encoder-decoder model can
be defined to be

yi = Dec(Enc(s), t1, ..., ti−1) (1.102)

where Enc(·) is the encoder, and Dec(·) is the decoder. yi is a distribution of the target-
side word at position i, i.e., yi(ti) = Pr(ti|s, t1, ..., ti−1). Chapter 5 will provide a detailed
description of the encoder-decoder model.

1.5.5 Tree Generation

In NLP, trees are usually used to represent the structures or meanings of sequential data. For
example, a syntactic parser analyzes a sentence to form a syntax tree or parse tree. More
formally, given a sequence of words s= s1...sm, the parsing problem can be defined as:

d̂ = argmax
d∈D

Pr(d|s) (1.103)

where d is a parse tree, andD is the set of all parse trees yielding s1...sm. Computing Pr(d|s) is
challenging, as the modeling complexity increases exponentially when moving from sequences
to trees. In statistical parsing, a solution is to model d as a derivation of syntactic rules. In
this way, Pr(d|s) can be formulated as a product of rule probabilities. Figure 1.10 presents
an example of parsing with context-free grammar (CFG) rules. Alternatively, Pr(d|s) can be
modeled in an end-to-end manner. For example, some recent approaches perform parsing by
defining a neural network over the parse tree. The probability of a sub-tree rooting at a node is
computed by considering the interaction between this node and child nodes.

Another idea is to frame parsing as sequence generation. For example, one can linearize a
parse tree and represent it as a sequence of words and syntactic labels, or transform the tree
generation process as a sequence of actions. This allows the use of sequence-to-sequence
techniques in addressing a sequence-to-tree problem.
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Figure 1.10: An example parse tree and CFG rules. The sentence is from the training data of
the CoNLL 2000 shared task. The parse tree is represented as a derivation of CFG rules. The
probability of the parse tree is defined as the product of rule probabilities.

In linguistics and NLP, tree structures are in heavy use for syntactic analysis. In addition
to parsing sentences, they are also attributed to words, phrases, and discourses. On the other
hand, trees are not the only way of visualizing complex non-linear structures. A more general
concept is a graph. While trees can be thought of as special graphs, there are cases that trees
cannot handle [Fellbaum, 2005; Singhal, 2005; Banarescu et al., 2013]. For example, in the
semantic representation of a sentence, we often need a graph to connect verbs and arguments.
While learning general graphs is harder than parsing a sentence into a tree, we can reuse many
of the methods developed in sequence and tree generation.

1.5.6 Relevance Modeling

Generally speaking, relevance is referred to as how well a thing relates to another. The concept
of relevance is used in many different sub-fields of NLP and information science. For example,
in information retrieval, relevance is used to describe to what extent a retrieved document
meets the query. Additional uses of this concept can be found in question answering, dialogue
systems, semantic analysis, and all other tasks that require a matching or retrieval process.

Let us consider a more general description. Assume that we have a query query and a key
key that represents something we intend to match with query. Then, we define the feature
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vectors of query and key as

q = Q(query) (1.104)

k = K(key) (1.105)

Q(·) and K(·) are feature extractors. The relevance between query and key is given by the
function:

r = f(q,k) (1.106)

f(·) could be on one hand simply a distance measure if q and k are in the same vector space,
and on the other hand a more complex model that performs some non-linear transformations.
In fact, the way of defining relevance can be adopted in several different scenarios. Sometimes,
relevance is also termed as similarity or correlation. A general example is how similar two
objects are. Let x and y be two samples (say two words). The similarity of x and y is given by

r = f(g(x),g(y)) (1.107)

where g(·) is a feature extractor, and f(·) is a similarity function. Learning both g(·) and
f(·) is called similarity learning. In one setup of similarity learning, we fix f(·) and learn
g(·) in a way that similar samples exhibit similar outputs of g(·). The learning of the feature
extractor is not even required to work with the similarity function. For example, for obtaining
the similarity between words, we can learn g(·) in a language model and use it together with
various similarity functions. This puts the problem in a larger topic of machine learning: the
learning of a sub-model is independent of the problem where we use it. Such an idea is widely
adopted in pre-training, advancing the recent state-of-the-art on many NLP tasks.

In another setup of similarity learning, we can learn f(·) directly. This can be performed by
either jointly learning f(·) and g(·), or learning f(·) on top of fixed g(·). The problem is also
related to metric learning. Typically, metric learning is framed as a supervised problem [Kulis,
2013]. A desired similarity function could be learned with the supervision regarding some
gold-standard similarity. However, in practice there is usually no such supervised information
in NLP. In this case, one could take relative distance as some supervision. For example, the
similarity function can be learned by optimizing a contrastive loss (see Section 1.3.4).

Measuring the similarity between objects plays an important role in many machine learning
methods, such as clustering and nearest neighbor classification. On the side of NLP, it is
useful for exploring the relationship between words, phrases, sentences, and documents, e.g.,
similarity is a way to examine how word vectors correspond to our understanding of word
meanings [Mikolov et al., 2013c; Pennington et al., 2014].

1.5.7 Linguistic Alignment
Linguistic alignment is a set of problems where we establish some correspondence between
two sets of linguistic units. In NLP, the sequence-to-sequence and sequence-to-tree problems
are typically linguistic alignment problems, as they both connect two linguistic units. However,
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by convention, the term alignment is referred to as aligning multiple objects simultaneously23.
As an example, consider the well-known word alignment task: we align the words of

a sentence to the words of another sentence. We reuse the notation in Section 1.5.4 as both
the sequence-to-sequence and word alignment tasks perform on a pair of sequences. Given a
source-side word sequence s= s1...sm and a target-side word sequence t= t1...tn, the word
alignment between the two sequences is denoted as an m×n matrix A. A(i, j) = 1 if there is
an alignment link between si and tj , and A(i, j) = 0 otherwise. The optimal alignment can
be defined as:

Â = argmax
A

Pr(A|s,t) (1.108)

where Pr(A|s,t) is the word alignment probability. Like in other machine learning problems,
we can model Pr(A|s,t) in either a generative or discriminative manner (see Section 1.2.4).
For example, in Brown et al. [1993]’s work, the word alignment model is factored into several
generative steps, each accounting for some assumptions about the problem24.

A 0-1 alignment matrix indicates a hard way of word alignment. A problem here is that
the hard model may not describe well the highly ambiguous word alignments. We therefore
can represent A as a real-valued matrix (call it a soft word alignment matrix or a word
alignment weight matrix). Assume that the source-side words are represented as a sequence
of feature vectors x =

[
x1 ... xm

]
. Likewise, the target-side words are represented as

y =
[
y1 ... yn

]
. A soft word alignment model is given by:

A = a(s,t) (1.109)

where a(·) is an word alignment function that computes the alignment weight A(i, j) for each
pair of xi and yj . In fact, all the methods discussed in Section 1.5.6 are applicable to the
design of a(·). This somehow links the modeling of word alignment with the modeling of
similarity, and makes it possible to address different NLP problems by using the same machine
learning approach.

Eq. (1.109) offers a very general way to discover the underlying connection over pairs
of variables. In addition to aligning words in sequences, it is useful for aligning unordered
objects. For example, in bilingual dictionary induction, we can learn such a weight matrix to
estimate how strong a word in one language corresponds to a word in another language.

Here is another note on linguistic alignment models. While linguistic alignment could
be thought of as an independent NLP task, it is commonly used in designing sub-models
of some downstream systems. Many systems that model word-level relationships involve
implicit representation of linguistic alignment. As a consequence, linguistic alignment is
treated as some latent states, and is a by-product of these systems. For example, in the early

23The concept of alignment is wide-ranging. We use the term linguistic alignment here to differentiate it from
the alignment of large language models discussed in subsequent chapters.

24More precisely, Brown et al. [1993] model Pr(A,s|t) which is a surrogate of Pr(A|s,t), as Pr(A|s,t) =
Pr(A,s|t)
Pr(s|t) =

Pr(A,s|t)∑
A′ Pr(A′,s|t)
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age of statistical machine translation, word alignment is a hidden variable used in modeling
the mapping between sequences. The word alignment result can be easily induced from a
machine translation model. More recently, neural sequence-to-sequence models — most
notably attentional models [Bahdanau et al., 2014] — have attempted to do something similar
to word alignment by computing attention weights among words.

1.5.8 Extraction

In NLP, extraction is not a kind of task but a kind of behavior that a system exhibits. Informally,
it denotes a process of gathering, distilling structured information from some information
sources. So, the term extraction generally appears together with other terms to form a specific
task, such as keyword extraction, event extraction, and relation extraction. Many of these
tasks can be categorized into an area — information extraction. Information extraction is
perhaps the broadest topic in NLP. There is even no exhaustive list of information extraction
tasks. According to Jurafsky and Martin [2008]’s book, it includes but is not limited to named
entity recognition, reference resolution, relation extraction, event extraction, template filling,
and so on.

However, since information extraction is a “miscellany” of many different problems,
it cannot be formulated as a single machine learning problem. Fortunately, most of these
problems can be framed as standard machine learning problems, such as classification and
sequence labeling, and can be solved by using the off-the-shelf tools. In some cases, it may
require a slight update of existing models for adaptation to a new task. For example, extracting
a specific segment from text may require the system to produce a span that indicates the
beginning and ending positions of the extracted segment (call it span prediction).

On the practical side, machine learning is not always necessary in extracting information
from text. Many problems can be solved by using hand-crafted rules. An example is using
regular expressions to identify locations and dates in text. In practice real-world systems are
usually combinations of heuristic methods and automatic machine learning methods.

1.5.9 Others

Figure 1.11 shows illustrative examples of the above NLP tasks. Note that many of the
discussions here are still preliminary and incomplete. For example, we only talked about NLP
problems in the supervised learning paradigm. Many unsupervised tasks are important for
NLP research as well. For example, it is common to cluster unlabeled words or documents to
ease the processing in downstream systems. Several methods are directly applicable to this
task [Murphy, 2012]. A recent trend in NLP is that it is not necessary to set a strict boundary
between the use of supervised learning and the use of unsupervised learning. In many cases,
unsupervised methods help supervised tasks, and vice versa. A notable example is that we
learn a pre-trained feature extractor on unlabeled data and build a supervised classifier on top
of it. This leads to another trend running towards improving representation models (i.e., feature
extractors) without the need of accessing downstream supervised tasks.
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1.6 Summary
This chapter has given the basic ideas of machine learning and its applications to NLP problems.
In particular, we have presented a simple text classification problem to get started with machine
learning. Also, we have discussed several general problems on machine learning, e.g., types of
machine learning methods, inductive biases, loss functions, overfitting and so on. They are
followed by a discussion on model selection and assessment. In addition, we have described
how model NLP problems are framed as machine learning problems.

However, machine learning is a huge research field. There are several interesting topics we
left out. One topic that we said little about is reinforcement learning. In general, reinforcement
learning is very powerful. It should be and has been considered as an approach to addressing
NLP problems, e.g., training a sequence-to-sequence by using a risk-based loss function. A
reinforcement learning textbook will offer the general ideas of reinforcement learning [Sutton
and Barto, 2018]. Another topic we missed here is Bayesian learning [Gelman et al., 2020;
McElreath, 2020; Downey, 2021]. It opens up a notable strand of research in statistical learning,
and has been successfully used in NLP tasks. Moreover, there are many other topics that are
specialized in certain aspects of machine learning and are of interest to NLP researchers and
engineers. Some of them are efficient machine learning [Tay et al., 2020b], multi-task learning
[Zhang and Yang, 2021], few-shot/zero-shot learning [Wang et al., 2019b; 2020c], and so on.

A final point to wrap up this chapter. We skip the detailed discussion on certain machine
learning models and algorithms, such as classification and regression models, because the
reader interested in them can find several excellent, comprehensive introductions [Bishop,
2006; Hastie et al., 2009; Murphy, 2012; Mohri et al., 2018]. In the next chapter we will
discuss a bit more about artificial neural networks which are the basis of deep learning and
recent state-of-the-art NLP models.
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Figure 1.11: Natural language processing tasks from a machine learning perspective.
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Chapter 2

Foundations of Neural Networks

Artificial neural networks (or neural networks, or neural nets for short) are powerful
machine learning tools that have advanced the previous state-of-the-art in NLP in recent years.
However, although the history of neural networks can be traced back to the 1940s [McCulloch
and Pitts, 1943], for quite a long time neural networks have not been found to consistently
outperform other machine learning counterparts. The change began around 2006 when “new”
ideas were developed to learn deep neural networks [Hinton et al., 2006; Hinton, 2007]. Such
methods have since been known as deep learning. To date, deep learning has no doubt become
one of the most active, influential areas in artificial intelligence, while it has received benefits
from not only “deep” model architectures but also many, many techniques which help to learn
and use such models.

In this chapter, we will present the basic ideas of neural networks and deep learning.
The chapter is not cutting-edge but covers several important concepts and techniques that
are widely used in implementing neural systems. This includes basic model architectures of
neural networks, training and regularization methods, unsupervised learning methods, and
auto-encoders. We will also present an example of using neural networks to solve the language
modeling problem.

2.1 Multi-layer Neural Networks
To get started, we give a quick introduction to single-layer perceptrons, and extend them to a
more general case where multiple neural networks are stacked to form a more complex one.

2.1.1 Single-layer Perceptrons
Single-layer perceptrons (or perceptrons for short) may be the simplest neural networks that
have been developed for practical uses [Rosenblatt, 1957; Minsky and Papert, 1969]. Often, it
is thought of as a biologically-inspired program that transforms some input to some output.
A perceptron comprises a number of neurons connecting with input and output variables.
Figure 2.1 shows a perceptron where there is only one neuron. In this example, there are two
real-valued variables x1 and x2 for input and a binary variable y for output. The neuron reads

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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x2x1 1

y

w1 w2 b

neuron:

y =

{
1 x1 ·w1+x2 ·w2+ b > 0

0 otherwise

Figure 2.1: A perceptron with two input variables {x1,x2} and an output variable y. There are
two weights {w1,w2}, each corresponding to an input variable. The output depends on the
sum of the weighted input variables and the bias term b, say, y = 1 if x1 ·w1+x2 ·w2+ b > 0,
and y = 0 otherwise.

the input variables and determines which output value is chosen. This procedure is like what a
biological neuron does — it receives electrochemical inputs from other neurons and determines
if the electrochemical signal is passed along.

In a mathematical sense, a perceptron can be described as a mapping function. Let x be a
vector of input variables (i.e., a feature vector). An affine transformation of x is given by1:

f(x) = x ·w+ b

=
∑
i

xi ·wi+ b (2.1)

where w is a weight vector and b is a bias term. Then, a standard perceptron can be defined to
be:

y = ψ(f(x))

=

{
1 f(x)> 0

0 otherwise
(2.2)

where ψ(·) is a binary step function. Another name for ψ(·) is activation function. This links
the perceptron to the classification models discussed in Section 1. In other words, Eq. (2.2)
is a classifier itself: ψ(·) is a discriminate function defined on each input x, followed by an
activation function ψ(·) used for producing a desirable output2.

In case there are two or more neurons, we can group these neurons into a layer. As shown
in Figure 2.2, all the neurons in a layer receive signals from the same input feature vector but
are weighted in different ways. The output of the layer is a new feature vector, each entry of

1In mathematics, a linear transformation maps each vector v in a space to f(v) in another space, satisfying
for any vectors x and y, and scalars α and β, we have f(αx+βy) = αf(x)+βf(y). An affine transformation is
a linear transformation followed by a translation, often written in the form f(x)+b.

2Since the step function is a linear combination of indicator functions, the perceptron is a linear classifier.
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x1 x2 1

y1 y2 y3 y4

y1 y2 y3 y4 = ψ
(

x1 x2 × w21 w22 w23 w24

w11 w12 w13 w14

w1

xy

+ 1 × b1 b2 b3 b4

)b1

Figure 2.2: A single-layer perceptron involving four neurons. All these neurons receive
information from the input variables {x1,x2}. The perceptron describes a process in that 1)
we first transform the input vector of variables by an affine transformation f(x) = x ·w+b;
2) and then compute the output by feeding f(x) into the activation function ψ(·).

which corresponds to a neuron. More formally, taking ψ(·) and f(·) as vector functions, the
mathematical form of the single-layer perceptron is given by the equations:

y = ψ(f(x)) (2.3)

f(x) = x ·w+b (2.4)

where x ∈ Rm, y ∈ Rn, w ∈ Rm×n and b ∈ Rn.
Another note on the activation function. The step function, though extensively used, is not

the only form of the activation function. There are many different ways to perform activation.
For example, we can use the Softmax function if we want a probability distribution-like output;
we can use the Sigmoid function if we want a monotonic, continuous, easy-to-optimize output;
we can use the ReLU function if we want a ramp-shaped output. Table 2.1 shows several
commonly used activation functions. Note that, although a layer of neurons equipped with
these activations can be loosely called a single-layer perceptron, it can be categorized as a
more general concept, called a single-layer neural network. If not specified otherwise, we
will use the term single-layer neural network throughout this document.

2.1.2 Stacking Multiple Layers

A next obvious step is to create a neural network comprising multiple layers. To do this, all we
need is to stack multiple single-layer neural networks to form a multi-layer neural network.
See Figure 2.3 for an example. In this multi-layer neural network, the output of every neuron
of a layer is connected to all neurons of the following layer. So the network is fully connected.
Essentially, a multi-layer neural network describes a composition of functions. For example,
we can formulate the neural network in Figure 2.3 as a function yielded by composing a few
simple functions:

y = Softmax(Sigmoid(ReLU(x ·w1) ·w2) ·w3+b3) (2.5)
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Name Formula (for entry i of a vector)

Identity yi = si

Binary Step yi =

{
1 si > 0

0 si ≤ 0

Hyperbolic Tangent yi =
exp(si)− exp(−si)
exp(si)+exp(−si)

Hard Tangent yi =


1 si > 1

si −1≤ si ≤ 1

−1 si <−1

Sigmoid (Logistic) yi =
1

1+exp(−si)

ReLU (Rectified Linear Unit) yi =

{
si si > 0

0 si ≤ 0

Softplus yi = ln(1+exp(si))

Gaussian yi = exp
(
− 1

2
· (si−µi)

2

σ2i

)
Softmax yi =

exp(si)∑n
i′=1 exp(si′)

Maxout yi =max(s1, ...,sn)

Table 2.1: Activation functions (y = ψ(s), where s,y ∈ Rn). All these functions are vector
functions. We show formulas for entry i of the input and output vectors. µi and σ2i are the
mean and variance respectively.

where w1 ∈ R3×4, w2 ∈ R4×3, w3 ∈ R3×3, and b3 ∈ R3 are parameters.

Usually, the depth of a neural network is measured in terms of the number of layers. It is
called model depth sometimes. For example, taking the input vector as an additional layer,
the depth of the example network in Figure 2.3 is 4. A related concept is model width, which
is typically defined on a layer, rather than on the entire network. A common measure for the
width of a layer is the number of neurons in the layer. For example, the width of the output
layer in Figure 2.3 is 3. If all layers of a neural network are of the same width n, then we
can simply say that the model width is n. Both model depth and model width have important
implications for the properties of the resulting neural network. For example, it has been proven
that even a neural network with two layers of neurons and the Sigmoid activation function can
compute any function [Cybenko, 1989]. For stronger systems, promising improvements are
generally favorable when deepening neural networks.

Stacking layers results in a very common kind of neural network — feed-forward neural
networks (FFNNs). These networks are called “feed-forward” because there are no cycles in
connections between layers and all the data moves in one direction. We will see in this book
that most of today’s neural networks are feed-forward. A few exceptions will be presented in
Section 2.3.
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x1 x2 x3
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=ReLU
(
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= Sigmoid
(
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)

w2
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= Softmax
(

×

w3

+ 1 ×
)b3
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Figure 2.3: A multi-layer neural network. The input layer consists of three variables
{x1,x2,x3}. These variables are fully connected to all neurons of layer 1. The output
of layer 1 is a new vector h1 =ReLU(x ·w1). It is then fully connected to layer 2, performing
the mapping h2 = Sigmoid(h1 ·w2). Its output h2 is fed into layer 3, which generates the
final output y = Softmax(h2 ·w3+b3). The parameters of this neural network are w1, w2,
w3 and b3.

2.1.3 Computation Graphs
Computation graphs are a common way of representing neural networks. As graphs in
mathematics, a computation graph is made up of nodes and edges between nodes. Each node
represents either a mathematical operation or a variable, and each edge represents the data flow
from one node to another. So computation graphs are directed3. Consider, for example, three

3While a number of machine learning models can be represented as undirected computation graphs, they are
not the focus of this document.
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functions:

y = x+w (2.6)

y = Softmax(x ·w+b) (2.7)

y = Sigmoid(x ·w1+b1)−ReLU(x ·w2) (2.8)

Figure 2.4 shows the computation graphs of these functions. From the parsing point of view, all
neural networks can be viewed as mathematical expressions. A computation graph is therefore
the representation of the result when parsing a mathematical expression. In this way, each node
of the graph yields a sub-expression, and the root node yields the whole expression.

In a computation graph, a node can be connected to multiple nodes beneath it and/or above
it. This enables the reuse of sub-graphs in representing complex functions. For example, in Eq.
(2.8), the variable x is used twice and the corresponding node has two outgoing edges. In fact,
organizing neural networks into computation graphs resembles the compositional nature of
neural networks — typically, a large network is built by composing small networks. Take Eq.
(2.8) as an instance. It can be rewritten as a system of three equations:

y = h1−h2 (2.9)

h1 = Sigmoid(x ·w1+b1) (2.10)

h2 = ReLU(x ·w2) (2.11)

In the composition operation, the nodes of h1 and h2 in Eq (2.9) are replaced by the graphs of
Eqs. (2.10-2.11).

The main use of computation graphs is in executing the function. This is exactly the same
thing as predicting the output of a neural network. The method is quite simple. First, the
nodes of the graph are topologically sorted such that they are placed in an order consistent
with the information flow. Then, given the values that are fed into the input nodes, the graph is
traversed in a way that we compute the output of each node and flush it to its parent nodes.
The final result is got out of the output node. This procedure is typically called a forward pass.
A forward pass can be efficient, as every node only needs to be visited once and its output can
be reused by multiple nodes without the need of recomputing the result. Moreover, a forward
pass can be optimized by reconstructing the graph. This can develop the reuse idea a bit more
and avoid unnecessary computation and memory consumption.

Another use of computation graphs is to compute gradients automatically. In training
neural networks, it is in general required the partial derivatives of the loss function L with
respect to every weight matrix (w) and every bias term (b), say ∂L

∂w and ∂L
∂b . Before seeing how

these partial derivatives are used in updating a model (see Section 2.4.1), though, we first give
an idea of computing derivatives in a computation graph. For example, consider the function
below:

y = ψ(x ·w1+b1) ·w2 (2.12)
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Figure 2.4: Computation graphs of three example neural networks. The black boxes represent
the mathematical operations, and the colored boxes represent the variables. A mathematical
operation node has incoming edges from other nodes, and each of these nodes can be treated as
an argument of the operation. For example, in sub-figure (a), the addition node has two child
nodes labeled with x and w respectively. This node reads the output of the nodes x and w, and
generates the output y= x+w. Things are a bit interesting for larger graphs. In sub-graph (b),
the output of the dot node (i.e., x ·w) is passed along the edge to the addition node. Then, the
addition node computes the sum of x ·w and b as its output. We can repeat the same process
over all the mathematical operation nodes in a bottom-up manner, and get the final result of
computing the whole expression out of the top-most node.

To obtain ∂L
∂w1

, ∂L
∂b1

and ∂L
∂w2

, it is natural to use the chain rule of differentiation. For
example, for a composite function y = p(q(x)), the formula of the chain rule is given as:

∂y

∂x
=
∂p

∂q
· ∂q
∂x

(2.13)

But the analytic formula of a derivative based on Eq. (2.13) would make a lengthy equation.
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Instead, we can decompose a complex function into several functions, each standing for some
operation. Then, Eq. (2.12) can be rewritten as:

y = h1 ·w2 (2.14)

h1 = ψ(h2) (2.15)

h2 = h3+b1 (2.16)

h3 = x ·w1 (2.17)

All these variables can be understood in a better way from a computation graph: each
variable is a node of the graph, and nodes are connected by algebraic operations and function
compositions. Taking Eq. (2.13) and some basic knowledge of calculus, we compute the
derivatives of the variables, like these:

node 1:=
∂L

∂y
= δy (2.18)

node 2:=
∂L

∂h1
=

∂L

∂y
·wT

2 (2.19)

node 3:=
∂L

∂w2
= hT

1 ·
∂L

∂y
(2.20)

node 4:=
∂L

∂h2
=

∂L

∂h1
⊙ψ′(h) (2.21)

node 5:=
∂L

∂h3
=

∂L

∂h2
(2.22)

node 6:=
∂L

∂b1
=

∂L

∂h2
(2.23)

node 7:=
∂L

∂x
=

∂L

∂h3
·wT

1 (2.24)

node 8:=
∂L

∂w1
= xT · ∂L

∂h3
(2.25)

where δy is the derivative of the loss with respect to the model output. δy depends on the
choice of the loss function, e.g., if we use the squared loss L= 1

2(y−ygold)
2, where ygold is

the benchmark, then δy = y−ygold. The above process is essentially a backward pass, as the
gradients are passed in a top-down fashion. Another name for this is error-propagation. It
has been the de facto standard for training deep neural networks. For a better understanding of
how forward and backward passes work, Figure 2.5 shows two running examples.

2.2 Example: Neural Language Modeling

Language modeling is a well-known NLP task that estimates a probability distribution over
sequences of words. Given a sequence of m words w1...wm, the probability Pr(w1, ...,wm) is
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(b) Backward Pass

Figure 2.5: The forward pass and backward pass for an example computation graph. In the
forward pass (left), the nodes are visited in an order from the input to the output, say, from node
8 to 1. On each node, we execute the corresponding function, such as addition, to generate the
output, which is then consumed by the subsequent nodes. In contrast, in the backward pass
(right), the nodes are visited in the reverse order, say, from node 1 to 8. During this process, we
pass the gradient of the loss (or error) from the output to the input, that is, for each node, we
compute the gradient at the input point of the node by using the chain rule, given the gradient
at the output point of the node.

given by the equation:

Pr(w1, ...,wm) =
m∏
i=1

Pr(wi|w1, ...,wi−1) (2.26)

As such, the language modeling problem is framed as predicting the next word given all
previous context words. A simple method of modeling Pr(wi|w1, ...,wi−1) is to condition the
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prediction on a context window that covers at most a certain number of words, like this:

Pr(wi|w1, ...,wi−1) ≈ Pr(wi|wi−n+1, ...,wi−1) (2.27)

where n is the window size. One way to estimate the probability is the n-gram language
modeling approach: we compute the relative frequency for each n-gram wi−n+1...wi, i.e.,
Pr(wi|wi−n+1, ...,wi−1) =

count(wi−n+1...wi)
count(wi−n+1...wi−1)

. While n-gram language models have domi-
nated the NLP field for a long time, they usually require huge tables for recording all those
n-gram probabilities. In consequence, the models will be very sparse if more and more texts
are used in training such models. This is also known as a kind of the curse of dimensionality.

Here we consider neural networks in addressing the language modeling problem [Bengio
et al., 2000; 2003b]. Unlike n-gram language models, neural language models do not
generalize in a discrete space that requires an exponentially large number of distinct feature
vectors as more words and a large context are involved, but in a continuous space that encodes
words via dense, low-dimensional real vectors. In particular, a feed-forward network is utilized
here to predict how likely wi occurs given wi−n+1...wi−1.

Figure 2.6 presents the architecture of the feed-forward neural network based language
model (FFNNLM). The input is the context words wi−n+1...wi−1. Each is a discrete variable
choosing values from a vocabulary V . Since the neural network operates on vectors, all words
are vectorized as one-hot representations. In this case, the word w = Vk is a |V |-dimensional
vector in which entry k is 1 and other entries are all 0. For example, consider a vocabulary
V = {“I”,“you”,“he”,“’she”,“they”}. The one-hot representation of “you” is

w(“you”) =
[
0 1 0 0 0

]
(2.28)

While the one-hot vectors make word representations distinguishable, it may not appear
that we can gain too much by this because such representations cannot describe the closeness
between words, e.g., similar words should tend to be close in the vector space. If we relax the
indicator-based representations to real-valued representations, then it turns out that we can
obtain some word relationship by computing similarities between these vectors. To this end,
an effective technique is to transform one-hot representations to distributed representations.
More formally, let x be a one-hot vector of a word w. The distributed representation of the
word is a real-valued vector, given by:

e = x ·C (2.29)

where the representation e is a vector ∈ Rde , and de is the number of dimensions of the
representation. Each dimension of e can be viewed as some countable aspect of the word,
though it is not required to be interpreted by linguistics. C is a |V |×de matrix, of which the
k-th row corresponds to the vector for Vk. Hence, w ·C is to “select” a row from C. For
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0 1 0 0 0 0 0 1 1 0 0 0

e1 = x1 ·C e2 = x2 ·C e3 = x3 ·C

.2−1 .8 70 .3 8.2 1

70.8.2−1 .3 .2 8 1

h1 =TanH(h0 ·W1+B1)

.6.90 .6 −1

y = Softmax(h1 ·W2+B2)

x1 (w1) x2 (w2) x3 (w3)

e1 e2 e3

h0

h1

Pr( · |w1,w2,w3)

Embedding Layer
(Layer 1)

Hidden Layer
(Layer 2)

Output Layer
(Layer 3)

Figure 2.6: A neural language model [Bengio et al., 2003b]. Blue boxes represent the layers
of the neural network. The input is three context words in their one-hot representations
{x1,x2,x3}, and the output is the probability distribution of the next word Pr(w4|w1,w2,w3).
First, an embedding layer is used to map each word into the distributed representation (i.e., the
word embedding). The embeddings of these words are concatenated to form a bigger vector
h0 such that the concatenated vector encodes all input information. Then, h0 is taken as the
input to a normal layer that performs the mapping h1 =TanH(h0 ·W1+B1). The final layer
reads h1 and produces a distribution over the vocabulary, i.e., y = Softmax(h1 ·W2+B2)
where yk = Pr(Vk|w1,w2,w3).

example, given C ∈ R5×3, the distributed representation of “you” is given by:

e(“you”) = w(“you”) ·C

=
[
0 1 0 0 0

]
·


73 12 0.1

12 0.5 18

37 0.7 28

61 0.4 23

62 11 0.4


=

[
12 0.5 18

]
(2.30)
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Eq. (2.29) implies an idea of learning to represent words, leading to a big development
of NLP. Typically, the vector e is called the word embedding, and the parameter matrix
C is called the embedding matrix. A number of methods may be used for learning word
embeddings, though we will tend to not focus on such methods in this chapter. The reader can
refer to Chapter 3 for a more detailed discussion on this topic.

To encode the context words {wi−n+1, ...,wi} (or {xi−n+1, ...,xi}), a simple method is to
concatenate the word embeddings {ei−n+1, ...,ei−1} as a new vector h0:

h0 = [ei−n+1, ...,ei−1]

The next part of the model is a 2-layer feed-forward neural network. The first layer, called
a hidden layer, is a standard layer of neurons, followed by the hyperbolic tangent activation
function. The layer produces a dh-dimensional vector:

h1 = TanH(h0 ·W1+B1) (2.31)

The second layer is the output layer. It produces a distribution over V . This can be formulated
as:

Pr( · |wi−n+1, ...,wi−1) = Softmax(h1 ·W2+B2) (2.32)

The parameters of the model are C ∈ R|V |×de , W1 ∈ R(n−1)de×dh , B1 ∈ Rdh , W2 ∈
Rdh×|V |, and B2 ∈ R|V |. A popular way to optimize these parameters is to minimize the cross-
entropy loss via gradient descent. Additionally, training can be improved via regularization.
These methods will be discussed in Sections 2.4 and 2.5.

A few remarks on the neural language model. First, by using distributed feature vectors,
“senses” can be shared in part by different words. This enables learnable word senses by which
the similarity between words is implicitly considered. An advantage of such a model is that
a small change in word vectors would not lead to a big change in the result. For example,
suppose we have seen “grapes are fruits” many times but have never seen “peaches are fruits”.
If “grapes” and “peaches” are close in the vector space, then we would say that n-grams
“grapes are fruits” and “peaches are fruits” are something similar. This differentiates neural
language models greatly from n-gram language models in which different surface forms mean
different meanings.

Second, the dense representation of words makes a smaller model. For example, a common
setting of de and dh is less than 1000, making the number of parameters under control. By
contrast, the size of an n-gram language model increases by a factor of |V | as n increases. For
example, there will be a huge table of probabilities for a common vocabulary if n is larger than
3.

Third, the neural language model is computationally expensive because of the heavy use of
vector and matrix operations, such as matrix multiplication. This is a common problem with
most of deep neural network-based systems. A common solution is to break the computation
problem into independent sub-problems so that these sub-problems can be handled in parallel.
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At a lower level, one can use GPUs or other parallel computing devices to speed up linear
algebra operators. At a higher level, one can distribute parts of the model or parts of the data to
multiple devices for model-level or task-level speed-ups.

2.3 Basic Model Architectures
We now describe, in more detail, several basic building blocks for neural networks. They are
widely used in developing state-of-the-art neural models in NLP.

2.3.1 Recurrent Units
Recurrent neural networks (RNNs) are a class of neural networks that read and/or produce
sequential data or time series data. As with a feed-forward neural network, an RNN comprises
layers of neurons and connections between neurons [Hopfield, 1984; Rumelhart et al., 1986;
Williams and Zipser, 1989; Elman, 1990]. Some of the neurons are used as a “memory” that
keeps the state of the problem when the processing moves on along a sequence of signals.
As a result, it is straightforward to use RNNs to deal with variable length problems, such as
machine translation and speech recognition.

The main idea behind RNNs is to repeatedly utilize a recurrent unit (or recurrent cell)
to compute the output at each position of an input sequence. To be more precise, given a
sequence of vectors x1...xm, a standard recurrent unit can be described as a function RNN(·)
that consumes an input xi and a state si−1 at each time and generates a new state si, like this:

si = RNN(si−1,xi) (2.33)

The state si can be viewed as a “memory” that summaries the past data, and would be updated
when the new data comes. See Figure 2.7 (a) for visualization of Eq. (2.33). The circle here
indicates the reuse of the recurrent unit. This can be understood by rewriting Eq. (2.33) in a
sequence of calls of the function RNN(·):

RNN(si−1,xi) = RNN(RNN(si−2,xi−1),xi)

= RNN(RNN(RNN(si−3,xi−2),xi−1),xi)

= ...

= RNN(RNN( ... (RNN(s0,x1),x2) ... xi−1),xi) (2.34)

Figure 2.7 (b) shows the structure of this network. This is sometimes referred to as an
unrolled (or unfolded) structure of RNNs. Basically, Figures 2.7 (a) and (b) are the same
thing. While a rolled RNN has a simple and well-explained form, an unrolled RNN is more
suitable for visualizing the data flow through the network. So, we will use the unrolled version
of RNNs throughout this document. Moreover, it is worth noting that an unrolled RNN is in
fact a deep feed-forward neural network. For example, each use of the recurrent unit creates a
“layer” that receives information from a previous “layer”. In this sense, an RNN is a stack of
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RNN

xi

si

(a) An RNN unit

RNN RNN RNN

xi−1

si−1

xi

si

xi+1

si+1

(b) Unrolling the RNN

Figure 2.7: Example of RNN (rolled vs unrolled). An RNN unit reads the input at each time
step i and the output at the last time step i−1, and produces a new output si. As such we can
reuse the same RNN unit to make predictions over a sequence of inputs (see sub-figure (a)): for
each i, the current input xi and last output si−1 are consumed and mapped to the output that is
fed into the same RNN unit for the processing at the next time step. A better way to visualize
the RNN is to unroll it into a network with no cycles (see sub-figure (b)). The unrolled RNN
can be regarded as a deep feed-forward neural network in that all RNN units share the same
set of parameters.

layers, say, stacking layers from left to right. A benefit of treating RNNs as deep feed-forward
neural networks is that one can use the same methods to train and deploy the two types of
neural networks. An example is that both RNNs and feed-forward neural networks can be
trained by the error-propagation tool provided within a common optimizer.

There are a number of RNN variants, differing in ways of defining RNN(·). The simplest
of these is to formulate RNN(·) as a single-layer neural network. Assume that si−1 and xi are
in Rdh . The form of RNN(·) is given by:

RNN(si−1,xi) = ψ(si−1 ·U+xi ·V) (2.35)

where U ∈ Rdh×dh and V ∈ Rdh×dh are parameters. The common choices for the activation
function ψ are TanH(·), Sigmoid(·), ReLU(·), and among others. Eq. (2.35) is a single-layer
neural network because it has the same form as Eqs. (2.3-2.4):

ψ(si−1 ·U+xi ·V) = ψ([si−1,xi] ·W) (2.36)

where [si−1,xi] is the concatenation of si−1 and xi, and W ∈R2dh×dh is the parameter matrix

that is formed by

[
U

V

]
.

RNNs often work as a part of a model. For example, the input of a recurrent unit could be
either a representation of real data or an output of another neural network. Also, we can stack
other neural networks on top of a recurrent unit. For example, in many real-world systems, an
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additional layer is generally stacked on si for projecting it to a desirable output.

2.3.2 Convolutional Units
Convolutional neural networks (CNN) are another well-known class of neural networks
[Waibel et al., 1989; LeCun et al., 1989]. In a biological sense, they are inspired by human
vision systems: neurons react to the stimulus in a certain vision region or patch (call it the
receptive field) [Hubel and Wiesel, 1959]. In CNNs, the receptive field describes the region
in the input space that is involved in generating the output for a neuron. CNNs are therefore
“partially connected” models in which each neuron only considers input features in a restricted
region. This differentiates CNNs from fully connected feed-forward neural networks. In
general, CNNs can resemble the hierarchical nature of features describing data and scale better
in complexity.

While CNNs have many applications in processing 2D data, such as image classification,
we discuss them here in a sequential data processing scenario for a consistent treatment of
the problem in this chapter. Typically, a CNN consists of a convolutional layer, a pooling
layer, and other layers optionally. It begins with the convolutional layer where the receptive
field is defined by a set of convolution kernels or filters. A filter is a linear mapping function
that convolves the input features in the receptive field to form an output feature. For example,
consider a sequence of numbers x1...xm. The filter ranging from position i to position i+r−1

is defined to be:

υ = Conv(x[i,i+r−1],W)

= x[i,i+r−1] ·W

=
r−1∑
k=0

xi+k ·Wk (2.37)

where r is the size of the receptive field, x[i,i+r−1] is the sub-sequence xi...xi+r−1, and
W ∈ Rr is the parameters of the filter. Then, a sequence of output features can be generated
by moving the filter along the input sequence. Let stride be the distance between consecutive
moves. The output for move i is then defined to be:

υi = Conv(x[stride×i,stride×i+r−1],W) (2.38)

In this way, the convolutional layer transforms the input sequence x1...xn to the output
sequence υ1...υ⌊ m

stride
⌋

4. A remark here is that the parameters W are shared across positions of
the input sequence. This method is known as parameter sharing or weight sharing. Parameter
sharing makes a CNN efficient because it requires fewer parameters than a feed-forward neural
network given the same number of neurons.

A problem with the above formulation is that the use of the filter may not be tiled to fit the
input sequence. For example, when stride× i+r−1>m, the input of the filter is incomplete.
A commonly used solution is padding. It simply sets the features outside the input sequence

4⌊·⌋ stands for the floor function.
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0 x1 x2 x3 x4 0

v1 v2 v3 v4

Input

Convolutional Layer

v2 =Conv([x1,x2,x3] ·W)

= x1 ·W1+x2 ·W2+x3 ·W3

Padding PaddingReceptive Field

Figure 2.8: Convolution over a sequence of numbers {x1,x2,x3,x4} (r = 3 and stride= 1).
The receptive field defines the region in the input that is taken in computing the output. Here
the receptive field has a size of 3, that is, the convolutional operation covers three consecutive
numbers in the input sequence. The filter (or convolutional kernel) outputs a weighted sum of
these numbers. Each time we slide the receptive field over the input, the filter generates a new
output. As such, the output of the convolutional layer is a vector of numbers. Also, a padding
number (i.e. 0) is added to each end of the sequence so that the convolution is feasible when
the receptive field is incomplete.

to a constant. For example, we can attend dummy feature vectors (say 0) to each end of
the sequence so that all convolution operations are feasible. See Figure 2.8 for an example
filter computed over a sequence of numbers. Note that the receptive fields of different filter
applications may overlap. This is beneficial sometimes because it reduces information loss in
feature representation when a low-level feature is used in forming multiple high-level features.

In addition, a convolutional layer can involve an activation function ψ(·) to perform some
non-linear mapping on the filter output. Let mk = ⌊ m

stride⌋ be the number of filter applications.
The output of a convolutional layer is given by[

h1 ... hmk

]
= ψ(

[
υ1 ... υmk

]
) (2.39)

In general, a convolutional layer may not be restricted to a scalar-based input or a single
filter. Often, we can take a vector as the representation of a token in the input sequence, and
take a set of filters as feature extractors. To this end, we can adopt the same formulation as in
Eqs. (2.37-2.39), but replace xi, υi and hi by the vectorized counterparts.

A convolutional layer is typically followed by a pooling layer. Like convolution, pooling
is a function that sweeps a filter on a sequence. But the pooling operation does not have
any parameters. It can be instead thought of as an aggregation function that performs down-
sampling on the input sequence. There are several ways to design a pooling function. One
of the most common methods is max pooling which outputs the maximum value in the
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Figure 2.9: Example of CNN. There are two filters for the convolutional layer. The input is
a sequence of 6 tokens represented in their feature vectors {x1, ...,x6}. To tile the filters to
fit the input sequence, two padding vectors are attached to each end of the sequence. When
applying a filter, we map the feature vectors in the receptive field to a new feature vector. For
example, for filter 1, the receptive field is a 6×3 rectangle in the input, and the output is a
2-dimensional feature vector. By sweeping the filter on the sequence, we obtain a sequence of
feature vectors, say, a sequence of 8 feature vectors, each having 2 features. The pooling layer
fuzes features along the sequence. For example, performing the pooling on the output of filter
1 results in 2 fuzed features. The final output of the CNN is two 2-dimensional feature vectors.

receptive field. Another method is averaging pooling which outputs the averaged value over
the receptive field. For a complete picture of how a CNN works, Figure 2.9 depicts a running
example where convolutional and pooling operations are performed on a sequence of feature
vectors via 2 filters.

2.3.3 Gate Units

In neural networks, a gate is used to decide how much information is passed along [Hochreiter
and Schmidhuber, 1997]. Consider a standard RNN as an example. At each time step i,
instead of directly passing the previous state si−1 ∈ Rdh to the recurrent unit, it might be more
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interesting to see how much information in si−1 is useful for a next-step decision. In this
case, we want si−1 to be more like a real memory: as the time goes by, something should be
memorized, and something should be forgotten.

A way to achieve this goal is to introduce a coefficient for controlling the scale of data
flow. Here we reuse the notation in RNNs (see Section 2.3.1), but our description is general
and could be applied to all the cases that need such a method. Let z ∈ [0,1]dh be a coefficient
vector, where zi = 0 means that nothing is memorized for dimension i, and zi = 1 means
that everything is memorized for dimension i. We can set z as a gate on si−1. This can be
formulated as:

Gate(z,si−1) = z⊙ si−1 (2.40)

where ⊙ is the element-wise product of two vectors or matrices. Gate(z,si−1) is an update of
si−1. Thus, z can be called an update gate, or a forget gate, or something similar. Alternatively,
we can define the gating function in another way:

Gate(z,si−1) = (1−z)⊙ si−1 (2.41)

Eqs. (2.40) and (2.41) basically tell the same story but have different interpretations for z in
practice.

The key problem here is how to obtain z. A general method is to define z as the output of
another network. For example, for a recurrent unit, z can be defined to be:

z = Sigmoid(si−1 ·W1+xi ·W2+B) (2.42)

The use of the Sigmoid activation function guarantees that the output falls into the range of
[0,1]. Note that Eq. (2.42) describes a learnable gate. This in turn makes the gate a part of the
model and can be trained to fit the data. There are a number of methods to design a gate, and
we will see a few in Chapter 4.

2.3.4 Normalization (Standardization) Units
A neural network works by transforming feature vectors layer by layer. While the multi-layer,
multi-dimensional nature of neural networks enables the models to compute complex functions,
it might lead to very different distributions of output activations across layers or features. This
is a problem with deep neural networks because a model of this kind has to adapt to different
distributions over different layers or different features [Ioffe and Szegedy, 2015]. Sometimes,
as model parameters are initialized randomly in all layers and in all feature dimensions, it is
likely for some features to be large values. In this case, the model would be biased to those
large value features.

A way to mitigate this issue is normalization, which standardizes an n-dimensional feature
vector s as

Normalize(s) = α⊙ s−µ
σ+ ϵ

+β (2.43)
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where µ ∈ Rn and σ ∈ Rn are the mean and standard deviation of s, respectively. ϵ is a small
number used for numerical stability [Chiang and Cholak, 2022]. α ∈ Rn and β ∈ Rn are the
parameters of the normalization unit. A simple choice is α = 1 and β = 0, whereas a more
sophisticated method is to learn α and β together with other parameters.

We may implement Eq. (2.43) in several ways that differ in how to define µ and σ. Let us
consider this for one dimension in s, say s, in a general setting. Suppose that s is drawn from a
set of feature values Ωk. The mean and the standard deviation on Ωk are then defined to be:

µk =
1

|Ωk|
·
∑
s∈Ωk

s (2.44)

σk =

√
1

|Ωk|
·
∑
s∈Ωk

(s−µk)2 (2.45)

Several methods are available to define Ωk. For example, one can define Ωk as features in
the same layer [Ba et al., 2016], or features along the same dimension over different samples
or input positions [Ioffe and Szegedy, 2015; Ulyanov et al., 2016], or something in between
them [Wu and He, 2018].

An advantage of normalization is to put features on the same scale and make them compa-
rable. This has been found to be very helpful for stabilizing the training process and making
neural networks better behaved. As we will see in subsequent chapters, normalization plays an
important role in many successful systems.

As an aside, while the term normalization in deep learning is usually referred to as a process
of subtracting the mean and dividing by the standard deviation, it is in fact a standardization
process. In other areas, by contrast, normalization is more often referred to as a technique that
scales all entries of a vector to the interval [0,1]. Standardization has no such requirement.
It instead tends to have the input centered around 0. In this sense, normalization might be a
misnomer in deep learning somehow. Nevertheless, normalization and standardization are used
interchangeably in this book when referred to processes like Eq. (2.43).

2.3.5 Residual Units
The success of deep neural networks has been mostly accredited to the more and more layers
used in forming more complex functions. Although stacking a large number of layers is the
simplest way to obtain a deep model, it has been pointed out that such a model is difficult to train.
There are several reasons for this, e.g., optimization algorithms, gradient vanishing/exploding
in passing through stacked layers, parameter initialization, and so on. Even, a further notable
disadvantage comes with regard to feeding a single representation to upper-level feature
extractors, as one might want direct access to the intermediate representations several layers
ahead.

Residual neural networks are one of the most effective approaches to addressing these
issues [He et al., 2016a]. They are a special type of neural networks that add residual
connections (or skip connections, or shortcut connections) over layers in a layer stack. Let
F (x) be a neural network that maps x to some output. A residual neural network build on
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F (x(l)) + F (x(l+1)) +

Layer l Layer l+1
xl xl+1 xl+2

Residual Connection Residual Connection

xl+1 = F (xl)+xl

Figure 2.10: A 2-layer residual neural network. For each layer, there is a skip or shortcut
connection (in red color) that directly adds the input to the output.

F (x), given by summing the mapping F (x) and the identity mapping x:

y = F (x)+x (2.46)

A more common use of residual connections is in a neural network consisting of a number
of identical layers. Let xl and yl be the input and output of layer l in a residual multi-layer
neural network. The output of layer l can be defined as:

xl+1 = F (xl)+xl (2.47)

or

yl = F (yl−1)+yl−1 (2.48)

Figure 2.10 shows the architecture of a 2-layer residual neural network. Clearly, the
residual connections add the outputs of current layers directly to the outputs of the next layers.
The added identity mapping is generally thought of as one of the most effective ways to
simplify the network and ease the information flow in a deep model.

2.4 Training Neural Networks
In this section, we turn to the training problem, which is fundamental in developing neural
network-based systems. Most of the discussion here is focused on methods in a supervised
learning setting. We will discuss unsupervised methods in Section 2.6.

2.4.1 Gradient Descent
The gradient method has been proven to be one of the most successful methods for training
neural networks. The basic idea is to iteratively update parameters so that we can minimize a
differentiable loss function. In an update, the values of the parameters are adjusted in a way
that the loss degrades the fastest. In a mathematical sense, it requires the update to be in the
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minimum

Figure 2.11: Gradient descent in a 2D space (blue lines stand for level sets). The goal is to find
the parameters (i.e., values along the two dimensions) that minimize the value of a given loss
function. Gradient descent does this by starting at a random point and stepping to the minimum
in a number of updates of the parameters. In each update, it adjusts the parameters θt in the
direction that makes the loss lower. The idea here is that the update chooses the direction of
the steepest ascent, that is, the model moves a step in the direction of the negative gradient of
the loss (i.e., −∂L(θt)

∂θt
). The size of the move is controlled by a hyper-parameter lr, called the

learning rate. Thus, the amount of the change to the parameters is −lr · ∂L(θt)∂θt
. By adding this

to θt, we obtain the new parameters θt+1. This process repeats for a number of updates until
the value of the loss function is close to the minimum.

opposite direction of the gradient of the loss. This is known as gradient descent or steepest
descent. Let θt be the parameters at step t (call it an update step or a training step), and
L(θt) be the loss computed by the model parameterized by θt. The update rule (or delta rule)
of gradient descent is given by the equation:

θt+1 = θt− lr ·
∂L(θt)

∂θt
(2.49)

where ∂L(θt)
∂θt

is the gradient of the loss with respect to the parameters at step t. It can obtained
by running the error-propagation algorithm presented in Section 2.1.3. Since θt is usually of
multiple dimensions, ∂L(θt)∂θt

could be a vector or matrix that has the same shape as θt. lr is the
learning rate that controls how big a step we take in the direction of the minimum. While lr
can be simply set to a constant value during training, it is more common to adjust its value as
the training proceeds (see Section 2.4.4 for a discussion). See Figure 2.11 for an illustration of
gradient descent.

Eq. (2.49) gives a very basic definition of gradient descent. There are a number of
improvements to the form of Eq. (2.49). Some of them are:
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• Gradient Descent with Momentum. In physics, momentum is a vector quantity that
describes the mass of motion. If we think of updating parameters as moving an object in
a space, then we need to consider the momentum of the object at a position to determine
the direction of the next move. This idea can be implemented by re-defining the update
rule as:

θt+1 = θt+vt (2.50)

where vt is the velocity vector of the momentum. In the classic momentum method
[Polyak, 1964], vt is defined to be:

vt = λ ·vt−1− lr ·
∂L(θt)

∂θt
(2.51)

vt retains some of the previous momentum (i.e., vt−1), followed by a correction based
on the gradient (i.e., ∂L(θt)∂θt

). λ is a scalar for weighting vt in an update. A well-known
improvement to Eq. (2.51) is to take into account the momentum in the gradient, avoiding
a too large velocity when approaching the minimum [Nesterov, 1983], like this

vt = λ ·vt−1− lr ·
∂
[
L(θt)+λ ·vt−1

]
∂θt

(2.52)

A more detailed discussion on the difference between Eq. (2.51) and Eq. (2.52) can be
found in Sutskever et al. [2013]’s paper.

• Adaptive Gradient Descent. In adaptive methods for gradient descent, the update rule
is adapted to every parameter, rather than the whole model. AdaGrad is a method of
this kind [Duchi et al., 2011]. It scales up the learning rate for parameters that have not
been updated too much, and scales down the learning rate for parameters that have been
much updated. Assume that θt and ∂L(θt)

∂θt
are both d-dimensional vectors. We can define

a new variable G ∈ Rd×d as the sum of the outer product of the gradient over the past t
steps5:

Gt =
t∑
i=1

[∂L(θi)
∂θi

]T · ∂L(θi)
∂θi

(2.54)

5Given two vectors a=
[
a1 · · · ad

]
and b=

[
b1 · · · bd

]
, the outer product of a and b is:

a⊗b = aT ·b

=

a1...
ad

 · [b1 · · · bd
]

=

a1b1 · · · a1bd
...

. . .
...

adb1 · · · adbd

 (2.53)
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In general, (Gt)
1
2 ∈ Rd can be viewed as an indicator that describes to what extent a

parameter has been updated so far. However, computing (Gt)
1
2 is extremely expensive.

So it is more common to use the diagonal of Gt instead. Then, the update rule of
AdaGrad is given by:

θt+1 = θt−
lr√

diag(Gt)+ ϵ
⊙ ∂L(θt)

∂θt
(2.55)

where diag(Gt) is the diagonal of Gt, i.e., diag(Gt)(k) = Gt(k,k). ϵ is a smoothing
factor for numerical stability. Instead of summing over those squared gradients in an
unweighted manner, another way is to reduce the impact of “old” gradients and make
“recent” gradients more important. AdaDelta considers this by accumulating squared
gradients with a decay factor [Zeiler, 2012]:

g2t = σ ·g2t−1+(1−σ) ·
(
∂L(θt)

∂θt
⊙ ∂L(θt)

∂θt

)
(2.56)

where σ is the decay factor of a value < 1. Like Eq. (2.55), the update rule for AdaDelta
can be given by replacing diag(Gt) with g2t :

θt+1 = θt−
lr√
g2t + ϵ

⊙ ∂L(θt)
∂θt

(2.57)

Since
√
g2t + ϵ can be seen as the root mean square (RMS) of the gradient, Eqs. (2.56-

2.57) are also known as the RMSProp method [Hinton, 2018].

• Adam (Adaptive Moment Estimation). The Adam optimizer combines the merits of
both the adaptive gradient descent and momentum methods [Kingma and Ba, 2014]. It
defines an estimate of the mean of the gradient (the first moment) and an estimate of
the variance of the gradient (the second moment). Let mt and vt be the two moment
estimates. They are given by the equations:

mt = β1 ·mt−1+(1−β1) ·
∂L(θt)

∂θt
(2.58)

vt = β2 ·vt−1+(1−β2) ·
(
∂L(θt)

∂θt
⊙ ∂L(θt)

∂θt

)
(2.59)

where β1,β2 ∈ [0,1] are hyper-parameters for a trade-off between the previous estimate
and the gradient (or squared gradient) at the current step. β1 and β2 are also treated as
the decay factors of these averages. For example, common choices for β1 and β2 are 0.9
and 0.999. As the initial moments are set to 0, these estimates are biased to 0 vectors at
the very beginning of the training process. To address this issue, bias corrections are



94 Chapter 2. Foundations of Neural Networks

used in Adam, leading to bias-corrected estimates:

m̂t =
mt

1−βt1
(2.60)

v̂t =
vt

1−βt2
(2.61)

Since β1,β2< 1, the corrections would be sufficiently small if a larger number of updates
are performed. The update rule is finally defined to be:

θt+1 = θt− lr ·
m̂t√
v̂t+ ϵ

(2.62)

Eq. (2.62) resembles the general form of gradient descent, but makes use of both the
momentum method (i.e., the moving average of the past gradients) and the adaptive
method (i.e., the moving average of the past squared gradients). In practice, Adam has
become a popular optimizer for training neural networks.

Improving gradient descent is an active sub-field of deep learning, but a full discussion
of all those techniques is beyond the scope of this document. A few related issues will be
discussed in the remainder of this section.

On a last note of this subsection, a practical issue that one should consider in utilizing
iterative training methods is when to stop training. Stopping criterion is a general topic in
optimization. For gradient descent and its variants, it is common practice to set a maximum
number of training steps or training epochs6, say 20,000 steps, or 100 epochs. As an
alternative, we can perform training until convergence. For example, we can say that the
training coverages if the loss tends to be stable for a number of training steps. When there is
some data for validating the model, a better method may be to check the states of the model
on validation data. For example, we can stop the training when the prediction error increases
on the validation data. This method, known as early stopping, is often used as a means of
regularization. In Section 2.5.3, we will see more details about how to early stop the training
by using a validation dataset. On the algorithmic side, there has been much interest and work
in studying the convergence and error bounds for machine learning methods. We refer the
interested reader to a few textbooks for further discussions [Mohri et al., 2018; Kochenderfer
and Wheeler, 2019].

2.4.2 Batching
The loss function is an essential aspect of the training of neural networks. While a number
of mathematical forms are available to define the loss function (see Section 1), we still need
to decide in what scale of samples we use that loss function. Perhaps the simplest method is
stochastic gradient descent (SGD). In each update of parameters, SGD computes the loss
function on a single sample that is randomly selected from the training dataset. Let D be a set
of training samples, and (x(i),y

(i)
gold) be a randomly selected sample from D. Given a neural

6A training epoch means that the trainer goes over the whole training dataset for one time.
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network

y
(i)
θ = Fθ

(
x(i)
)

(2.63)

the loss of SGD is defined to be:

L(θ) = L
(
y
(i)
θ ,y

(i)
gold

)
(2.64)

where L(y(i)
θ ,y

(i)
gold) is a sample-level loss function that counts errors in the model output y(i)

θ

with respect the benchmark y
(i)
gold.

SGD has been one of the most important optimization methods in machine learning due
to its simplicity. However, SGD converges slowly because it is just an analog of the actual
gradient on the entire training set. To estimate the gradient in a more precise way, we can take
into account a set of samples (call it a batch) in computing the loss. This method is known as
batching. Let S be a set of samples from D. The loss function is then defined on S, as follows

L(θ) =
1

|S|
·

∑
(yθ,ygold)∈S

L(yθ,ygold) (2.65)

If S =D, then we have the batch gradient descent (BGD) method, i.e., the gradient is
estimated on the entire set of training samples. In general, batch gradient descent is what
we would ordinarily call gradient descent. However, calculating the loss on all the training
samples simultaneously is time consuming. In practice, it is more common to use a batch
much smaller than D. This is known as mini-batch gradient descent. It is adopted in learning
real-world systems for its good efficiency and strong performance.

As another “bonus”, batching is generally used as a way to make dense computation on ma-
trices for system speed up. Assume that S consists ofm samples {(x(i1),y

(i1)
gold), ...,(x

(im),y
(im)
gold )}.

We can batch all input vectors and benchmark vectors as matrices:

X =


x(i1)

...
x
(im)
gold

 (2.66)

Ygold =


y
(i1)
gold
...

y
(im)
gold

 (2.67)

Then, we can run the neural network on the batched input and output, like this:

Yθ = Fθ(X) (2.68)
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Likewise, we can compute the batched loss

L(θ) =
1

m
·L(Yθ,Ygold) (2.69)

where L(Yθ,Ygold) vectorizes the computing of
∑m

k=1L
(
y
(ik)
θ ,y

(ik)
gold

)
. Eqs. (2.68-2.69)

prevent the repetitive calls of the forward and backward passes on individual samples. They
instead pack everything in a single pass through the network. This makes better use of
maximum available compute on modern GPUs which are the majority of the devices for
running deep learning systems.

2.4.3 Parameter Initialization

Gradient descent requires that the training process starts from some initial parameters. Since
the training objective in a practical system is often a non-convex function with many local mini-
mums, the performance of the resulting model is highly sensitive to the parameter initialization
step. Here we describe some of the most common methods of parameter initialization.

• Constant Initialization. The first method could assign the same value to all parameters
(or all parameters of a parameter matrix). This method, though quite simple, results in
that all output entries of a model make no difference, rendering the model meaningless.
It performs poorly in most cases if no randomness is introduced into training.

• Initialization with Predefined Distributions. A useful way is to randomly initialize
parameters by some distributions. The simplest of this kind is to assign a parameter a
value drawn from a uniform or Gaussian distribution, e.g., a random value in the interval
[−0.1,0.1]. Interestingly, this method is satisfactory in most cases in practice.

• Layer-sensitive Initialization. An extension to random initialization is to use tailored
distributions for different layers of a neural network. Xavier initialization is a well-
known method of this kind [Glorot and Bengio, 2010]. Given a layer y= ψ(x ·W+B),
let din and dout be the numbers of the input and output dimensions (i.e., the row and
column numbers of W). The standard Xavier initialization method, also known as the
LeCun initialization method [LeCun et al., 2012], gives a random number to every
parameter of W:

W ∈ Rdin×dout ∼ U

(
− 1√

din
,

1√
din

)
(2.70)

where U(−a,a) means a uniform distribution over the interval [−a,a]. Likewise, we
can initialize the bias term in a similar way. As an improvement, the normalized Xavier
initialization method considers both din and dout in defining the distribution, like this:

W ∈ Rdin×dout ∼ U

(
−
√

6

din+dout
,

√
6

din+dout

)
(2.71)

More details can be found in the original paper. Note that the uniform distributions can
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be replaced by the normal distributions with mean = 0 and variance = 1
din

or 6
din+dout

.

Many parameter initialization methods are designed for certain types of neural networks.
For example, Xavier initialization is assumed to work with the Sigmoid and hyperbolic tangent
activation functions. For ReLU, one can refer to He et al. [2015]’s work. Another example
is initialization for deep neural networks. It has been found that appropriate initialization is
critical to the success of extremely deep models in NLP. Considering the model depth as an
additional factor in initialization, we can modify Eq. (2.71) to be:

W ∈ Rdin×dout ∼ U

(
−αs
l
·
√

6

din+dout
,
αs
l
·
√

6

din+dout

)
(2.72)

where l is the depth for a layer, and αs is a hyper-parameter. Apart from this, several methods
are proposed to address the initialization of deep neural networks, including the Lipschitz
initialization [Xu et al., 2020], the T-Fixup initialization [Huang et al., 2020a], the Admin
initialization [Liu et al., 2020c], and so on.

Note that in practice we do not have to restrict training to a single starting point. It is
common to try a few starting points by using different initialization methods or random seeds,
and to choose the best performing one from these tries. It generally helps when local minimums
abound.

2.4.4 Learning Rate Scheduling

To achieve desirable results, it is essential to carefully configure the learning rate throughout
the learning process. While some of the update rules, as noted above, have considered scaling
the gradient for different parameters, learning rate scheduling is conventionally focused more
on designing heuristics to adjust lr over training steps. In a practical sense, a too large learning
rate usually leads to overshooting around the minimum, while a too small learning rate usually
leads to slow convergence (see Figure 2.12). A common idea is to learn fast at the beginning
(i.e., a large learning rate) and learn slowly when the loss is close to the minimum (i.e., a small
learning rate). Here we present some of the popular methods for learning rate scheduling.

• Fixed Learning Rates. Fixing the learning rate is generally a bad strategy, but could be
used in prototyping systems, e.g., a quick test of a new method by training it for only a
few epochs.

• Learning Rate Decay. Decay is a commonly-used technique for learning rate schedul-
ing. There are many approaches to this idea. For example, one can halve the learning
rate after each training epoch. Here we use nt to denote the number of training steps,
and τdecay be how often we change the learning rate (e.g., 100 steps). Table 2.2 shows
several decay functions for learning rate scheduling.

• Warmup and Decay. As noted in Section 2.4.3, it is common to initially set model
parameters to random values when a neural network is being trained. However, learning
from scratch with a large learning rate is usually not a good choice because the gradient
at the early stage of the training is not much precise and the state of the model is unstable.
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(a) A small learning rate (b) A large learning rate (c) A desirable learning rate

Figure 2.12: Learning with different learning rates. Small learning rates (left) help us step
to the minimum in a precise way, but require much additional time for convergence. Large
learning rates (middle), on the other hand, lead to fast learning, which is very beneficial when
we are far away from the minimum. However, as we get closer to the minimum too large
learning rates cause overshooting. A more desirable strategy (right) may be to learn the model
in a reasonably fast way when there is a long way to go, and to learn the model slower when
we are close to the minimum.

Thus, it is more reasonable to start with a small learning rate and gradually increase it.
Then, when the model is trained for some time, the learning rate begins to decay as usual.
Such a thought motivates the warmup and decay method for learning rate scheduling.
A popular form of this method in recent studies is proposed in Vaswani et al. [2017]’s
work, as follows:

lrnt = lr0 ·min

(( nt
ndecay

)−0.5
,

nt
ndecay

· (nwarmup)
−1.5

)
(2.73)

where lr0 is the initial learning rate, and nwarmup is a hyper-parameter that specifies
for how many steps we execute the warmup process. Figure 2.13 plots the curve of Eq.
(2.73) where nwarmup, ndecay, and lr0 are set to 4,000, 1 and 1. We see that the learning
rate increases linearly in the first nwarmup steps and then decays as an inverse square
root function.

Choosing an appropriate learning rate scheduling strategy is a highly empirical problem,
and there are no universally good choices. The problem is even harder if we consider the
correlation between the learning rate and other aspects of the training, though learning rate
scheduling is typically taken to be an individual task. For example, when a larger batch is used
in training, a larger learning rate is desired for a good result [Ott et al., 2018b; Smith et al.,
2018]. So, making good learning rate choices is still difficult and time-consuming in neural
network applications. Occasionally one needs a large number of trial-and-test runs to find a
desirable learning rate setup for the particular problem at hand.
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Entry Formula Hyper-parameters

Piecewise Constant Decay lrnt = βi values {β1, ...,βm}
if γi ≤ nt

ndecay
< γi+1 thresholds {γ1, ...,γm}

Exponential Decay lrnt = lr0 ·λ
nt

ndecay decay rate λ, init. lr. lr0

(Drop) Exponential Decay lrnt = lr0 ·λ
⌊ nt
ndecay

⌋
decay rate λ, init. lr. lr0

Natural Exponential Decay lrnt = lr0 · exp(−λ · nt
ndecay

) decay rate λ, init. lr. lr0
Inverse Time Decay lrnt = lr0 · 1

1+λ· nt
ndecay

decay rate λ, init. lr. lr0

(Drop) Inverse Time Decay lrnt = lr0 · 1
1+λ·⌊ nt

ndecay
⌋ decay rate λ

Cosine Decay lrnt = lr0 ·
(
(1−α) · cdecay+α

)
coefficient α

cdecay =
1
2 ·
(
1+cos(π · nt

ndecay
)
)

init. lr. lr0

Table 2.2: Decay functions. λ = decay rate, lr0 = initial learning rate, and {βi}, {γi} and
α= other hyper-parameters.
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Figure 2.13: Learning rate scheduling: warmup and then decay (nwarmup = 4,000, ndecay = 1,
and lr0 = 1). The learning rate increases linearly with nt for the first 4,000 steps. Then, the
learning rate follows an inverse square root function and decays as the learning continues.
The change of the rate learning will be small if nt is sufficiently large, indicating the fine
adjustment of the parameters when we are approaching the minimum of the loss.

2.5 Regularization Methods

We now discuss the regularization methods for preventing overfitting. While regularization is a
wide-ranging topic in machine learning, we present some of those that are commonly adopted
in training neural networks.
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2.5.1 Norm-based Penalties

One of the most popular methods involves a regularization term based on the lp norm. A
general form of the regularized objective can be defined as:

θ̂ = argmin
θ

L(θ)+α ·R(θ) (2.74)

where R(θ) is the regularization term weighted by a coefficient α. In general, R(θ) serves as
an additional loss that penalizes complex models. This is motivated by the fact that complex
models are more likely to overfit the data (see Section 1). To impose a penalty on the model
complexity, a simple way is to define R(θ) as the l1 norm on the parameters θ. Let us treat θ
as a vector of parameters. The l1 norm-based regularization term is given by

R(θ) =
∑
i

|θi| (2.75)

Eq. (2.75) penalizes models having large value parameters. This can be understood in a way
from a polynomial function: large coefficients of variables in a polynomial function lead to a
complex curve. Typically, regularization with the l1 norm is referred to as the l1 regularization
or the Lasso regularization. Such a method does not require updates of the trainer, and can be
implemented by standard gradient descent. More interestingly, the l1 regularization typically
provides sparse solutions to the original training objective. It biases the model to those having
small values (or even zero values) for most of the parameters and large values for only very
few parameters. This also implies an inherent ability of feature selection because parameters
are forced to be close to zero for not-so-important features.

An alternative to the l1 regularization is the l2 regularization or the Ridge regularization.
In the l2 regularization, the regularization term is given by

R(θ) =

√∑
i

|θi|2 (2.76)

Like the l1 norm, the l2 norm penalizes the cases that deviate the model parameters far away
from the origin. However, it slightly differs from the l1 norm in that the l2 norm enforces
all parameters to have small values (but not necessarily to be zeros) and there are no large
value parameters. In this sense, the use of the l2 norm does not introduce sparsity into the
solution but performs “smoothing” on the underlying distributions of features. Note that the
l2 regularization has a relatively bigger effect of regularization. So, it is sometimes called
weight decay to emphasize its ability to prevent the model from learning parameters of too
large values.

In a broader sense of machine learning, Eq. (2.75) offers a general method to introduce
prior knowledge into the training of a neural network. There are a number of ways to design
the regularization term, and addressing overfitting is just one purpose of these designs. We can
see many applications of this approach in NLP, and will see a few examples in the remaining
chapters of this document.



2.5 Regularization Methods 101

2.5.2 Dropout
In a real-world neural network, a layer typically involves hundreds or thousands of neurons and
produces a feature vector accordingly. While each of these features is computed by a single
neuron, they work together to form the input to each neuron of the following layer. As a result,
a feature is forced to cooperate with other features. It is like a group of people sitting together
and making a collective decision. Although a member could have opinions independently, he
or she occasionally tries to correct the error when all other members have had their decisions.
In this case, every group member is co-adapted to others in the group [Hinton et al., 2012].
From a feature engineering standpoint, the co-adaptation of neurons helps when modeling
complex problems, as it implicitly makes some sort of higher order features. Beyond this,
the strong supervision information (e.g., propagating errors through layers) could strengthen
the co-adaptation in training. This explains more or less why a neural network with a large
number of neurons can fit complex curves. At test time, however, the co-adaptation prevents
generalization. Since all neurons of a layer are learned to collaborate well on the training
data, a small change in the input could affect all these neurons and lead to a big change in the
behavior of the neural network.

A way to mitigate or eliminate complex co-adaptations is to learn for each neuron to predict
in the absence of other neurons. To this end, one can simply drop some of the neurons in
training. This method is known as dropout [Srivastava et al., 2014]. Let n be the number of
neurons of a layer. Given a probability ρ (call 1−ρ the dropout rate), we can generate an
n-dimensional mask vector Mdrop where every entry is set to 1 with a possibility of ρ, and set
to 0 with a possibility of 1−ρ. Then, a dropout layer can be defined as

y = Mdrop⊙ψ(x ·W+B) (2.77)

where ψ(x ·W+B) is a usual single-layer neural network. Eq. (2.77) only activates the
neurons whose masks are 1. For dropped neurons, all connections from/to these neurons
are blocked (see Figure 2.14 (a)). During training, Mdrop is randomly generated in a call
of the forward and backward passes. A neuron therefore can learn to work with different
neurons each time and would not adapt to the same group of “co-workers”. Another way to
understand dropout is to view it as learning sub-models of a “big” model. The use of Eq.
(2.77) is essentially a sampling process that extracts a sub-network from the original network.
So, training with dropout is doing something like training an exponentially large number of
sub-networks7. On the other hand, the training is efficient because these sub-networks share the
same parameters for the same neuron and the update of a parameter can benefit exponentially
many sub-networks.

At test time, all these sub-networks are combined for prediction. In this case, we do
not need to drop any neuron but use the original network as usual. This makes it simple to
implement dropout: a neuron is present with some probability on the training data, and all
neurons are present and work together on the test data. Since the connections between neurons
are involved with a probability of ρ in training, the learned weights are scaled down with ρ in

7For a single-layer network having n neurons, there are 2n possible sub-networks.
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active neuron
(present with ρ)

dropped neuron

weight W32

(a) Training the dropout network

all neurons
are active

weight ρW32

(b) Testing with the dropout network

Figure 2.14: Dropout for a multi-layer neural network (training vs test). At training time, every
neuron is randomly dropped with a probability of 1−ρ, resulting in a slimmed network. In this
sense, dropout training is essentially a process of learning an exponentially large number of
sub-networks. At test time, the full network is used as usual, which is the result of combining
all those sub-networks for prediction. Since all connections between neurons are activated with
the probability ρ during training, the weights of the predicting network are scaled down with ρ.

the predicting network, i.e., a layer has a form:

y = ψ(x ·ρW+ρB) (2.78)

See Figure 2.14 for a comparison of training and applying a dropout network. Eq. (2.78)
requires an update of the predicting system. An alternative is to take into account the scaling
issue only in the training process and leave the predicting system as it is. For example, we can
scale up all the parameters with 1

ρ in dropout training, like this

y = Mdrop⊙ψ(x ·
1

ρ
W+

1

ρ
B) (2.79)

Since multiplying 1
ρW with ρ yields W (this also holds for the bias term B), we can use

W (and B) as the parameters of the predicting system.

2.5.3 Early Stopping
In Chapter 1 we have discussed a bit of how to stop the training by monitoring the performance
on the validation data. It can be treated as a way of model selection that seeks an appropriate
state between underfitting and overfitting. Note that early stopping is not just an empirical
method. It is also well explained from the perspective of statistical learning theory. For example,
researchers have found that, under some conditions, early stopping has a similar effect as the
l2 regularization and restricts the learning to the region of small value parameters [Bishop,
1995a; Goodfellow et al., 2016]. Also, other research shows that some early stopping rules
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have a tight relationship with the bias-variance trade-off and could guarantee nice properties of
convergence [Yao et al., 2007].

On the other hand, early stopping requires several heuristics to make it practical and useful.
The first problem is the condition of stopping. Ideally, one might imagine that there is a
perfect U-shaped error curve on the validation data, and the training can be halted immediately
when the error starts to increase. The truth, however, is that the error curve cannot be simply
described as a strictly convex function of the training time. After drops in the error in a certain
number of training steps, the performance of the model tends to fluctuate, leading to many
local minimums. The problem would be more interesting if one wants to save time and stop the
training as early as possible. However, we never know whether the current choice or decision
is the best one because we have no idea of what happens next. A commonly-used method is
to decide whether the training should stop by checking the model states for a number of past
update steps (or epochs) [Prechelt, 1998]. Some early stopping conditions are:

• The change in the performance is below a threshold for a given number of steps (or
epochs).

• The change in the model parameters is below a threshold for a given number of steps (or
epochs).

• The average performance over a given number of steps (or epochs) starts to decrease.

• The maximum performance over a given number of steps (or epochs) starts to decrease.

However, using the model at the point that we stop the training is not always a good choice.
In practice, a model often has a large variance in generation error around that point, making
model selection more difficult. Instead of “selecting” a model, an alternative way is to combine
multiple models. For example, we can save the model for every run of a given number of
training steps (call each copy of the model a checkpoint). The final model is induced by
averaging the parameters of the last few checkpoints. For better results, one may use more
sophisticated ensemble methods (see Section 1).

2.5.4 Smoothing Output Probabilities

In statistics, smoothing refers to the process of reducing the value of noisy data points (probably
of high values) and increasing the value of normal data points. It is typically used when a
distribution is estimated on small data and the probabilities of rare events are not well estimated.
For example, consider the language modeling problem described in Section 2.2. A language
model is trained in a way that enforces the model to output a one-hot distribution, that is,
the total probability of 1 is occupied by only one word, leaving other words assigned zero
probabilities. It may be more desirable to distribute the probability to all words, even though
many of them are not observed to be the answer given the previous words. In this way, the
model learns to make a soft prediction of word probabilities so that it can generalize better on
unseen data.

Given a distribution p=
[
p1 ... pn

]
, it is the purpose of smoothing that we obtain the

new estimate between p and a uniform distribution 1
n . A common approach to this idea is to
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use a shrinkage estimator to improve p by making it closer to 1
n . For example, the addictive

smoothing mentioned in Section 1 is a simple type of shrinkage estimator. Here we consider,
for example, smoothing a multinomial distribution. Let pk denote the probability of event k
and sk denote a quantity that describes some observed “count” of the event. The probability
pk is given by

pk =
sk∑n
k=1 sk

(2.80)

Then, the smoothed version of pk is defined as

p̂k =
sk+α∑n

k=1(sk+α)
(2.81)

It simply adds a quantity α to each sk. The value of α controls the smoothness of the resulting
estimate. For example, p̂k = pk if α= 0, and p̂k ≈ 1

n if α chooses an extremely large value.
Apart from addictive smoothing, we can smooth a distribution in a Softmax manner, as

follows

p̂k =
exp(sk/β)∑n
k=1 exp(sk/β)

(2.82)

This form is known as an instance of the Boltzmann distribution [Uffink, 2017], where sk
is viewed as the negative energy of a state, and β is viewed as the temperature indicating
the degree of smoothing. Note that sk can be interpreted in many ways. For example, in a
neural network, sk is typically defined as the state of a neuron. Sometimes, sk can even be a
probability. This means that we can directly apply Eqs. (2.81-2.82) to any p even if there is no
prior knowledge about how p is estimated. Then, we can rewrite Eqs. (2.81-2.82) by replacing
sk with pk:

p̂k =
pk+α∑n

k=1(pk+α)
(2.83)

p̂k =
exp(pk/β)∑n
k=1 exp(pk/β)

(2.84)

Another method of smoothing is to interpolate p with the uniform distribution. A form of
the interpolation is given by

p̂k = (1− ϵ) ·pk+ ϵ ·
1

n
(2.85)

where ϵ is a hyper-parameter indicating to what extent we rely on the uniform distribution in
computing p̂k. To illustrate how Eq. (2.85) works, let us suppose that p is a one-hot vector,
say, pk = 1 if k = z and pk = 0 otherwise. By using Eq. (2.85), we subtract an amount of
probability (i.e. ϵ) from pz . The subtracted amount of probability is then redistributed to
all dimensions evenly, making the resulting distribution more flat-topped and smoother. See
Figure 2.15 for an illustration.
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Figure 2.15: Smoothing a distribution by interpolating it with the uniform distribution: p̂k =
(1− ϵ) ·pk+ ϵ · 1n . For each dimension k, it subtracts an amount of ϵ from the probability pk
and redistributes this amount of probability evenly to all the variables, that is, every variable
gets a probability of ϵ · pkn .

In NLP, since many systems make probability-like predictions, a common application of
smoothing is to smooth a system’s output. There are two ways. First, we can smooth the
benchmark probability such that the model is guided by the generalized error rather than the
error made by hard decisions. For example, the label smoothing technique adopts the same
form as Eq. (2.85) and improves the benchmark representation on categorical data [Szegedy
et al., 2016]. Second, we can reduce the steepness and increase the tailedness of a predicted
distribution8. This method is often used when the posterior probability of the prediction
is required, such as minimum Bayesian risk decoding/training [Bickel and Doksum, 2015;
Goodman, 1996a; Kumar and Byrne, 2004a].

2.5.5 Training with Noise
Above, we have shown that adding some amount to each observed count of events in predicting
a probability can improve generalization. From a robust statistics point of view [Olive, 2022],
this is equivalent to improving the robustness of an estimator where a skewed distribution often
leads to a biased model. The addition of a small perturbation to the estimate can prevent large
biases caused by outliers and unexpected observations of rare events. In this sense, smoothing
can be regarded as a way of introducing noise into training, that is, we impose a prior of
uniform distribution on the estimate though the correct estimate may not be uniform.

Noisy training works with an idea that a model is learned to work in non-ideal conditions
and avoid overfitting data points of extreme values. Here the term noise has a wide meaning,
and there are a few different ways to regularize training with noise. One of the simplest
methods is to use noise-sensitive training objectives. For example, smoothing the benchmark

8In general one may want a distribution to be a Mesokurtic curve.
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distribution (e.g., the one-hot representation of the correct prediction) can be seen as a way of
making noisy annotations. Alternatively, we can add random noise to the input, output, and
intermediate state of a neural network. A common choice is the Gaussian noise. Suppose we
have a vector x ∈ Rn. The addition of the Gaussian noise defines a new vector, as follows

xnoise = x+g (2.86)

where g ∈ Rn is a vector of noise. It follows a Gaussian distribution:

g ∼ Gaussian(µ,σ2) (2.87)

For entry k of g, it defines the probability Pr(gk) to be:

Pr(gk) =
1

σk
√
2π
· exp

(
−(gk−µk)2

2σ2k

)
(2.88)

where µk is the mean of the distribution, and σk is its standard deviation. Often, µk is set to
0. σk is a hyper-parameter that is used to control the amount of noise we want to add. For
example, a large σk means that the random noise spreads out in a large region centered around
µk, and it is more likely to generate large noise.

Eq. (2.86) is generic and can be applied to almost everywhere in a neural network. Given a
layer y = ψ(x ·W+B), the noise (say ginput) can be added to the input, like this

y = ψ ((x+ginput) ·W+B) (2.89)

Likewise, the noise (say goutput) can be added to the activation (or output):

y = ψ(x ·W+B)+goutput (2.90)

For example, one can simply make noisy inputs (or outputs) for a model and run all hidden
layers as usual, or can add random noise to all activations throughout the neural network. While
it is common to add random noise to the layer inputs and/or activations in a neural network
[Plaut et al., 1986; Holmström and Koistinen, 1992; Bishop, 1995b], another approach to noisy
training is to add random noise directly to model parameters or gradients [Graves et al., 2013b;
Neelakantan et al., 2015]. For example, the addition of noise to the transformation matrix has
the following form:

y = ψ(x · (W+gw)+B) (2.91)

where gw is the matrix of noise and has the same shape as W. Also, we can add noise (say
ggradient) to the gradient of loss for W. Let s denote x ·W+B. The noisy gradient can be
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written as:

∂L

∂W
= xT · ∂L

∂s
+ggradient

= xT ·
(
∂L

∂y
⊙ ∂y
∂s

)
+ggradient

= xT ·
(
∂L

∂y
⊙ψ′(s)

)
+ggradient (2.92)

The use of noisy gradients has been found to not only be helpful for robust training but also to
ease the gradient flow in the network [Gulcehre et al., 2016].

It should be noted that noise is only present during training and the model works without
the addition of noise when making predictions on new data. In this sense, many of the
regularization methods could fall under the noisy training framework that is used to prevent
fitting the training data precisely and enable the predicting system to generalize well on the
test data. For example, dropout randomly inactivates some of the activations of a layer so that
every neuron is learned to work in a noisy environment. When running on the test data, all the
neurons work together as in a usual neural network.

There is an additional advantage with noisy training in that the use of random noise makes
“new” training samples. Even for the same sample, different noise could lead to different
training results. In other words, we essentially train the model on an infinite number of samples.
This idea is also linked to another line of research on training with synthetic data, called
data augmentation. In simple terms, data augmentation is a set of methods to generate new
samples from existing samples. An example is back-translation [Sennrich et al., 2016a].
When developing a machine translation system from language A to language B, we can first
train a reverse translation system (say the B→A system) on the bilingual data. Then, we use the
B→A system to translate some additional target-language data to source-language data. This
results in new bilingual data where the target-language data is real and the source-language
data is synthetic. This new data can be used together with other bilingual data to train the
A→B system. In addition to back-translation, there are many data augmentation methods in
NLP, including replacing words with synonyms, swapping two words, deleting/inserting words,
and so on. Moreover, we can do similar things on feature vectors, such as replacing a word
embedding with a similar embedding. Since data augmentation covers a wide variety of topics,
we refer the reader to a few survey papers for more information [Feng et al., 2021; Shorten and
Khoshgoftaar, 2019].

One last note on data augmentation. Synthetic data can be made for some purpose. A
popular idea is adversarial machine learning. It generates adversarial samples on that a
model would make mistakes (call such processes attacks) [Szegedy et al., 2014a; Goodfellow
et al., 2015]. The model is learned to make correct predictions on these samples, i.e., it defends
the attacks. For example, in some cases, the output of a machine translation system would
be completely wrong if we change the gender of the subject of the input sentence. For a
more robust system, one may train the translation model by using more gender-balanced data,
gathered either manually or automatically. But it is not easy to craft samples that look like
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normal sentences but can fool the model [Zhang et al., 2020b]. This in turn makes it interesting
yet challenging to generate adversarial samples in NLP, since a small change in a sentence
(such as word replacement) could lead to something with a very different meaning9. The
challenge also motivates a thread of research on investigating adversarial samples in NLP [Jia
and Liang, 2017; Belinkov and Bisk, 2018; Ebrahimi et al., 2018; Alzantot et al., 2018].

2.6 Unsupervised Methods and Auto-encoders
Unsupervised learning is concerned with discovering the underlying patterns in a set of
unlabeled data points. A number of problems can be viewed as classical unsupervised learning
problems, though we will not discuss them in detail throughout this chapter. For example, data
clustering is to find groupings in a collection of data objects, given no supervised signals on
what the correct grouping is. Another well-known example is association rule mining. It is
often framed as a process of establishing the relationship among sets of data objects. While
these problems are indeed covered by unsupervised learning, we will focus on problems of
unsupervised representation learning or feature learning, that is, a model is learned to map an
object from an input space to a low-dimensional feature vector space10.

Learning low-dimensional representations has been extensively studied in the context
of finding a linear transformation from the original space to the new space. For example,
principal components analysis (PCA) and its variants try to find a linear mapping function so
that a (high-dimensional) data object can be represented as its coordinates along the directions
of the greatest variance [Pearson, 1901; Wold et al., 1987]. Here we extend the mapping
function to its natural non-linear generation and use neural networks as a solution to the
mapping problem.

As with other machine learning models, a neural network is typically learned by optimizing
model parameters with respect to some loss function. A considerable challenge with unsuper-
vised learning is that there is no benchmark to signal the learning. A solution to this issue is to
resort to non-parametric methods or heuristics (see Chapter 1). However, such methods them-
selves are not designed to address the learning issue of large-scale neural networks, particularly
when a neural network is built up of a huge number of parameters. In unsupervised learning
of a neural network, therefore, it is more common to use the “supervision” information from
the input data itself. While there are several ways to do this [Hopfield, 1982; Ackley et al.,
1985; Dayan et al., 1995; Hinton and Salakhutdinov, 2006], we focus on auto-encoders in this
section. We choose auto-encoders for discussion because they resemble the general form of
supervised models and can be trained via back-propagation.

An auto-encoder is a type of neural networks that tries to reconstruct the input data from
its representation. It is inspired by the idea of dimensionality reduction:

9By contrast, in computer vision, it is much easier to create adversarial samples by making a small change in
the input (e.g., pixels), since the input space is continuous and a small input perturbation has very little effect on
the whole image.

10In addition to learning to represent data objects, this section also covers some topics on the generation of data
objects. We will see them in Section 2.6.3.
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High-dimensional data can be converted to low-dimensional codes
by training a multilayer neural network with a small central layer to
reconstruct high-dimensional input vectors.

– Hinton and Salakhutdinov [2006]

This also develops the idea of representation learning in that the information of an object
can be sufficiently represented by a low-dimensional real-valued vector. Typically, an auto-
encoder involves a (probably non-linear) dimensionality reduction function (call it an encoder)
to map the input object to its low-dimensional feature vector representation (call it a code).
Also, it involves a reverse function (call it a decoder) that maps the code back to the object.
So, although an auto-encoder is called an “encoder”, it is not just an encoder but a combination
of an encoder and a decoder. More formally, let x be the input vector of the model, such as a
high-dimensional representation of a word. The encoder spits out a vector describing the code
or low-dimensional representation of x, as follows

h = Enc(x) (2.93)

where Enc(·) is the encoding network. Enc(·) is typically a multi-layer neural network
and works as a plugged-in for other systems. Thus, Enc(·) is a general-purpose model. In
subsequent chapters, we will see many examples where encoders are trained and applied as
parts of “bigger” systems.

Once we obtain the code, we use the decoder to map it back to the input:

x̃ = Dec(h) (2.94)

where x̃ is the reconstruction of the input, and Dec(·) is the decoding network. Given the
original input x and the reconstructed input x̃, the objective of the auto-encoder is to minimize
the discrepancy between x and x̃. Suppose that the encoder and the decoder are parameterized
by θ and ω, denoted as Encθ(·) and Decω(·). The training objective over a set of samples
{x(1), ...,x(m)} is defined as

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i), x̃(i)

)
= argmin

(θ,ω)

m∑
i=1

L
(
x(i),Decω(h

(i))
)

= argmin
(θ,ω)

m∑
i=1

L
(
x(i),Decω(Encθ(x

(i)))
)

(2.95)

where L(·) is the loss function that computes the discrepancy between x and x̃. It is sometimes
called the reconstruction loss. Popular loss functions for reconstruction include mean squared
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Figure 2.16: An undercomplete auto-encoder with an encoder, a decoder and a bottleneck
layer sandwiched between them. An input x (left) is transformed into a code h (middle) and
then a reconstruction x̃ (right). The parameters of both the encoder and decoder are optimized
by minimizing the discrepancy between the input x and the reconstruction x̃ on a number of
unlabeled samples {x1, ...,xm}. On new samples, we throw away the decoder, and use the
encoder to generate new codes or representations.

error loss, crossentropy loss, etc.

Putting together the encoder and the decoder, it is tempting to think of a network in which
we feed something into the input layer and get back the same thing out of the output layer.
The challenge here is that the low-dimensional vector h serves as a bottleneck in information
flow. There is a risk of information loss in transformation either from x to h or from h to x̃,
making it difficult to “copy” the input to the output. Rather, we need to “squeeze” an object
from a high-dimensional space to a dense, low-dimensional space, and then “unsqueeze” it
from the new space to the original high-dimensional space. A consequence of this squeeze-and-
unsqueeze process is that the encoder is forced to compress the data but retain the information
as much as possible. So, the auto-encoder discussed here is also called the undercomplete
auto-encoder, because h has a smaller size than x and x̃. Figure 2.16 shows an illustration of
the undercomplete auto-encoder structure.

Given the loss function L(·), the encoder Encθ(·) and the decoder Decω(·), the parameters
θ̂ and ω̂ can be optimized by using the gradient descent method as in supervised learning (see
Section 2.4.1). When applying the auto-encoder, one can simply drop the decoder and use the
encoder as a feature extractor, that is, given a new input xnew, we generate a new representation

ĥnew = Encθ̂(xnew) (2.96)

Note that the encoder is not a standalone system but typically works with other models for
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a complete working system. For example, we can train an auto-encoder on some sentences
and place a Softmax layer on the output of the encoder to build a sentence classifier. The
classifier can be further trained on some task-specific data to solve a new problem, such as
tagging a sentence with its sentiment polarity. This also makes the application of auto-encoder
fall under the general paradigm of pre-training: a sub-model (i.e., an encoder) is first trained
on large-scale, task-irrelevant data, and then used as a component of a bigger model on a
downstream task.

2.6.1 Auto-encoders with Explicit Regularizers

As more complex neural networks are involved, an auto-encoder tends to learn an identity
transformation although the bottleneck makes it a bit harder to pass through without information
loss. This is what we would ordinarily expect: we could make h a surrogate of x and decode
h to something very similar to x. On the other hand, learning an exact identity transformation
requires a highly complicated model and is prone to overfitting. Fortunately, as with other
machine learning models, we can regularize the training by using the methods presented in
Section 2.5. One of the most popular methods is adding an explicit regularization term to the
loss function. Taking together Eq. (2.74) and Eq. (2.95), we can define the training objective
to be

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i),Decω(Encθ(x

(i)))
)
+α ·R (2.97)

where R is the regularization term accounting for some prior knowledge we want to impose
on training, and α is its coefficient. A common choice for R in auto-encoders is the sparsity
penalty (also known as sparse auto-encoders). The simplest way to implement such a penalty
is to apply the l1 or l2 norm on the code, as follows

Rl1 =

m∑
i=1

∑
k

∣∣∣h(i)k ∣∣∣ (2.98)

Rl2 =

m∑
i=1

√∑
k

(
h
(i)
k

)2 (2.99)

It is worth noting that, unlike those penalties on model parameters (see Section 2.5.1),
the sparsity penalty regularizes the code h (or the output of the encoder) to be sparse. The
idea of encouraging sparseness in representations stems from sparse coding [Olshausen and
Field, 1997]. It states that the information of an object is embedded in complex dependencies
among the original attributes (or features) of the object. A desirable representation learning
system should extract such dependencies and reform them to be a set of independent features.
And there should be a small number of these independent features that are active, while the
active features vary when we switch to a new object. Note also that, from a Bayesian learning
point of view, other penalties in regularized training could be interpreted as priors over models.
The sparsity penalty, however, is not a prior because it does not depend on models (or model
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parameters) but on the training data [Goodfellow et al., 2016]. In this view, the sparsity
penalty should not be treated as a “regularization” term, but simply some distribution over the
model’s intermediate states. On the other hand, the sparseness of the code, though not well
explained by conventional use of regularization terms, is indeed helpful in many applications
of auto-encoders, because it directly models the way of representing the input and imposing
“priors” on outcomes of encoders. When considered from an empirical point of view, the
sparsity penalty is still thought of as a regularizer that biases the training to certain models.

There are other choices for defining the regularization term R in addition to Eqs. (2.98-
2.99). For example, a way of forcing sparsity is to penalize the cases where the average value
of each entry hk is far away from a predefined value [Nair and Hinton, 2009]. In case that hk
chooses values from [0,1], the regularization can be implemented by defining R as the KL
divergence between the average code over a number of samples and the expected code11. Let
h̄ denote the average code over {x1, ...,xm}, where the value of h̄k is the mean of the k-th
variable of the code:

h̄k =
1

m
·
m∑
i=1

Enc(x(i))(k) (2.100)

Also, let q be the expected code, where qk = τ for any k. If each entry of the average code
is viewed as a Bernoulli random variable with mean h̄k, and each entry of the expected code is
viewed as another Bernoulli random variable with mean τ , then the regularization term can be
defined as the sum of the KL divergence between h̄k and qk over all entries:

R =
∑
k

KL(h̄k, qk)

=
∑
k

τ · log τ

h̄k
+(1− τ) · log 1− τ

1− h̄k
(2.101)

In this form, R penalizes the model when h̄ deviates from q.
As another auto-encoder variant, the contractive auto-encoder (CAE) tries to improve

the robustness of representation by introducing a new regularization term into training [Rifai
et al., 2011]:

R =

m∑
i=1

∥∥∥∥∥∂h(i)

∂x(i)

∥∥∥∥∥
2

F

=

m∑
i=1

∥∥∥∥∥∂Enc(x(i))

∂x(i)

∥∥∥∥∥
2

F

(2.102)

where ∂Enc(x(i))

∂x(i) (or ∂h(i)

∂x(i) ) is the Jacobian matrix of the representation 12, and ∥ · ∥F is

11In general, we can set all entries of the expected code to τ ∈ [0,1]. Sparse codes will be preferred if τ is close
to 0, as features are “inactive” in most cases. By contrast, dense codes will be preferred if τ is close to 1.

12Suppose that the encoder is a function Enc(·): x ∈ Rdx → h ∈ Rdh . The Jacobian matrix of h= Enc(x) is
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the Frobenius norm of a matrix 13. The contractive penalty helps resist the influence of
small perturbations to the input. In the geometric sense, it encourages that the neighborhood
relationship holds for output data points if the input data points are neighborhoods, in other
words, it forces Enc(·) to behave more like a contraction mapping14, hence the name of
contractive auto-encoder.

2.6.2 Denoising Auto-encoders
Another source of inspiration for improving the robustness of a model arises from the denoising
idea: we add noise to the input and then remove it to recover the original input. Denoising auto-
encoders (DAEs) are such a type of neural networks that marries the idea of auto-encoding
with the idea of denoising. First, noise is added to the input vector in a stochastic manner. This
can be described as a process of generating a noisy input xnoise given the original input x:

xnoise ∼ Prnoise(xnoise|x) (2.106)

where Prnoise(·) is a distribution for sampling xnoise. For example, we can follow the method
presented in Section 2.5.5 and take the noisy input as a multivariate Gaussian variable:

xnoise ∼ Gaussian(x,σ2) (2.107)

where Gaussian(µ,σ2) generates xnoise via a Gaussian distribution with the mean µ and the
variance σ2. Eq. (2.109) introduces an additive noise to the input. Subtracting x from the
mean, we have

xnoise = x+g (2.108)

g ∼ Gaussian(0,σ2) (2.109)

a dh×dx matrix:

Jacobian =
∂h

∂x

=
[

∂h
∂x1

... ∂h
∂xdx

]

=


∂h1
∂x1

· · · ∂h1
∂xdx

...
. . .

...
∂hdh
∂x1

· · · ∂hdh
∂xdx

 (2.103)

13For a matrix A ∈ Rdh×dx , the Frobenius norm is given by the equation:

∥A∥ =

√∑
i,j

A2
i,j (2.104)

14Let X be a metric space with a metric d. Given a function f(·) from X to X , f(·) is a contraction mapping if
and only if there is a number ϵ such that for any x1,x2 ∈X:

d(f(x1),f(x2))≤ ϵ ·d(x1,x2) (2.105)
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Figure 2.17: The structure of a denoising auto-encoder. An input x is first corrupted into a
noisy or corrupted input xnoise. Then, it is passed through an encoder to form a code h. Then,
the code is passed through a decoder to form a reconstructed input x̃. The training is performed
by minimizing the loss between x and x̃. This process is termed “denoising” because it tries to
remove the noise from xnoise and recover the original input x.

Sometimes, this process is called the corruption of the input, and xnoise is called the
corrupted input. Aside from additive Gaussian noise, there are a few different ways to corrupt
the input [Vincent et al., 2010]. One of the popular methods is to zero some of the entries
of x. For example, we can set each entry to 0 with a pre-defined probability. This is also
called masking noise. Another method is to use salt-and-pepper noise or impulse noise for
corruption. It randomly chooses some of the entries, and sets each of them to a minimum or
maximum value with a pre-defined probability. Different types of noise are applied to different
applications of auto-encoders. For example, the masking noise is popular in training language
models, and the salt-and-pepper noise is more commonly used in image processing.

Then, the corrupted input xnoise is fed into an encoder-decoder network, and the network
produces a reconstructed input x̃ = Dec(Enc(xnoise)). The training process is regular. We
reuse Eq. (2.95) to minimize the loss of replacing x with x̃. Thus, we can rewrite Eq. (2.95) to
adapt the objective to the denoising case:

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i),Decω(Encθ(x

(i)
noise))

)
(2.110)

Eq. (2.110) differs from Eq. (2.95) only in that the input of the auto-encoder is xnoise instead
of x. In other words, we denoise the corrupted input to recover the original input. See Figure
2.17 for the structure of denoising auto-encoders.

Note that both contractive/sparse auto-encoders and denoising auto-encoders can be thought
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of as ways to improve the robustness of auto-encoders. Their difference lies in that they
regularize the training at different points of the model. Contractive auto-encoders aim at
improving the robustness of encoding, that is, the representation is learned to be not so
sensitive to small perturbations to the input. Denoising auto-encoders, on the other hand,
aim at improving the robustness of reconstruction. It affects both encoders and decoders
simultaneously. In some sense, denoising auto-encoders are direct applications of noisy
training to auto-encoders (see Section 2.5.5). It is of course difficult to say which models
are better. For example, contractive auto-encoders have more direct guidance on learning the
representation, which is what we are concerned the most about. The training of denoising
auto-encoders, though has an indirect effect on encoding, receives additional denoising signals
from the decoder. This offers a new view of robust training: a robust representation can be
learned in both where it is generated (the denoising encoder) and where it is applied (the
denoising decoder).

2.6.3 Variational Auto-encoders

variational auto-encoders (VAEs) were not initially proposed to model the encoding problem,
although it is termed an “auto-encoder”. They are typically used to generate new data similar
to observed data, hence having very different formulations from the classical auto-encoders we
mentioned above. In statistics and machine learning, variational auto-encoders are more often
viewed as instances of variational Bayesian methods and used to perform efficient statistical
inference over latent variables when the posterior probabilities of these variables are intractable
[Kingma and Welling, 2014; 2019]. On the other side, variational auto-encoders, implicitly
or explicitly, deal with what we do in inducing the underlying representation of an observed
object. We therefore involve it in this section for a relatively complete discussion.

We begin with a generative story describing how each data point is generated. Suppose
that, for an observed sample x in our dataset, there is an unobserved latent variable h that
describes x. Now we intend to develop a probabilistic model to model the generation process
of x, say, estimating the probability Pr(x). This can be obtained by computing the marginal
distribution:

Pr(x) =

∫
Pr(x,h)dh (2.111)

where we explicitly introduce the latent variable h into the inference of x. To solve Eq. (2.111),
we use a model pω(x,h) to approximate Pr(x,h) (i.e., pω(x,h)≈ Pr(x,h)), and we have

pω(x) =

∫
pω(x,h)dh (2.112)

where pω(x,h) is a probability density function parameterized by ω. We replace the left-hand
side of Eq. (2.113) with pω(x) to emphasize that the probability is determined by the model
pω(·). There are generally many ways to define pω(x,h). Here we can simply think of it as a
neural network.
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Then, we can rewrite Eq. (2.113) by using the chain rule:

pω(x) =

∫
pω(h) ·pω(x|h)dh (2.113)

where pω(h) is the prior over h, e.g., a Gaussian prior. The conditional probability pω(x|h)
describes how likely x is observed given the latent variable h. To model this generation
process, pω(x|h) is often assumed to be a Gaussian distribution that is parameterized with its
mean µp and variance σp:

pω(x|h) = Gaussian(µp,σp) (2.114)

where µp and σp are determined by a decoding network Decω(·) (we will explain later on why
it is called “decoding”):

(µp,σp) = Decω(h) (2.115)

However, Eq. (2.113) is still intractable even though pω(h) and pω(x|h) are both tractable,
because it is impossible to summing over all possible h’s. This also leads to an intractable
posterior:

pω(h|x) =
pω(h) ·pω(x|h)

pω(x)
(2.116)

It looks like we are stuck with pω(x) and pω(h|x)! Variational auto-encoders address this
issue by approximating pω(h|x) with a tractable posterior qθ(h|x):

qθ(h|x) ≈ pω(h|x) (2.117)

where θ is the parameter of the new model. Like Eqs. (2.114-2.115), qθ(h|x) is defined as
another Gaussian distribution:

qθ(h|x) = Gaussian(µq,σq) (2.118)

(µq,σq) = Encθ(x) (2.119)

where Encθ(·) is the encoding network that reads x and generates the mean and variance of
the distribution qθ(h|x). This is interesting! We now have a feasible path to compute Pr(x):
we first sample a latent variable h via qθ(h|x), and then compute pω(x) via the product of
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pω(h) and pω(x|h). In this case, the log-scale probability of the observation is defined to be

logPr(x) ≡ Eh∼qθ(h|x) logpω(x)

= Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

pω(h|x)

= Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

pω(h|x)
· qθ(h|x)
qθ(h|x)

= Eh∼qθ(h|x) log
qθ(h|x)
pω(h|x)

+Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

qθ(h|x)
(2.120)

The first term of the right-hand side of Eq. (2.120) is the KL divergence (relative entropy)
between qθ(h|x) and pω(h|x), i.e.,

D(qθ(h|x)||pω(h|x)) = Eh∼qθ(h|x) log
qθ(h|x)
pω(h|x)

(2.121)

Thus, given D(qθ(h|x)||pω(h|x))≥ 0, we have15

logPr(x) ≥ Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

qθ(h|x)

= Eh∼qθ(h|x)

[
logpω(x|h)+ log

pω(h)

qθ(h|x)

]
= Eh∼qθ(h|x) logpω(x|h)+D(pω(h)||qθ(h|x)) (2.122)

The right-hand side of Eq. (2.122) is a lower bound of the likelihood logPr(x). It
is also known as the evidence lower bound (ELBO). The first term of the ELBO can be
approximately computed by sampling different h’s. Also, computing the second term is not
difficult because there is an analytical form for D(pω(h)||qθ(h|x)) if the forms of pω(h) and
qθ(h|x)) are given. Let L(x,θ,ω) denote the negative ELBO. Then, the training process of a
variational auto-encoder can be framed as minimizing L(·) over a number of observed samples
{x(1), ...,x(m)}:

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i),θ,ω

)
(2.123)

Note that, because sampling h from qθ(h|x) is a non-continuous operation, Eh∼qθ(h|x) logpω(x|h)
is not straightforwardly differentiated. To fit the training of auto-encoders in standard back-
prorogation, a common way is to use the so-called reparameterization trick. Here we skip
the details and refer the reader to a few papers for more information [Kingma and Welling,
2014; Doersch, 2016].

Figures 2.18 illustrates how a variational auto-encoder works. It presents us with a two-step
generation process:

15The KL divergence between p and q is zero only if p= q, and is positive otherwise.
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Figure 2.18: The generative story of a variational auto-encoder. For an input sample x, we
generate a latent variable h by using an encoder qθ(h|x). In the encoding step, a neural
network Encθ(·) is first used to produce the mean and variance of a Gaussian distribution, say,
µq and σ2q . The latent variable h is then drawn according to Gaussian(µq,σ

2
q ). After that,

we regenerate the original sample x by using a decoder pω(x|h). In the decoding step, like
the generation process in the encoder, a neural network Decω(·) is used to generate the mean
µp and variance σ2p of Gaussian(µp,σ

2
p). The same input x is spitted out by sampling from

Gaussian(µp,σ
2
p).

• Encoding. For an input sample x, we sample a latent variable h from qθ(h|x). This
involves an encoding network Encθ(x) that generates the mean µq and variance σ2q of
the Gaussian distribution qθ(h|x). The latent variable is then generated by sampling
from Gaussian(µq,σ

2
q ).

• Decoding. For the latent variable h, we sample the original input x from pω(x|h). It
follows again a Gaussian sampling process: a decoding network Decω(h) is used to
determine the mean µp and variance σ2p of the distribution. x is generated by following
Gaussian(µp,σ

2
p).

Sometimes, qθ(h|x) and pω(x|h) are called an “encoder” and a “decoder”, as they try to
“map” an input to a representation and then “map” it back to the input. However, qθ(h|x) and
pω(x|h) themselves imply some non-deterministic models, that is, they output the probability
density functions of the variables rather than point estimates. An important consequence of



2.7 Summary 119

this result is that variational auto-encoders do not tend to find the “best” representation for
the input. At first glance it sounds weird as every model we have talked about so far can
give a fixed value output. This, however, is the case of the Bayesian inference — we only
learn a distribution over possible values of a latent variable. On the empirical side, if you
want to obtain something like a good representation, it is fine to just sample a value from that
distribution you developed. It would be a high probability that you get a not-so-bad outcome if
your model works well [Knight, 2009].

In practice, the main use of variational auto-encoders is in generation but not representation.
At test time, provided the optimized parameters θ̂ and ω̂, the encoder (i.e., qθ̂(h|x)) is removed,
and the decoder (i.e., pω̂(x|h)) works with randomly generated h’s. More precisely, we sample
a latent variable hnew from a Gaussian distribution, and infer a sample xnew by pω̂(x|hnew)

as usual. We will see in the subsequent chapters that many NLP problems can be categorized
as generation problems where sequential or hierarchical data objects are generated on the
condition of some given data objects or latent variables.

2.7 Summary
In this chapter we have talked about what a neural network is, as well as a few basic architec-
tures, which are commonly used as building blocks in constructing powerful deep learning
systems. Also, we have talked about how to train neural networks, how to regularize the
training process, and how to apply neural networks to feature learning in an unsupervised
manner.

But neural networks and deep learning are wide-ranging topics and all of our discussions are
a little “peek” into them. For a more comprehensive introduction to these topics, Goodfellow
et al. [2016]’s book may be a good choice. It also covers several advanced techniques, such
as deep structured models and randomized methods, for developing state-of-the-art systems.
However, as always, there is a big difference between knowing what a technique is and being
fluent with using it in solving real-world problems. So, for practitioners who want to apply
neural networks and deep learning in even simple situations, there are a number of books on
implementation details of deep learning systems [Géron, 2019; Zhang et al., 2021; Chollet,
2021], and open-source projects that provide code-bases for reference16.

In the following chapters, we will dig into how to use neural models to address NLP
problems. Along the way, we will see how to learn the representation of words and sentences
using the methods we have discussed so far (Chapters 3-4), and how to model different NLP
problems by using several interesting neural network-based methods, including the attention
mechanism and Transformers (Chapters 5-6), pre-training (Chapter 7), large language models
(Chapters 8-10), and so on.

16URLs to a few popular online tutorials: https://pytorch.org/tutorials, https://keras.io/
examples/nlp, and https://www.tensorflow.org/tutorials

https://pytorch.org/tutorials
https://keras.io/examples/nlp
https://keras.io/examples/nlp
https://www.tensorflow.org/tutorials
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Chapter 3

Words and Word Vectors

Words are basic units of language [Jackendoff, 1992]. Most language systems that people use
to express their feelings and communicate with others involve creating, mixing, and combining
words in some way. Before understanding how a word is used in forming larger language units,
it is worth first understanding what a word is. This involves two fundamental questions:

• What is the surface form of a word?

• What is the meaning of a word?

But these questions are difficult, of course, because there are no simple rules to describe
how a word is formed and how its meaning is defined or induced. While there are a variety of
theories to answer these questions in linguistics, NLP researchers are concerned more with
two practical issues:

• Tokenization: given a string, how to segment it into a sequence of words (also called
tokens) such that these words can be used as basic units in downstream NLP tasks?

• Word Representation Learning: given a corpus, how to learn to represent each word
in some countable form, and how to enable NLP models to “compute” on top of this
representation?

One goal of this chapter is to show how a sentence is segmented in either a linguistic
or statistical manner. Specifically, we describe several approaches to tokenizing a string of
characters into words or subwords by heuristic rules or statistical models learned from data.
The other goal here is to show how words can be represented as real-valued vectors. In
particular, we present modern approaches to learning and evaluating these word vectors. The
value of this part is not on drilling on those formulas and models but on showing the core
idea of word vector representation which is the basis of many NLP systems. In the next few
chapters, we will see a natural generation of this idea to modeling more complicated problems,
such as representing sequential and tree-like data.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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Chinese
Input: 一直以来，完美的机器翻译是人类的梦想之一。

Output: 一直/以来/，/完美/的/机器翻译/是/人类/的/梦想/之一/。

Japanese
Input: 西日本や海はく晴れて、汗ばむ暑さとなる。

Output: 西日本/や/海/は/く/晴れて/、/汗ばむ/暑さ/と/なる/。

English
Input: She said, “Deep learning is not the solution to all world’s problems”.

Output: She/said/,/“/Deep/learning/is/not/the/solution/to/all/world/
’s/problems/”/.

Figure 3.1: Tokenization for different languages (slash = word boundary). For Chinese and
Japanese where there are no delimiters between words, tokenization is often called word
segmentation.

3.1 Tokenization

In computer science and related fields, the term token can be used in many different ways.
Here we simply think of a token as a word in linguistics, although it can be something different
(see Section 3.1.4). In NLP, tokenization or segmentation is a task related to morphological
analysis [Aronoff and Fudeman, 2011]. While morphological analyzers or parsers are generally
used to study the internal structure of words, tokenization is concerned with how sentences are
broken down into words. It appears that we need to know how words are composed if we want
to know how sentences are formed by words. Things are even more interesting because the
variety of languages makes it difficult to find a general system to describe the morphology of
every language. For example, analytic languages (such as Chinese) have little inflection, and
rely on word order to convey meaning. By contrast, synthetic languages (such as French) may
have rich inflection and the meaning of a word is highly influenced by morphology.

On the other hand, dividing sentences into smaller linguistic pieces is important in many
NLP tasks, even though many of the world’s languages have little morphology. For example,
Chinese is a morphologically simple language that has no explicit word boundaries. While it
also makes sense to take characters as units in understanding what a Chinese text is talking
about, it is more desirable and reasonable to consider larger units in processing the text. Note
that, even for languages having delimiters between words, such as English, we still have to
tokenize sentences such that they are standardized when serving as the input and/or output of
an NLP system.

In this section, we skip the discussion on what exactly a word is in morphology and syntax,
but simply view tokenization as a task of adding word or token boundaries to a given string
(see Figure 3.1). We will show that a sentence can be broken down into words or tokens in
either a heuristic or statistical manner. Note that this process is designed to produce some units
that can ease the processing of languages in NLP systems, not necessarily to make strictly
linguistic sense.
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3.1.1 Tokenization via Rules and Heuristics

A common and simple approach to tokenization is to identify every word in a sentence by
applying a set of pre-defined rules. In general, these rules are linguistically motivated and
reflect our prior knowledge of what the form of a word should be. For example, consider the
English example in Figure 3.1. We can define the following rules for tokenizing the sentence:

• Words do not contain spaces. In this sense, we can split the sentence into “word
candidates” with space.

• Every word candidate that is made up of English letters only (i.e., a-z and A-Z) is a word.

• Every punctuation mark (i.e., quote, comma, period, etc.) should be isolated to form a
word.

• ’s is a word, indicating noun possessive.

This might be one of the smallest rule sets we can use in English tokenization. Surely,
more rules can be added to cover more linguistic phenomena, e.g., words with dashes, words
containing non-English letters, and so on. However, there are no standards to define such
a set of rules. In practice, and particularly in NLP applications, we want a minimal set of
rules to deal with most problems, and the tokenization is usually implemented by a number of
regular expressions. Here we will not discuss these rules and regular expressions in detail,
but refer the reader to a few textbooks for more details [Lawson, 2003; Friedl, 2006; Jurafsky
and Martin, 2008]1.

Also, it is common to normalize the text before tokenization so that the input of the tok-
enizer is canonical. For example, for English and other alphabetic languages, normalization
or canonicalization refers to a process of lowercasing words, normalizing character represen-
tation (e.g., Unicode characters), and so on. In addition, we can map different forms of a word
to the same form for further generalization of the tokenization. A simple way to do this is to
conflate all inflected forms of a word into its base form. In linguistics, the base form of a word
is called lemma, and the process of mapping words to lemmas is called lemmatization. Here
are some examples of lemmatization.

learn → learn

learning → learn

learns → learn

best → good

There are words that correspond to two or more different lemmas (often with different part-of-
speeches). In this case, we should select the correct lemma according to the context. In other
words, lemmatization is context-dependent.

1Tokenization scripts can be found in many open-source projects, such as Moses [Koehn et al., 2007]
(https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl) and the tokenizers in SacreBLEU (https://github.com/mjpost/sacrebleu/
tree/master/sacrebleu/tokenizers).

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/mjpost/sacrebleu/tree/master/sacrebleu/tokenizers
https://github.com/mjpost/sacrebleu/tree/master/sacrebleu/tokenizers
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Original She said, “Deep learning is not the solution to all world’s problems”.

Normalization she said, “deep learning is not the solution to all world’s problems”.

Tokenization she/said/,/“/deep/learning/is/not/the/solution/to/all/world/’s/problems/”/.

Lemmatization she/say/,/“/deep/learning/be/not/the/solution/to/all/world/’s/problem/”/.

Stemming she/said/,/“/deep/learn/is/not/the/solut/to/all/world/’s/problem/”/.

Figure 3.2: Normalization, lemmatization, and stemming of an English sentence. In normal-
ization, the whole sentence is lowercased. In lemmatization, every word is lemmatized and
rewritten as its lemma. In stemming, the suffixes of some words are removed.

Closely related to lemmatization is stemming, which represents a word as its stem. Like
lemmas, a stem is some base form of a word. However, unlike lemmas, a stem is not necessarily
a valid word, although there are many words whose lemmas and stems are identical. Another
difference from lemmatization is that stemming is performed on individual words, without the
need of context for disambiguation. So, stemming is context-independent. There are several
efficient algorithms for stemming. A popular one is suffix stripping [Porter, 1980]. It simply
removes the suffixes ing, ed, ion, etc., like these

remove → remov

removing → remov

removal → remov

best → best

For more examples, Figure 3.2 shows normalization, lemmatization, and stemming results for
an English sentence.

It is worth noting that the above methods are typically implemented using regular expres-
sions, dictionary lookups, and additional heuristics. While in our little exploration here it
seems that tokenization is not so difficult, much more work is needed to make it practical.
In particular, if we deal with languages with a non-alphabetic writing system, or languages
without explicit spacing between words, then tokenization would be a hard problem, and in
that case, using simple rules would not be a good strategy. In the following subsections, we
will reframe tokenization as a machine learning problem where the way to tokenize or segment
sentences is learned from data. These methods are language-independent and can be applied to
a wide range of tokenization or segmentation-like problems.

3.1.2 Tokenization as Language Modeling

Now let us move to statistical modeling of the tokenization problem. For ease of discussion, in
this subsection only languages (or more precisely writing systems) without word boundaries
are considered, but the method should be understood to cover other problems where delimiters
are used to indicate the end or beginning of a word. Let x= x1...xl be a string of characters,
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and y= y1...ym be a sequence of words or tokens. We would say that y is a tokenization result
of x if y defines a segmentation on x. Consider the following Chinese sentence:

x = 机器翻译是人类的梦想之一。

We can define a segmentation on the sentence, for example2,

y = 机器翻译/是/人类/的/梦想/之一/。

=
[
“机器翻译” “是” “人类” “的” “梦想” “之一” “。”

]
(3.1)

In this way, tokenization can be framed as a problem of mapping x to y. Given an input string,
the output is the most likely segmentation:

ŷ = argmax
y

Pr(y|x)

= argmax
y

logPr(y|x) (3.2)

Eq. (3.2) describes a prediction model we have been referencing several times in this book.
However, the problem we are dealing with is easier because y contains the information of x,
and we can remove the condition from Pr(y|x) in the argmax operation:

ŷ = argmax
y

logPr(y)

= argmax
y

logPr(y1, ...,ym) (3.3)

It is easy to check that Eq. (3.3) in fact describes a language modeling problem. There
are a few different ways to estimate the joint probability Pr(y1, ...,ym). A simple method is to
rewrite logPr(y1, ...,ym) into a sum of log-scale conditional probabilities:

logPr(y1, ...,ym) = logPr(y1)+ logPr(y2|y1)+ ...+logPr(ym|y1, ...,ym−1) (3.4)

Each conditional probability Pr(yi|y1, ...,yi−1) can be approximated by

Pr(yi|y1, ...,yi−1) = Pr(yi|yi−n+1, ...,yi−1) (3.5)

that is, the generation of yi only depends on the n−1 previous context words. To compute
Pr(yi|yi−n+1, ...,yi−1), we can either use the relative frequency methods or neural networks
(see Chapter 2).

Now we can think of tokenization as a supervised learning problem. The process is outlined
here:

• Prepare some sentences that are correctly segmented.

2Following the notation used previously, we use both y= y1...ym and y=
[
y1 ... ym

]
to denote a sequence

of variables.
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• Learn a language model Pr(y) on these labeled sentences.

• For a new sentence, find the “best” tokenization ŷ that maximizes Pr(ŷ), as in Eq. (3.3).

While this procedure follows a standard pipeline of supervised learning, there are several
practical issues we have to iron out. First, the language model requires a vocabulary from
which yi can choose a value, but new words are always around. To handle them, one way
is to segment an unknown substring into characters, that is, we treat characters as words if
the substring yielding these characters is not contained in the vocabulary. An alternative is to
take into account all substrings that are not covered by the vocabulary, and replace them with
the <unk> tag. The <unk> trick is widely adopted in state-of-the-art language models and is
usually helpful.

Second, the language model described above has a bias towards short sequences because
Pr(y1, ...,ym) would be large if m is a small number. A general way to mitigate this bias is to
introduce a length reward (or length bonus) to the model, for example,

ŷ = argmax
y

logPr(y)+λ ·m (3.6)

or

ŷ = argmax
y

logPr(y)

mλ
(3.7)

where λ ·m and mλ reward long sequences and λ > 0 is a hyperparameter controlling how
much we rely on the reward in assessing the goodness of y. Interestingly, it is found that the
length bias is not a big problem with tokenization in practice because the variance in length is
small for those “good” tokenization results. For example, using a unigram language model
(i.e., n= 1) without any length reward works well in many real-world applications. We will
see a few examples in Section 3.1.4.

Third, performing argmax is difficult because there are exponentially many tokenization
candidates. However, the use of language models here enables efficient search algorithms.
Consider, for example, applying a unigram language model to tokenization. For the input
string x, we keep, at each position j of x , a state that describes the probability of the best
tokenization on x1...xj (denoted as p(j)) as well as the last word of this tokenization. At
position j+1, we create a new state and compute the probability of the best tokenization on
x1...xj+1 by

p(j+1) = max
1≤i≤j

p(i) ·Pr(xi+1...xj)

= max
1≤i≤j

p(i) ·Pr(w[i+1,j]) (3.8)

where Pr(w[i+1,j]) is the probability of the word spanning xi+1...xj . On the algorithmic side,
Eq. (3.8) describes a dynamic programming method that has a time complexity of O(l2) for
an input of length l. For the final output, we can trace back from the final state and dump the
word sequence along the path of the optimal tokenization.
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Note that the methods here are generic and can be applied to tokenization for other
languages. For example, when applying it to English, we only need a slight update on the
format of the input: the input is not a character sequence but a sequence of the smallest possible
pieces separated out by punctuation and spaces. For example, for the sentence Is this Tom’s
laptop?, we have

x =
[
Is this Tom ’ s laptop ?

]
(3.9)

Then, the tokenization process can proceed as in Eqs. (3.2-3.7).

3.1.3 Tokenization as Sequence Labeling

One of the major ways by which NLP researchers group together consecutive linguistic pieces
is through tagging the sequence with a grouping-inspired label set, often known as sequence
labeling. Although we limit ourselves here to the problem of grouping characters to words, as
we will see in the following chapters, such a method is a good solution to many NLP problems,
such as part-of-speech tagging, named entity recognition, and so on. Since the idea of sequence
labeling has been discussed in Chapter 1, we present here how it is adapted to the tokenization
task.

The label sets used in tokenization are regular. The simplest of these is the “IB” set. The
“I” label indicates a linguistic piece inside a word, and the “B” label indicates the beginning
of a word. The label set can be enriched by adding the “E” label (i.e., the ending of a word)
and/or splitting the “B” label into sub-labels (e.g., B1 and B2 indicate the first and the second
linguistic pieces of a word) [Zhao et al., 2006]. Given an input sequence x and a tokenization
result y, transforming y to the label sequence is fairly simple. Consider again the example
used in the previous subsection. We can label the sequence in different formats:

x: 机 器 翻 译 是 人 类 的 梦 想 之 一 。

y: 机 器 翻 译 是 人 类 的 梦 想 之 一 。

{I,B} B I I I B B I B B I B I B

{I,B,E} B I I E B B E B B E B E B

{I,B1,B2,E} B1 B2 I E B1 B1 B2 B B1 B2 B1 B2 B1

Since the label sequence can be treated as another form of the tokenization, we can restate
the problem as finding the best label sequence given an input:

ĉ = argmax
c

logPr(c|x) (3.10)

where c= c1...cl is a label sequence. Many methods have been proposed to model Pr(c|x). A
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classic way is given by rewriting Pr(c|x) using the Bayes’ rule:

ĉ = argmax
c

log
Pr(x|c)Pr(c)

Pr(x)

= argmax
c

logPr(x|c)+ logPr(c) (3.11)

In this model, Pr(x) is a constant for all c’s, and thus can be removed from Pr(x|c)Pr(c)
Pr(x) in

search. Pr(x|c) is the probability of generating the input x (i.e., observations) given the label
sequence c (i.e., latent variables), and Pr(c) is a language model defined on the label sequence.
Simplifications are in general required for a tractable model. For example, we can make a
Markov assumption that the choice of ci is dependent only on the choice of ci−1. This leads
to the hidden Markov model (HMM) which is widely used in generative modeling for NLP
problems.

An alternative method is discriminative modeling. A common idea is to treat sequence
labeling as a series of independent classification problems. For example, we can develop a
local classifier that conditions the prediction of ci on a set of features around position i. In
more sophisticated models, such as conditional random fields (CRFs), the context of the
entire sequence can be used in the prediction. While it may be interesting to go more deeply
into the details about these sequence labeling models, we simply skip them to make the topic
in this section more concentrated. Instead, the reader is referred to [Kupiec, 1992; McCallum
et al., 2000; Lafferty et al., 2001] for thorough discussions of how these models are developed
and applied. In addition, for a comparison of generative modeling and discriminative modeling,
we refer the reader to Chapter 1.

3.1.4 Learning Subwords

It is a commonly held belief that words are the basic units in language use. This does not mean
that words are the smallest linguistic units. Rather, words can be broken down into smaller
pieces that have meanings, such as morphemes. It is this which accounts for the important
role of words in the syntactic hierarchy of a language, e.g., words are made up of morphemes,
and phrases and sentences are made up of words. It is therefore natural to think of words as
distinct components of languages that have some function in forming the structure or meaning
of a phrase or a sentence. In NLP, however, viewing sentences as sequences of words is not so
desirable sometimes. A problem is that some words are rare, making it difficult to adequately
learn a model because of data sparseness. For example, uncopyrightable is an English word
that rarely occurs. An NLP system may simply recognize it as an unknown word (i.e., an OOV
word), although we can get the meaning of this word by decomposing it into parts: un, copy,
right, and able. Another problem is that linguistics-based tokenization standards somewhat
limit the use of computers for automatically learning the way to segment the sentence into
units in a machine learning sense. In this case, it is helpful to consider identifying “new” words
that are not strictly constrained by linguistics but are better suited to NLP systems.



3.1 Tokenization 131

1. Byte Pair Encoding

Byte Pair Encoding (BPE) is one of the most successful methods to learn subword units from
a set of word sequences [Sennrich et al., 2016b]. While the BPE approach stems from data
compression [Gage, 1994], it is more often used in NLP as a solution to the open vocabulary
problem. The basic idea of BPE is that we repeatedly replace the most frequent pair of bytes
in the data to form a new byte. As a result, common bytes are often involved in merging
substrings of bytes, and rare bytes are often isolated and considered unique units. The outcome
of BPE is a byte vocabulary that can be used to encode new data.

In NLP, a byte can roughly correspond to a character. And each entry of the vocabulary is
a character sequence, called a symbol or subword. BPE begins with splitting a given text into a
sequence of characters, for example, we can add a space after each occurrence of an English
letter or a punctuation mark. This in general results in a very long sequence. While BPE itself
has no restrictions on input length, a more common way is to prevent cross-word symbols for
efficiency considerations. Thus, we can represent the text as a list of space-separated words,
each being associated with the frequency of the word. For example, consider a word list:

f l o w # : 2
b l o w # : 2

f l a t # : 1
f l a g # : 4

where # is a special symbol indicating the end of a word3. From this word list, we can collect
an initial vocabulary:

f : 7 b : 2
l : 9 a : 5
o : 4 t : 1
w : 4 g : 4
# : 9

Then, we count the occurrences of each symbol bigram:

3Instead of taking # as a separate symbol, another way is to concatenate # with the last character in each word,
like this

f l o w# : 2
b l o w# : 2

f l a t# : 1
f l a g# : 4

where “w#”, “t#”, and “g#” represent characters that occur at the end of a word.
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f l : 7 a g : 4
l a : 5 g # : 4
l o : 4 b l : 2
o w : 4 a t : 1
w # : 4 t # : 1

We merge the most frequent symbol bigram “f l” to a new symbol “fl” and replace in the
word list each occurrence of “f l” with “fl”:

fl o w # : 2
b l o w # : 2

fl a t # : 1
fl a g # : 4

Accordingly, the symbol “fl” is added to the vocabulary:

f : 7 b : 2
l : 9 a : 5
o : 4 t : 1
w : 4 g : 4
# : 9 fl : 7

Then, this process is repeated again. This time, we merge the symbol bigram “fl a” and
create a new symbol “fla”. As such, we have a new word list:

fl o w # : 2
b l o w # : 2

fla t # : 1
fla g # : 4

and a new vocabulary:

f : 7 b : 2 fla : 5
l : 9 a : 5
o : 4 t : 1
w : 4 g : 4
# : 9 fl : 7

We can run this process a certain number of times. The more times we perform the merge
process, the larger the vocabulary is. The entries of the final vocabulary are reordered by
symbol frequencies. For example, if we set the number of merge operations to 6, we will have
a vocabulary, like this:
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l : 9 fla : 5 ow# : 4
# : 9 o : 4 flag : 4
f : 7 w : 4 flag# : 4
fl : 7 g : 4 b : 2
a : 5 ow : 4 t : 1

It corresponds to the word list:

fl ow# : 2
b l ow# : 2

fla t # : 1
flag# : 4

Having obtained a vocabulary like above, we can apply it to tokenize new words. The
subword tokenization follows the same procedure of merging symbol bigrams as that used in
building the vocabulary. Given a BPE vocabulary, we first segment the input text into character
symbols. Then, we examine each symbol bigram in the sequence, and merge the one that has
the highest frequency in the vocabulary. We repeat this operation until there are no further
merges. Consider, for example, the following text:

tow a flag

It is first transformed into a character sequence:

t o w # a # f l a g #

By using the BPE vocabulary we have obtained, we can do BPE merging on this sequence,
like this

t o w # a # f l a g #
f l⇒ fl−−−−−−−−−→ t o w # a # fl a g #

fl a⇒ fla−−−−−−−−−→ t o w # a # fla g #
o w⇒ ow−−−−−−−−−→ t ow # a # fla g #

ow #⇒ ow#−−−−−−−−−→ t ow# a # fla g #

... ...

−−−−−−−−−→ t ow# a # flag#

This subword sequence can be used as some input and/or output of a downstream NLP
task, such as machine translation. Sometimes, we want to map subwords back to words. This is
simple: we keep the space after each occurrence of the # symbol, and remove all other spaces
and #. Also note that the BPE method we describe here requires word-segmented inputs, that
is, we need a pre-tokenizer to roughly tokenize the input sequence into some units. This can be
done by using the methods presented in Sections 3.1.1-3.1.3.
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2. WordPiece

The WordPiece method is very similar to the BPE method in that it first divides the input text
into the smallest symbols and then progressively merges pairs of consecutive symbols to form
larger symbols [Schuster and Nakajima, 2012]. The difference between them is only in the
way of selecting which symbol bigram to merge. In BPE, we merge each time the symbol
bigram with the highest frequency. Let (xi,xi+1) be a bigram in the sequence x. The merge
rule of BPE can be described as

(xî,xî+1) = argmax
i∈[1,|x|−1]

count(xi,xi+1) (3.12)

where the function count(xi,xi+1) returns the frequency of (xi,xi+1) in the corpus, and
(xî,xî+1) is the bigram with the highest frequency.

The WordPiece method, instead, adopts a maximum likelihood criterion for bigram selec-
tion. More precisely, it merges the bigram so that the likelihood of the data is maximized. This
can be formalized as:

(xî,xî+1) = argmax
i∈[1,|x|−1]

log
Pr(xi,xi+1)

Pr(xi)Pr(xi+1)

= argmax
i∈[1,|x|−1]

[logPr(xi,xi+1)− log(Pr(xi)Pr(xi+1))] (3.13)

logPr(xi,xi+1)− log(Pr(xi)Pr(xi+1)) describes the increase in log-likelihood of the
text when we replace consecutive symbols (xi,xi+1) with a single symbol xixi+1

4. Thus,
applications of such a merge rule produce a sequence of coding steps, each of which increases
the likelihood a bit on top of the last step. The outcome of this process is a code book (i.e., a
vocabulary) by which we can define the most likely code sequence for the given text.

3. SentencePiece

Both the BPE and WordPiece methods require that the input text is pre-tokenized in some
way. This makes it somewhat complicated to develop a tokenization system. As an alternative,
SentencePiece is a more general method that deals with raw texts and considers all characters
(including spaces) in tokenization [Kudo and Richardson, 2018]. The main idea of Sentence-
Piece is to scale down a big vocabulary so that the unigram probability of the text is minimized
at some level of the vocabulary size5, called the unigram method [Kudo, 2018].

The unigram method frames subword segmentation as a unigram language modeling
problem, resembling the general form of Eqs. (3.3-3.4). Let x be a sequence of characters and

4In statistics, Pr(a,b)
Pr(a)Pr(b)

is called the pointwise mutual information of variables a and b. See more details
in Section 3.3.1. Another name for this is information gain. It can be interpreted by using the Kullback-Leibler
divergence or other measures in information theory (see Chapter 1).

5The term vocabulary size may have different meanings. Here it refers to the number of entries of the vocabulary.
Sometimes, on the other hand, it is thought of as the total number of bytes used to store the vocabulary.
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y be a sequence of symbols or subwords yielding x. The probability of y is given by:

Pr(y) =

|y|∏
i=1

Pr(yi) (3.14)

Then, we can write the likelihood of x in terms of the joint probability of x and y:

Pr(x) =
∑

y∈Y (x)

Pr(x,y) (3.15)

where the sum is over all possible tokenization results Y (x). Since y can be viewed as a
segmentation-annotated version of x, the model of Pr(x,y) provides no more information
than the model of Pr(y) and we have Pr(x,y) = Pr(y). Thus, we can rewrite Eq. (3.15) as:

Pr(x) =
∑

y∈Y (x)

Pr(y)

=
∑

y∈Y (x)

|y|∏
i=1

Pr(yi) (3.16)

Taking this equation, the log-likelihood of a set of strings X is given by

Pr(X) = log
∏
x∈X

∑
y∈Y (x)

|y|∏
i=1

Pr(yi)

=
∑
x∈X

log

 ∑
y∈Y (x)

|y|∏
i=1

Pr(yi)

 (3.17)

If we consider −Pr(X) as a loss function, then the task here can be stated as finding the
best estimate for each unigram probability Pr(y) so as to make Pr(X) as large as possible.
At first glance this optimization problem looks complicated. Fortunately, there are several
powerful tools to solve it. A popular method is to use the Expectation-Maximization (EM)
algorithm [Dempster et al., 1977], which is commonly used when one tries to find a statistical
model that maximizes the likelihood of the data. Note that the EM-based solution to Eq. (3.17)
is similar to those for other NLP problems, such as statistical machine translation, and has
been well discussed in those contexts. So we refer the reader to [Brown et al., 1993] for details
about these methods. In this chapter we just take EM as an off-the-shelf tool to estimate Pr(y)
given Eq. (3.17). 6

6In EM, we can view X as an observation, and Pr(X|θ) as a statistical model that describes how likely the
observation occurs. Here θ is the model parameters that we intend to determine. EM is based on an objective of
maximum likelihood estimation, that is

θ̂ = argmax
θ

Pr(X|θ) (3.18)

For the model here, we can view {Pr(y)} as model parameters. We skip the derivation details about the EM
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SentencePiece is essentially a “pruning” method that removes low probability entries from
the vocabulary. It starts with a big initial vocabulary V . For example, we can create the initial
vocabulary by enumerating all strings with a length constraint. Typically, cross-word strings
are excluded to reduce the vocabulary size. Then, we run the following steps:

• Estimate the probability for each entry y of V by optimizing Eq. (3.17).

• Compute the loss for each entry y of V via the remove-one strategy, that is, the loss is
the reduction in the likelihood (see Eq. (3.17)) when y is removed from the vocabulary.

• Remove a certain percentage of entries of V with large losses. For example, we keep
80% of the entries, and discard the rest.

The outcome of this process is a new vocabulary as well as the probability assigned to each
subword. We can repeat this process a number of times until the vocabulary size is reduced to
a desirable level.

SentencePiece differs from BPE and WordPiece in that it considers all possible subword
sequences for a given string (see the sum

∑
y∈Y (x) in Eq. (3.15)). From the machine learning

point of view, this can be seen as a way of regularization, that is, we can reduce the risk of
overestimating the parameters corresponding to the single-best subword sequence that may
have errors. An alternative way is to only consider some of the subword sequences in Y (x) for
the sake of efficiency. For example, we can sample k subword sequences according to Pr(y)

to form the candidate set Y (x).
Note that the SentencePiece method does not depend on word-separated input sequences.

While the BPE and WordPiece methods can also deal with raw text if updated, the Senten-
cePiece method explicitly takes the space and other delimiters as parts of the subwords. See
Figure 3.3 for a few tokenization results for tow a flag.

Given a learned vocabulary and the corresponding unigram probabilities, we can apply
them to deal with a new text. This is in fact a search problem: we find the most likely subword
sequence in terms of the unigram probability. As language modeling is a well-studied topic
in NLP, many search algorithms are directly applicable to the case here. For example, the

estimate of Pr(y) but directly present the result. The EM algorithm involves two steps.

• The Expectation Step (or the E-step): Given the current estimate of Pr(y) (say, Prt(y)), we compute
the posterior Prt(y) for each y according to Eq. (3.14). Then, we compute the fractional count of each
subword y in the vocabulary V , like this

fcount(y) =
∑
x∈X

∑
y∈Y (x)

Prt(y)

|y|∑
i=1

δ(y,yi)

 (3.19)

where δ(y,yi) returns 1 if y = yi, and 0 otherwise.
∑|y|

i=1 δ(y,yi) counts the number of times y occurs in
the subword sequence y.

• The Maximization Step (or the M-step): Given the fractional counts obtained in the E-step, we re-estimate
the unigram probabilities by the equation:

Prt+1(y) =
fcount(y)∑

y′∈V fcount(y′)
(3.20)

The two steps are iterated for a number of rounds until the parameters converge to some values.
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subword sequence unigram probabilities ([subword]:probability)

t/ow_/a/_flag [t]:0.030 [ow_]:0.002 [a]:0.041 [_flag]:0.001

t/ow/_/a_/f/lag [t]:0.030 [ow]:0.005 [_]:0.113 [a_]:0.093 [f]:0.041 [lag]:0.002

t/ow/_a_/fla/g [t]:0.030 [ow]:0.005 [_a_]:0.084 [fla]:0.003 [g]:0.027

tow/_/a_/f/lag [tow]:0.001 [_]:0.113 [a_]:0.093 [f]:0.041 [lag]:0.002

t/ow_/a_/flag [t]:0.030 [ow_]:0.002 [a_]:0.093 [flag]:0.001

Figure 3.3: Different tokenization results for tow a flag. Every subword is assigned a probability
that is estimated through a unigram language model. Every whitespace is replaced with “_”
for a clear presentation.

methods presented in Section 3.1.2 are straightforwardly applicable here.

3.2 Vector Representation for Words

Words have meanings7. In the broadest sense, the meaning of a word is the way in which it
can be interpreted. This is something behind the surface form of a word but can be understood
by language speakers. For example, consider the following lines of text from a poem [Knight,
2018]:

There was a little sparrow

Who sat on a wheelbarrow,

And tweeted to all her friends around.

A cat with open jaws

And very pointed claws,

Spied her as he raced along the ground.

These words are not merely strings of English letters and punctuation marks but have
identifiable meanings that are known by English speakers. For example, “little” means small in
size, “sparrow” means a kind of bird, and “friends” means people who you like and trust. From
an NLP perspective, a word meaning (or word sense) is not just what the word expresses in
one’s brain but something computer-readable and computable.

7While we have so far discussed several linguistic elements used in NLP, such as subwords, we still use words
as the basic units in our discussion here. The methods we will present in the remaining part of this chapter could be
understood to cover other types of language units one may use in developing NLP systems, including characters,
subwords, and so on.
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3.2.1 One-hot Representation
A natural way to represent word meanings is to use language to describe them. For example,
we can find in a dictionary the above words with their ids and meanings. Some of them are8:

cat 511 A small animal with fur, four legs, a tail, and claws,
usually kept as a pet or for catching mice

her 5220 Used, usually as the object of a verb or preposition, to
refer to a woman, girl, or female animal that has just
been mentioned or is just about to be mentioned

jaws 6186 The mouth, including the teeth

ground 6402 The surface of the earth

sparrow 8331 A common, small, gray-brown bird

wheelbarrow 9954 A large, open container for moving things in with a wheel
at the front and two handles at the back, used especially
in the garden

To represent a word, the simplest idea may be to replace it with the id number in the
dictionary. In this way, each word representation is a unique number. An equivalent form to
this is the one-hot representation. It is a vector whose dimensionality is equal to the vocabulary
size. In this vector, only the entry corresponding to the word has a value of 1 and all other
entries have 0 values. For example, the word sparrow can be represented as a one-hot vector
based on its id (8331), like this

[ 0 0 ... 0 1 0 ... 0 0 ]

↑
id = 8331

3.2.2 Distributed Representation
However, it appears that the one-hot representation only provides the “identity” of the word
but not the “description” of what the word is. An obvious problem is that every word is
orthogonal to other words. This makes it difficult to “compute” the relationship between words
because there is no connection among the associated word vectors even though some of the
words are thought to be similar in our use of language. Here, our desire is a model in which
words are described as countable attributes and the closeness between different words is well
explained. A way to do this is to enrich the representation with the word description. Consider
again the word sparrow for example. In the dictionary, we have its meaning a common, small,
gray-brown bird. By using the tokenization and normalization methods mentioned in Section
3.1.1, this text can be transformed into a sequence of words[

a common , small , gray - brown bird
]

8All these words and their meanings are found in https://dictionary.cambridge.org/.

https://dictionary.cambridge.org/
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Then, we vectorize this sequence using the bag-of-words model (see Chapter 1), leading to
a new vector of numbers

[ 0 0 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 0 0 ]

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
, - a bird brown common gray small

where the value of an entry is 1 if the corresponding word is present, and 0 otherwise. This way
enables the sharing of content among words. We would say that two words are similar if they
have overlaps in their word vectors. Consider a new word cuckoo. We can find its meaning in
a dictionary, e.g., a grey bird with a two-note call that sounds similar to its name. It is easy
to know that sparrow and cuckoo are two words that share something similar because they
both mark the “bird” dimension as 1 and the vector similarity between the two word vectors is
greater than 09.

Treating words as vectors of numbers offers a general tool to represent words in various
different ways. We do not even have to explain a word vector from the viewpoint of semantics.
For example, we can introduce a new dimension into the vector to mark if the word belongs to
some syntactic category. In a broad sense, we can define an arbitrary function on each entry
of the vector and view the function’s output as a feature describing the word. For example, a
simple improvement to the above representation is to use a function counting the occurrences
of a word instead of the binary-valued function marking the presence of the word. More feature
functions can be found in Section 3.3.

Note that it is not necessary to constrain the feature functions to forms that make linguistic
sense although linguistically motivated designs of the feature functions are usually of interest
to NLP researchers. A more general form for word representation is simply a real-valued,
multi-dimensional vector. It is often called the distributed representation of a word, or the
word embedding. For example, the word sparrow can be represented as a vector like this

[
1.9 −7 3 −1.2 ... 2.01 −2.05

]
In the machine learning point of view, this vector can describe some underlying attributes of a
word. These attributes may not be explainable in human understanding but can be learned from
data. One of the challenges in learning such a representation is that one can hardly measure the
goodness of a vector. In general, it makes no sense to ask whether the distributed representation
of a single word is good or not. Rather, we would like to know if the representations of a
group of words are well behaved. For example, it is a common belief that similar words should
have similar representations. So, the relationship between words is often thought of as some
“distance” between the word representations in a vector space. This leads to a number of
methods to visualize and evaluate word representations. In Section 3.6, we will give a more
detailed discussion about these issues.

9The similarity of two vectors can be measured by the cosine of the angle between them.
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On the other hand, word representations typically do not work alone in NLP systems
but are used as some intermediate states of a model. A standard approach in NLP, to learn
distributed representations of words, is to take it as a by-product of training a “big” system.
That is, the representation model works as a component of a system, and is optimized together
with other components when the system is trained in some way. This inspires a promising
paradigm of representation learning: the representation model is learned as a sub-model in
an easy-to-train system, and can be used as a plug-in for a completely different system. In
neural language modeling, for instance, we can force the model to map each input one-hot
word vector into a real-valued, low-dimensional distributed representation. These distributed
representations are fed into a neural network that predicts a probability distribution over the
vocabulary. The mapping function or embedding function is trained so as to minimize the loss
of the language model on some data (see Section 3.4). When applying the learned embedding
function, we drop all other parts of the language model and use the function to generate the
distributed representation for each word in downstream tasks. An alternative strategy is to
specifically tailor the model to the word representation learning problem. Systems of this
kind are typically not designed to deal with standard NLP problems, but with an emphasis on
specific problems in word representation learning, such as explicitly modeling the relationship
between words (see Section 3.5).

3.2.3 Compositionality and Contextuality
While we restrict our discussion to word representation learning in NLP, studying the meanings
of words is a traditional sub-field of linguistics. In lexical semantics, for instance, researchers
are concerned with how word meanings are defined and used, and how these meanings form
the sentence meanings. In fact, the task of learning to represent words does not concern itself
with the issue of semantics in linguistics. Instead, it provides machine learning approaches
to transforming linguistic units into computer-friendly forms. However, the semantics issue
is critical when one understands and uses a language. It is therefore still worth considering
semantics and related problems in the design of word representation models. For example,

• Compositionality. Compositionality is a common concept in semantics, logic and
related fields. It often comes out with the principle of compositionality:

The meaning of a complex expression is determined by its structure
and the meanings of its constituents.

– Szabó [2020]

This offers a useful tool to describe how the meaning of a big thing is built up from
the meanings of its parts. The principle of compositionality is fundamental and exists
everywhere in the language world. For example, when you see the phrase white cat, it is
easy to know its meaning in terms of the meanings of the constituent words white and cat.
Another example at a higher level of language use is compound sentences. A compound
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sentence forms its meaning by simply connecting multiple independent clauses with
conjunctions. Note that the principle of compositionality is not a simple rule by which we
use to describe how a big item is made up of smaller ones, although researchers have tried
to define it formally [Montague, 1974]. There are even disagreements and debates on
how this principle is interpreted and how it is adequately modeled by semantical theories.
Still, if we focus on NLP problems and set aside the theoretical part of linguistics,
compositionality is a very useful property that one can make use of in system design and
evaluation. Sometimes, if one finds that a problem is compositional, it implies that there
are many good methods to address it because a complex thing can be divided into smaller
and easier things. For word representation learning, we may wish that the resulting
word representations exhibit some compositionality, in response to the compositional
nature of language. In Section 3.6, we will see a few examples, e.g., the representations
learned by neural networks show meaningful results under linear algebraic operations,
though the models are themselves non-linear. However, on the other hand, the principle
of compositionality is not the principle of everything. There are many situations in
which compositionality is not held, such as collocations and idioms. In this case, natural
languages are non-compositional. This explains why the NLP problem is so challenging.

• Contextuality. Contextuality is some sort of non-compositionality. It states that a word
may have multiple possible meanings and the “true” meaning is determined by looking
at the context preceding and/or following this word. For example, consider the following
sentences10

They sat round the dinner table, arguing about politics.

Come to the table everybody - supper’s ready.

He came in with four shopping bags and dumped them on the table.

The table can help you evaluate the potential risks of investing in the Fund.

Building societies dominate the best-value tables for mortgages.

This table represents export sales.

In these example sentences, table is a polysemy with two meanings:

Sense 1: a flat surface used for putting things on.

Sense 2: an arrangement of items in rows, or columns, or blocks.

In other words, table is an ambiguous word. This ambiguity would be eliminated if we
consider the surrounding words. For example, when table follows dinner, it is easy to
figure out that it refers to sense 1. The ambiguity also exists when a word stems from a
few different forms or lexemes (call it a homonymy). For example, bear can be either a

10All these sentences are from https://dictionary.cambridge.org/dictionary/english/
table

https://dictionary.cambridge.org/dictionary/english/table
https://dictionary.cambridge.org/dictionary/english/table
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verb or a noun. Disambiguating a word for a given set of word senses has been studied
for decades in NLP and is commonly known as word sense disambiguation (WSD)
[Kelly and Stone, 1975]. However, the word representation problem discussed here
is more challenging because we usually do not have a pre-defined set of word senses
in hand. We instead want a contextual representation model that can generate a word
representation dependent on its context. Thus, it is important to take the idea that the
meaning of a word may not be constant. This makes the problem somewhat different
from what we discussed at the beginning of the section, as we no longer have a lookup
table for word representations, but a model that produces different representations of a
word in different contexts.

In the remaining sections of this chapter, we focus on learning vector representations of
words from their distributions in language use. We leave the discussion on the contextual
models for learning dense word representations to Chapters 4-6.

3.3 Count-based Models
We have framed the induction of word meanings as a problem of learning word vectors.
In this section, we proceed by assuming that the meaning of a word is determined by the
environment where the word is used. This is usually stated as the distributional hypothesis —
words are semantically similar if they appear in similar contexts [Harris, 1954; Firth, 1957].
A word representation learned under this hypothesis is also called the distributional word
representation or distributional representation11. To ease the reading, however, we will
still use the terms word vector and word representation throughout this book. Next, we
introduce several methods for modeling the distribution of words in texts, and then offer some
refinements.

3.3.1 Co-occurrence Matrices
In distributional semantics, words are represented with semantic models that consider various
aspects of the context. These models differ in how the context of a word is modeled, for
example, how large the context is considered, how each occurrence of a word is counted, how
the dimensionality of a distribution is defined, and so on. In this section we assume, as in most
models used in NLP, that word representations are learned from a collection of documents.

A way to view a document is as a very simple way of decomposing it into a set of
unordered words. Then we can think of each occurrence of these words as an independent
context indicator. In this way, the distribution of a word in its context can be described as the
number of times the word co-occurs with the context words. We can do this by building a

11It should be noted that distributional representation and distributed representation are two different concepts.
A distributional representation refers to a representation that describes the distribution of language items in language
use. A related term is non-distributional representation which means something that is obtained from lexical
databases, such as the interpretation of a word in a dictionary. On the other hand, a distributed representation refers
to a vector of variables corresponding to some underlying attributes of a language item. In contrast to distributed
representation, a one-hot representation just describes the word symbol.
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co-occurrence matrix where a cell counts the number of co-occurrences of a row item and a
column item. Consider, for example, the following documents12:

Doc 1 A berry is a small, pulpy, and often edible fruit.

Doc 2 In botanical terminology, a berry is a simple fruit with seeds and pulp
produced from the ovary of a single flower.

Doc 3 The term "banana" is also used as the common name for the plants that
produce the fruit.

Doc 4 Banana seeds are large and hard and spiky and liable to crack teeth.

Doc 5 A banana is an elongated, edible fruit - botanically a berry - produced by
several kinds of large herbaceous flowering plants in the genus Musa.

For each pair of words, we collect the total number of times they co-occur in these
documents, leading to a matrix, called the word-word co-occurrence matrix or term-term
co-occurrence matrix. Here is a subset of the matrix for the above documents.

flowering fruit herbaceous ... often plants seeds

berry 1 3 1 ... 1 1 1

terminology 0 1 0 ... 0 0 1

common 0 1 0 ... 0 1 0

teeth 0 0 0 ... 0 0 1

banana 1 2 1 ... 0 2 1

simple 0 1 0 ... 0 0 1

and 0 2 0 ... 1 0 2

In the matrix, each row word is associated with a word vector of |V | entries. The numbers
in the entries describe how often the row word co-occurs with different context words, that
is, how a given word is distributed in different “contexts”. In a geometric sense, if two words
have similar distributions in co-occurring with the same group of context words, then the angle
between the word vectors would be small13. For example, if we think of these words as vectors
in a vector space, berry is closer to banana than teeth (see Figure 3.4). This geometric intuition
is the basis of many representation models. More examples will be given in Chapters 4 and 5.

A problem with this method is that the distance between words is not taken into account
although the correlation is not that strong when the context word is distant. A simple solution
is to constrain context words in a window, called the context window or window for short
[Lund and Burgess, 1996]. For example, for each word in a document, we only count the -2
and +2 words surrounding it (i.e., a window of size 5).

12The texts are from Wikipedia.
13The angle between two vectors does nothing with the lengths of the vectors. If the vectors are normalized in

some way (e.g., by vector norm), similar vectors mean that most entries of the two vectors have similar values.
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Figure 3.4: Word vectors in a vector space that is built from the word co-occurrence statistics
on the English data from WMT 2012. All the vectors are normalized and represented as arrows.
For visualization, we project these vectors from a high-dimensional space to a 3-dimensional
space via principal component analysis. As expected, berry is closer to banana than to teeth.

Note that the word vectors learned by the bag-of-words model in Section 3.2 is a special
instance of the co-occurrence matrix. In that example, we only have one document from
which we collect context words. For each entry of a word vector, an indicator function is
used to mark the presence of the context word. In addition to the indicator and counting
functions, there are other choices for computing word vectors by examining the co-occurrence
of words. In practice, the value of an entry of a word vector can be thought of as the degree
of the correspondence between words. If two words are correlated with each other in some
context, a feature function may assign a score between them in any manner. This score does not
necessarily have to be a count, but can be an arbitrary real number. As such, the problem can
be stated as measuring the association strength between words. It is common practice to define
such a measure on the basis of correlation models. In statistics, correlation describes to what
extent two variables are associated, measured by correlation coefficients. Common correlation
coefficients include the Pearson correlation coefficient (Pearson’s r), the Spearman’s rank
correlation coefficient (Spearman’s ρ), and so on14. In NLP, a widely used measure is the
pointwise mutual information (PMI) [Church and Hanks, 1990]. Let a and b be two words.
The mathematical form of PMI is given by

PMI(a,b) =
Pr(a,b)

Pr(a)Pr(b)
(3.21)

14Some of the correlation coefficients assume certain distributions of the data. For example, the Pearson
correlation coefficient is calculated based on two variables following normal distributions.
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where Pr(a,b) is the joint probability of a and b co-occurring, and Pr(a) (or Pr(b)) is the
probability of a (or b) occurring. These probabilities can be simply estimated on the texts by the
relative frequency method15. Given a word a and a vocabulary of context words {b1, ..., b|V |},
the PMI-based word vector of a is written as

e(a) =
[
PMI(a,b1) ... PMI(a,b|V |)

]
(3.22)

Correlation coefficients are generally used to test whether two variables are (linearly) related.
So, an alternative method is to define an entry of the word vector as the outcome of a test. For
example, the entry (a,b) chooses a value of 1, if the correlation coefficient between words a
and b is larger than a threshold, or the correlation of words a and b is sufficiently supported by
hypothesis testing.

However, modeling words as vectors of correlation scores between words somewhat limits
the scope of contextual information one may use. Another idea for word vectorization is
to consider each document as a whole and establish the relationship between words and
documents. We can do this by using the word-document co-occurrence matrix or term-
document co-occurrence matrix. For example, for the abovementioned documents, we can
build a matrix, like this

Doc 1 Doc 2 Doc 3 Doc 4 Doc 5

berry 1 1 0 0 1

terminology 0 1 0 0 0

common 0 0 1 0 0

teeth 0 0 0 1 0

banana 0 0 1 1 1

simple 0 1 0 0 0

and 1 1 0 2 0

In the matrix, the value of entry (a,d) is defined to be the number of times the word a
occurs in the document d, giving the strength of the relationship between a and d. This is
commonly called the term frequency (TF) of a in d (denoted by tf(a,d)). Also, we can use
a 0-1 indicator function to mark the presence of the word occurrence (see Section 3.2). See
Table 3.1 for a few variations of the TF weighting function.

As a co-occurrence matrix, each row of the above matrix is the vector representation of
the row word. In addition, each column is a vector representation of a document. Recall
the bag-of-words model used in the text classification problem mentioned in Chapter 1. The
word-document co-occurrence matrix is basically the same thing as the bag-of-words model

15A problem with PMI is that the measure becomes unstable when the words are rare. For example, if a very
rare word happens to appear in a document, the PMI value of this word and any other word in this document would
be unreasonably large.
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Entry Mathematical form

Binary tf(a,d) =

{
1 a occurs in d
0 otherwise

Count tf(a,d) = count(a;d)

Exponential Count tf(a,d) = count(a;d)α

Log-scale Count tf(a,d) = log(1+count(a;d))

Normalized Count (or Frequency) tf(a,d) = count(a;d)∑
a′ count(a

′;d)

Table 3.1: Functions of the term-frequency weighting scheme. count(a;d) counts the occur-
rences of the word a in the document d.

where the ordering of words is ignored but the word counts matter. Here we perform document
vectorization via this model on a collection of documents.

3.3.2 TF-IDF

The modeling of word-document associations is known to be important for many NLP tasks.
An improvement on using word-document relationships to build word vectors and document
vectors simultaneously is the term frequency-inverse document frequency (TF-IDF) method.
Given a set of documents D, the TF-IDF weighting scheme assigns a score to each word-
document pair (a,d) by the equation

tfidf(a,d,D) = tf(a,d) · idf(a,D) (3.23)

where

• tf(a,d) is the term frequency (see Table 3.1). When tf(a,d) is large, the word a is a good
indicator for the document d. In contrast, when tf(a,d) is small, the word-document
association is not that strong.

• idf(a,D) is the inverse document frequency (IDF). It is developed based on the fact
that common words across documents are less informative. For example, for a collection
of documents on sports, it is likely to see player and players in most documents. In
this case, the words player and players are less interesting in discriminating different
documents or contexts. Let df(a,D) be the number of documents in D containing the
word a. A common form of idf(a,D) is given by

idf(a,D) = log
|D|

df(a,D)
(3.24)

Eq. (3.25) would penalize a word if it more often appears in the collection of documents.
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Similarly, we can have a smoothed version of idf(a,D), like this

idf(a,D) = log
|D|

df(a,D)+1
+1 (3.25)

Having the TF-IDF feature function in hand, we can build a word-document co-occurrence
matrix for a given collection of documents, that is, the value of the entry (a,d) of the matrix
is tfidf(a,d,D). Then, as described in the last subsection, we can treat a row of the matrix
as the vector representation of the row word. Note that, traditionally, the TF-IDF method
and word-document co-occurrence matrices are often used in document representation. For
example, one can represent a query and a number of documents as the TF-IDF (column) vectors
in an information retrieval system. This allows us to look at how much the query matches each
of these documents via vector similarity. However, the vector space models in information
retrieval are beyond the scope of this chapter, but the reader can refer to related textbooks for
greater coverage of this topic [Manning et al., 2008; Buttcher et al., 2016].

3.3.3 Low-Dimensional Models
Co-occurrence matrices are often high dimensional. Suppose, for example, that there is a
vocabulary of 20,000 unique words and a collection of 10,000,000 documents. Then, a
word-document co-occurrence matrix has 20,000×10,000,000 = 2×1011 entries. However,
if we consider the computational burden of such a model, it would be hard to imagine that
a word is represented as a 10,000,000-dimensional vector and a document is represented
as a 20,000-dimensional vector. Instead, we expect that the representation of a word (or a
document) requires only a reasonably small number of features. In this subsection, we discuss
some standard approaches to transforming words (or documents) into lower-dimensional
representations from the co-occurrence matrices. Most of these approaches have been well
studied in the literature and have been successfully applied in several disciplines [Barber, 2012;
Wright and Ma, 2022]. So we do not dive into the mathematical details behind them, but show
how to apply them in the context of learning word (or document) vectors.

1. Latent Semantic Analysis

In NLP, latent semantic analysis (LSA) is a method of seeking the latent semantic structure
behind the word-document associations [Deerwester et al., 1990; Landauer et al., 1998]16. It
assumes that either words or documents can be represented as low-dimensional vectors that are
distilled from the co-occurrence matrix, preserving the property of the original vector space
model, e.g., the angle between vectors is small for similar words.

More specifically, LSA factorizes the co-occurrence matrix into a matrix for word repre-
sentation, a matrix for document representation, and a third matrix connecting the first two
matrices. Mathematically, this can be framed as a singular value decomposition (SVD)
process [Stewart, 1993]. Let M ∈ R|V |×|D| be a co-occurrence matrix over a vocabulary V

16Latent semantic analysis is also called latent semantic indexing (LSI). This term is more often used in
information retrieval and related fields.
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and a document set D. The SVD produces a factorization of M, like this

M = PΣQT (3.26)

where P ∈R|V |×r, Σ ∈Rr×r and QT ∈Rr×|D|. In this factorization, the representation model
is isolated into two terms P and QT so that both of them are semi-unitary (or semi-orthogonal
in our case)17, that is, the columns of either P or Q are orthogonal vectors. Thus, these
columns form an orthogonal basis of Rr, where r is the rank of M. This means that we use a
“minimum” number of dimensions of data to represent M. Σ is a diagonal matrix:

Σ =


σ1 0 ... 0

0 σ2 ... 0
...

...
. . .

...
0 0 ... σr

 (3.27)

The diagonal entries {σ1, ...,σr} are all non-negative real numbers, and are called the singular
values of M. Typically, {σ1, ...,σr} are arranged in descending order (i.e., σ1 ≥ σ2 ≥ ...≥ σr).
Thus, SVD is unique for the given matrix M. If we write P as a sequence of column vectors
(call them left-singular vectors)

P =
[
p1, ...,pr

]
(3.28)

and QT as a sequence of row vectors (call them right-singular vectors)

QT =

q
T
1
...
qT
r

 (3.29)

then we can write M as

M =
r∑
i

σipiq
T
i (3.30)

For representing words, we can think of pl as the values of a feature function over all the
entries of the vocabulary V . Then, we describe a word ai as an r-dimensional feature vector
ei in which the l-th feature is the i-th entry of pl. In other words, the vector representation of
ai is

ei =
[
p1(i) ... pr(i)

]
(3.31)

17A non-square matrix X is semi-orthogonal if and only if XXT = I or XTX = I.
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Similarly, the vector representation of a document dj can be written as

hj =
[
q1(j) ... qr(j)

]
(3.32)

In this way, we have two separate representation models for words and documents: P deals
with word representations and Q deals with document representations. Thus, we can take M

as a product of these representation models, like this

M = PΣQT

=

w
or

ds
 e1

...
e|V |


σ1 ... 0

...
. . .

...
0 ... σr

 documents[
hT
1 ... hT

|D|

] (3.33)

In practice, the rank r is usually much smaller than |V | and |D|. Thus, we have, for
each word (or each document), a new representation whose dimensionality is much smaller
than the representation contained in the co-occurrence matrix. A further improvement can
make use of the r∗ largest singular values (i.e., {σ1, ...,σr∗}) and throw away the rest. As a
consequence, we only keep the first r∗ left-singular vectors and right-singular vectors in P and
Q respectively. Here r∗ < r is a hyperparameter specifying the number of vectors in P and Q,
i.e., the number of features used to describe a word or a document. In this way, we have a new
factorization of M as

M ≈
r∗∑
i

σipiq
T
i (3.34)

The right hand side of Eq. (3.34) is also known as a low-rank approximation of M. By
specifying r∗, it can approximate M with a matrix having an arbitrary rank < r.

There are a number of algorithms for implementing the SVD [Cline and Dhillon, 2014]. In
fact, most of the modern implementations of the SVD are efficient and scalable. One can use
them as off-the-shelf toolkits in NLP applications.

2. Principal Component Analysis

In data analysis, principal component analysis (PCA) is a widely-used technique for dimen-
sion reduction. Given a set of data points, PCA finds a sequence of orthogonal directions in
the coordinate space so that the variance of the data points along these directions is maximized.
These directions are typically represented as unit vectors, called principal component load-
ings or principal component coefficients. As a result, they form a new coordinate space to
which we can map the given data points by an orthogonal linear transformation.

Consider a word-document co-occurrence matrix M ∈ R|V |×|D|, where each row is a
|D|-dimensional word vector or feature vector. The PCA defines a linear mapping from R|D|

to Rp, that is, we transform each |D|-dimensional word vector to a p-dimensional word vector.
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This is given by

N = MC (3.35)

where N ∈ R|V |×p is the mapped word vectors over the vocabulary V , and C ∈ R|D|×p is the
matrix of the linear mapping. Then, we can write C as a sequence of column vectors

C =
[
c1 ... cp

]
(3.36)

Each column vector ci =

 ci(1)
...

ci(|D|)

 is a group of principal component coefficients, indi-

cating a linear function that combines the input features into a new feature. For example, if we
view M as the values of a bunch of feature functions (say, column vectors {m1, ...,m|D|}),
we can map M to a new feature space in terms of ci:

Mci =
[
m1 ... m|D|

] ci(1)
...

ci(|D|)


=

|D|∑
k=1

ci(k)mk (3.37)

Mci (i.e., the i-th column of N) is a column vector where each entry is the new feature
for a word in V . In PCA, we generate {c1, ...,cp} in sequence such that they maximize the
variance of the linear mapping in Eq. (3.37). Thus, for each i ∈ [1,p], the optimal principal
component coefficients are defined to be

ĉi = argmax
ci

Var(Mci)

= argmax
ci

cT
i Sci (3.38)

where Var(Mci) is the variance of Mci, and S is the covariance matrix of M. For a well-
defined solution to Eq. (3.38), it is common to impose an additional constraint that ci is a unit
vector, i.e., cT

i ci = 1. Then, the problem can be framed as

ĉi = argmax
ci

cT
i Sci−λi(cT

i ci−1) (3.39)

where λi is the Lagrange multiplier. Solving Eq. (3.39) under such a constraint requires ĉi
to be an eigenvector of S and λi to be the corresponding eigenvalue [Jolliffe, 2002]. Since
S is a p×p symmetric matrix, it has exactly p eigenvectors and eigenvalues. Then, we can
order these eigenvectors by the associated eigenvalues, and take the ordered eigenvectors as
{ĉ1, ..., ĉp}. In other words, ĉ1 is the eigenvector of S with the largest eigenvalue, ĉ2 is the
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Figure 3.5: Transforming 2-dimensional data to 1-dimensional data via PCA. There are a
number of data points (represented by black circles) on a Euclidean plane. By using PCA,
we find a direction (represented by an arrow) such that the variance of the projected data
(represented by colored circles) in this direction is maximized. Such a direction can be
represented by a unit vector, called principal component coefficients. In this example, the
principal component coefficients describe a 1-dimensional coordinate space. We can map the
data from the 2-dimensional coordinate space to the 1-dimensional coordinate space via linear
transformation. The mapped data is called the principal component of the original data points.

eigenvector of S with the second largest eigenvalue, and so on. Typically, Mĉi is called the
i-th principal component of M.

An intuitive way to think about PCA is to map data points in a Euclidean space from one
coordinate system to another. For a data set M, we can view each row in M as the coordinates
of a data point in a |V |-dimensional coordinate system A. In PCA, we want to represent
these data points in a new p-dimensional coordinate system B. The i-th dimension of the new
coordinate system is simply a direction represented by a unit vector ci. For the i-th coordinate
of each data point in B, we project the data point in A onto the ci line. The optimal ci is
chosen in terms of how these projected data points are spread along ci. In other words, we seek
a line along which we can best separate the data points. In this way, we generate a sequence of
principal component coefficients, successively solving Eq. (3.38). We illustrate the idea of
PCA using an example projecting 2-dimensional data to 1-dimensional data in Figure 3.5.

In real-world applications, p is commonly set to a number much smaller than |D|, and
PCA can significantly reduce the number of dimensions used in representing words. Note that
PCA is a very general method and is found to be useful in many disciplines. In practice, M
can be extended to represent observations on a set of variables. By applying PCA, one can
transform these observations into data values of fewer new variables.
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3. Others

In machine learning, learning low-dimensional models is a fundamental problem, and has been
generalized in several directions. For example, the neural word embedding models described
in Sections 3.4 and 3.5 themselves tend to learn low-dimensional, real-valued word vectors
from texts. Here we present some of the dimension reduction methods one may come across in
the NLP and machine learning literature.

• Topic models. Technically, topic models are not ways of dimension reduction, but tools
for describing how documents and words are generated based on distributions over topics
[Blei, 2012]. For example, latent Dirichlet allocation (LDA) models the generation of
a document by using document-topic and topic-word distributions [Blei et al., 2003]. As
a by-product, we obtain a distribution over words for each topic, indicating how likely a
word occurs given a topic. If we write all these topic-word distributions as a matrix, say
a |V |×K matrix where |V | is the number of words and K is the number of topics, then
we will have some sort of word representations that are very similar to those described in
previous sections. K is commonly set to a “small” number (e.g., 200). In this case, we
have a low-dimensional model for representing words. Although LDA is not so popular
in learning word representations in NLP applications, it offers a way to represent words
as distributions over latent thematic structures.

• Auto-encoders. Undercomplete auto-encoders are a type of neural model that encodes
features into low-dimensional codes such that the input features can be reconstructed
from the codes. An advantage of auto-encoders is that they do not make assumptions
on the hidden structures of the features. Thus, auto-encoders can be used to learn to
transform any type of data into low-dimensional representations. For example, in Chapter
7 we will see examples of applying auto-encoders to learn sentence representations. For
more details about auto-encoders the reader can refer to Chapter 2.

• Supervised dimension reduction. Traditionally, dimension reduction methods (such as
PCA) are assumed to work in an unsupervised manner. When the benchmark data of the
target task is accessible, it is natural to make use of this information. A common example
is supervised dimension reduction for classification. For example, in the Fisher’s linear
discriminant and linear discriminant analysis methods, we find a mapping from
high-dimensional data to single-dimensional data so that the separation of the classes
associated with the data is maximized. This idea can be generalized to multi-dimensional
data in the Canonical Variates method [Barber, 2012].

• Feature selection. Feature selection refers to a process of selecting a subset of the
features used in representing an object and thus reducing the dimensionality of the
representation. Feature selection is a wide-ranging topic in machine learning, and
many methods can be seen as instances of feature selection [Guyon and Elisseeff, 2003;
Liu and Motoda, 2012]. The simplest is to frame it as a search problem: we search
in the space of feature subsets so that the selected features maximize (or minimize)
some objective. In general, the design of the objective depends on the task where we
apply the features. This makes feature selection somewhat difficult because one has
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to consider many factors in such a process, such as the performance measure of the
target task, the search efficiency, and the representation of each feature subset. Note
that feature selection is generally discussed in supervised learning that requires labeled
data to compute loss for optimization. The reader is referred to Solorio-Fernández et al.
[2020]’s review paper for unsupervised feature selection methods.

In statistics, many methods can fall under the dimension reduction framework and are
related to what we discussed in this section. For example, factor analysis is a method similar
to PCA because they both seek a linear mapping from the input variables to a smaller number
of new variables. The difference between them is that factor analysis focuses on modeling the
common variance of variables, while PCA focuses on maximizing the variance of the projected
data. Another example is independent component analysis (ICA). Unlike PCA, the goal of
ICA is to find independent components that are additively separable. More examples can be
found in machine learning and statistics textbooks [McClave and Sincich, 2006; Freedman
et al., 2007; Barber, 2012].

3.4 Inducing Word Embeddings from NLMs
Counting word-word or word-document occurrences is a simple way to represent words by
using their distributions in texts. While this method is effective in many applications, it imposes
a constraint on word representations: the entries of a word vector should be able to be explained
as some “evidence” on how the word distributes in different contexts. Ideally, we would like to
represent words in a more general form, say, a real-valued vector (call it the word embedding)
without constraints or assumptions on how the meaning of each entry of the vector is defined.

Learning word vectors with no constraints comes at a cost. Unlike the count-based methods
presented in Section 3.3, we do not use heuristics or prior knowledge to estimate the value of
a word vector but wish to induce meaningful word representations directly from data. One
of the difficulties here is that there is no gold standard to guide the learning process because
it is simply impossible to manually annotate a real-valued word vector. Thus, we are often
interested in treating the learning of word vectors as a part of a well-defined task (call it a
background task). The learned word vectors are then a by-product of the learning on the
background task.

A common example is the induction of word vectors from neural language models (NLMs).
Recall the NLM described in Chapter 2. Its goal is to build a neural network that predicts
the probability of a word given its preceding words [Bengio et al., 2003a]. More formally,
let wi be the word we want to predict, and {wi−n+1, ...,wi−1} be the context words we have
seen. First, the words {wi−n+1, ...,wi−1} are transformed to de-dimensional word vectors
{ei−n+1, ...,ei−1} through an embedding layer. Assuming wj is the one-hot representation of
word j (a row vector of size |V |), the word vector ej is given by

ej = wjC (3.40)

where C ∈ R|V |×de is the parameter of the embedding layer. C is often known as the word
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embedding table in which the k-th row is the representation of the k-th word in V .

Then, we use a feed-forward neural network to compute the probability distribution of the
word at position i. This is given by

Pr(·|wi−n+1, ...,wi−1) = Fθ(ei−n+1, ...,ei−1) (3.41)

where Fθ(·) is a feed-forward neural network parameterized by θ. Typically, the embedding
layer can be seen as a component of the NLM. Here we use slightly different notation to
emphasize that the NLM is a function of both θ and C, like this

Prθ,C(·|wi−n+1, ...,wi−1) = Fθ,C(wi−n+1, ...,wi−1) (3.42)

For training, we optimize both θ and C to minimize a loss function. A popular method is
maximum likelihood training which maximizes the sum of log-likelihood over all n-grams in
the data. Given a sequence of words w1...wm, the objective of the training is defined to be18

(θ̂,Ĉ) = argmax
θ,C

m∑
i=n

logPrθ,C(wi|wi−n+1, ...,wi−1) (3.43)

Having obtained the optimized parameters θ̂ and Ĉ, we can apply F
θ̂,Ĉ

(·) to deal with

new n-grams. More importantly, we have some well-trained word vectors (i.e., Ĉ) that can be
used in systems other than NLMs. This is also known as the pre-training of word vectors. In
pre-training, we can define Fθ,C(·) as any system that makes use of the word vectors C. Thus,
the task of learning C is transformed to the task of optimizing Fθ,C(·) on the background task
(see Figure 3.6 for an illustration). The main advantage of this method is that we can reuse
existing NLP tasks to train the word vectors. A risk here is that the “best” word vectors found
in training Fθ,C(·) might not be well suited for the system where the word vectors are in actual
use. Interestingly, in many situations, word vectors that are pre-trained by NLMs are of good
quality for downstream tasks, or at least provide a good starting point for further tuning of
these word vectors in the target system.

3.5 Word Embedding Models

In principle word vectors can be learned in any manner. Treating word vectors as components
of existing NLP systems is one option, but typically lacks task-specific considerations. Another
option is to develop methods specifically tailored to the problem. The training of such systems,
therefore, does not need to satisfy the constraints of standard NLP tasks, making it easier to
learn word vectors.

18This can be generalized to a data set consisting of multiple sequences.
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]
Fθ,C(·)

via language modeling
Optimizing C and θ
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Ĉ=

[• •
• •
• •

]
G
π,Ĉ

(·)

on the new task
Using optimized Ĉ

Applying Word Vectors

optimized word vectors Ĉ

Figure 3.6: Illustration of pre-training word vectors in an NLM. The NLM can be denoted as
a function Fθ,C(·) of the word embedding table (i.e., C) and other parameters of the NLM
(i.e., θ). The pre-training of C is essentially a process of training Fθ,C(·) on a background
task. The outcome is the optimized word vectors Ĉ which are then applied to a new system
G
π,Ĉ

(·) that might be different from the NLM. In the new system, Ĉ is the word embedding
table learned from the NLM and π is the parameters specialized to G(·).

3.5.1 Word2Vec

Word2Vec is a short name for the models proposed in [Mikolov et al., 2013a;c]. As with
neural language models, the Word2Vec models are based on neural networks. Rather than
resorting to the generative modeling of n-grams, the Word2Vec models describe the learning
of word vectors in a log-linear fashion. In consequence, the architectures of these models are
different from those used in language modeling. There are two types of models in Word2Vec:

• The continuous bag-of-words model (or the CBOW model). The CBOW model is a
word prediction model. It is used to predict how likely a word at position i occurs given
the−n and +n word windows around it. The structure of the CBOW model is similar to
that of the neural language model introduced in Chapter 2 (see Figure 3.7 (a)). First, we
use an embedding layer to transform the context words wi−n...wi−1 and wi+1...wi+n to
corresponding word vectors. This is performed by multiplying the one-hot representation
of each input word wj with the embedding table C ∈ R|V |×de , as shown in Eq. (3.40).
These word vectors are then averaged to produce a single representation for the input
words, giving us

h =
1

2n

 i−1∑
j=i−n

wjC+
i+n∑
j=i+1

wjC

 (3.44)

Note that the above defines a model that completely ignores the order of input words
because of the use of the sum operation. This explains why the CBOW model is called
bag-of-words. The output layer of the CBOW model is a standard Softmax layer that
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projects h to a probability distribution over the vocabulary

y = Softmax(hU+b) (3.45)

where U∈Rde×|V | is the parameter matrix of the linear mapping and b∈R|V | is the bias
term. y is a distribution over the vocabulary, and Pr(wi|wi−n, ...,wi−1,wi+1, ...,wi+n)=

y(wi). Eqs. (3.44-3.45) describe a very simple neural network. An advantage is that the
resulting model is small and efficient as compared to NLMs. The training of the CBOW
model is regular. We can frame it as finding the maximum likelihood estimation of the
parameters of the model. For simplicity, let θ denote the parameters other than C (i.e,
θ = {U,b}). We have

(θ̂,Ĉ) = argmax
θ,C

m−n−1∑
i=n+1

logPrθ,C(wi|wi−n, ...,wi−1,wi+1, ...,wi+n) (3.46)

where m is the length of the word sequence. After training, we can simply drop θ̂ and
use Ĉ as a word vector look-up table.

• The continuous skip-gram model (or the skip-gram model). The skip-gram model
is another word prediction model. It models the reverse of the task described in Eqs.
(3.44-3.45). To be more precise, our objective is to predict each of the ±n context words
given wi. This is generally framed as estimating the probability of wj occurring given
wi (i−n ≤ j ≤ i− 1 or i+1 ≤ j ≤ i+n). Figure 3.7 (b) shows the structure of the
skip-gram model. The embedding layer deals with wi as usual. The representation of wi
is given by

h = wiC (3.47)

It is then passed to a Softmax layer to predict the probability for each context word wj
(assuming j = i+k)19

yk = Softmax(hVk+bk) (3.48)

where Vk and bk are the parameters of the model (−n≤ k ≤−1 and 1≤ k ≤ n). We
have

Pr(wj |wi) = Pr(wi+k|wi)
= yk(wi+k) (3.49)

Let θ be a short representation of {Vk} and {bk}. The training problem can be defined

19When k > 0, wj is a word in the right context window of wi; when k < 0, wj is a word in the left context
window.
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as

(θ̂,Ĉ) = argmax
θ,C

m−n−1∑
i=n+1

∑
−n≤k≤−1,
1≤k≤n

logPrθ,C(wi+k|wi) (3.50)

Both of the above models make an analogy to cloze tests by considering only the pairwise
dependency between words. A danger is that if complex relationships among words and word
order information are required, the resulting probability distributions will be not that precise
compared to language models. Note, however, that the goal of these models is not to precisely
predict missing words given their contexts, but to learn word representations from some task
that captures word-word relationships. It is therefore not so important to care about the word
prediction performance of the learned model.

Another merit of these models is that they have very simple, easy-to-train architectures.
For example, in both models there are no hidden layers and the embedding layer is directly
connected to the output layer. These model structures can be seen as instances of log-linear
modeling in machine learning: the input variables are linearly transformed to a feature vector
(e.g., Eq. (3.44)), followed by a log-linear function (e.g., Eq. (3.45)).

3.5.2 GloVe
Global vectors, also known as GloVe, are word vectors that are learned by using both global
statistics over the corpus and local models of word prediction [Pennington et al., 2014]. The
GloVe method starts with a word-word co-occurrence matrix (see Section 3.3), and then forms
a neural model by making a series of assumptions.

Given a word-word co-occurrence matrix M, where each cell M(a,b) = count(a,b)

represents the number of co-occurrences of words a ∈ V and b ∈ V , we can obtain the
conditional probability Pr(b|a) by using the equation

Pr(b|a) =
count(a,b)∑
b′ count(a,b

′)

=
count(a,b)

count(a)
(3.51)

where count(a) is the number of times the word a occurs in the corpus.
Let us now see a motivating example of GloVe. Suppose that we want to distinguish

between words air and water. It is easy to obtain how likely one of these words occurs given a
context word in the corpus via Eq. (3.51). See the following table for a small fraction of the
Pr(b|a) matrix from 3.8M-sentence English data in WMT14.

Entry w = fly w = drink w = breath w = live w = flow

Pr(air|w) 1.5×10−4 6.2×10−5 2.2×10−4 1.6×10−4 3.6×10−4

Pr(water|w) 1.3×10−5 4.1×10−4 1.8×10−5 1.4×10−4 3.0×10−4

Pr(air|w)/Pr(water|w) 11.54 0.15 12.2 1.14 1.2
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y = Softmax(hU+b)

Pr(wi|wi−2,wi−1,wi+1,wi+2) = y(wi)

(a) CBOW

Embedding

y−1 = Softmax(

hV−1+b−1)

y−2 = Softmax(

hV−2+b−2)

y1 = Softmax(

hV1+b1)

y2 = Softmax(

hV2+b2)

Pr(wi−2|wi)

= y−2(wi−2)

Pr(wi−1|wi)

= y−1(wi−1)

Pr(wi+1|wi)

= y1(wi+1)

Pr(wi+2|wi)

= y2(wi+2)

h= wiC

wi

(b) Skip-gram

Embedding

Figure 3.7: The CBOW and skip-gram architectures. The CBOW model computes
the probability Pr(wi|wi−2,wi−1,wi+1,wi+2) where wi is a word in a sequence and
{wi−2,wi−1,wi+1,wi+2} are words in the ±2 context windows. The context representa-
tion h is the mean of the word vectors that are produced through an embedding layer. h is then
fed into a Softmax layer to output a distribution over the vocabulary (i.e., y). The prediction
probability of wi is Pr(wi|wi−2,wi−1,wi+1,wi+2) = y(wi). The skip-gram model is also
based on the embedding + Softmax structure. It models the probability of each context word
wj given the word wi. This is achieved by simply computing the output of a standard Softmax
layer that takes the vector representation of wi as input. Both the CBOW and skip-gram models
are trained in a maximum likelihood fashion. The resulting lookup table of the embedding
layer is the word vectors (or embeddings) for the words in the vocabulary.

In this table, Pr(air|w) and Pr(water|w) indicate how well air and water correlate with
different w. We also compute the probability ratio Pr(air|w)/Pr(water|w) in the last line
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of the table. Interestingly, it is found that w can be viewed as a probe word by which
Pr(air|w)/Pr(water|w) models the relevance between words. When w is more relevant
to air but less relevant to water (e.g., w = fly or w = breath), Pr(air|w)/Pr(water|w) is
large. In contrast, when w is less relevant to air but more relevant to water (e.g., w = drink),
Pr(air|w)/Pr(water|w) is small. When w is relevant to both words, or irrelevant to them (e.g.,
w = live or w = flow), Pr(air|w)/Pr(water|w) is around 1.

An insight that we can gain from the above examples is that the word vectors should be
able to interpret Pr(air|w)/Pr(water|w). A simple idea is to develop a model to approximate
this probability ratio, say,

F (ea,eb, ẽw) =
Pr(a|w)
Pr(b|w)

(3.52)

where ea, eb ∈ Rde are the vector representations of the words a and b, and ẽw ∈ Rde is the
vector representation of the context word w. Note that the notation has different meanings for e
and ẽ. The former is a word vector from an embedding table C, and the latter is a word vector
from another embedding table C̃. The use of two embedding tables has several advantages.
The main advantage is that combining multiple sets of parameters could mitigate the overfitting
of the model. The final word embedding table takes the form C+C̃

2 .

There are many ways to define the function F (·). Here we simply treat F (·) as a neural
network parameterized by C, C̃ and some other parameters. Considering the subtraction nature
in comparing a and b in Pr(a|w)

Pr(b|w) , we can assume that F (·) depends on ea−eb. Furthermore,
we can take eae

T
w ∈ R (or ebeTw ∈ R) to model the relationship between the word a (or b) and

the context word w. These lead to a new form of the function

F
(
(ea−eb)ẽ

T
w

)
=

Pr(a|w)
Pr(b|w)

(3.53)

where (ea−eb)ẽ
T
w ∈ R is the difference in representing words a and b when taking w as a

probe word.

There are still many solutions to Eq. (3.53), though the input of the function is greatly
simplified. For a feasible form of F (·), we further assume that Eq. (3.53) holds when we
either exchange the embedding tables C and C̃ (i.e., exchange e and ẽ for a, b and w), or
transpose the word-word co-occurrence matrix (i.e., use M instead of M̃). To make use of
these assumptions, one way is to let F (·) be a homomorphism between two sides of Eq. (3.53).
That is

F
(
(ea−eb)ẽ

T
w

)
=

F (eaẽ
T
w)

F (ebẽTw)
(3.54)
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The solution to Eq. (3.54) requires that F (·) = exp(·), and we have

F (eaẽ
T
w) = exp(eaẽ

T
w)

= P (a|w)

=
count(a,w)

count(a)
(3.55)

Rewriting this equation, we have

eaẽ
T
w+logcount(a)− logcount(a,w) = 0 (3.56)

A problem with Eq. (3.56) is that the term logcount(a) makes the solution non-exchangeable
for M and M̃. To address this, a method is to absorb logcount(a) in some terms that are
symmetric for a and w, like this

eaẽ
T
w+βa+ β̃w− logcount(a,w) = 0 (3.57)

where βa and β̃w are bias terms that depend on a and w, respectively. The quantity on the
left-hand side of Eq. (3.57) describes how well eaẽTw+βa+ β̃w fits the co-occurrence matrix.
We wish to find some word vectors to enforce this quantity to be close to 1. Then, we can
define the squared loss, as follows

La,w =
(
eaẽ

T
w+βa+ β̃w− logcount(a,w)

)2
(3.58)

The loss over all pairs of a and w is given by

LGloVe =
∑
a,w∈V

γ (count(a,w)) ·La,w (3.59)

where γ (count(a,w)) is a scalar for La,w. In Pennington et al. [2014]’s paper,

γ (count(a,w)) =


(
count(a,w)
countmax

)σ
count(a,w)< countmax

1 otherwise
(3.60)

where countmax and σ are hyper-parameters. Typically, σ is set to a number smaller than 1.
As such, γ (count(a,w)) will penalize the word-pair (a,w) if count(a,w)< countmax, that
is, the loss function will assign smaller weights to rare word-pairs.

Eqs. (3.58-3.59) provide a very simple way to learn word vectors and can be implemented
by using standard neural network building blocks (e.g., vector dot product and summation).
An important property of GloVe is that the model eaẽTw+βa+ β̃w− logcount(a,w) is itself
linear. The training is even achieved without the need of cross-entropy loss. This differentiates
GloVe greatly from NLM and word2vec in which expensive normalization of the output is
required. The intuition here is that the relation between two words can be modeled in ways
other than probability-based divergence. In fact, Eq. (3.58) looks more like a regression model
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that fits the data of logcount(a,w), that is, we tend to learn to predict logcount(a,w) for any
pair of (a,w).

Another note about the use of global data bears repeating. The co-occurrence matrix is
a source of information that describes the entire corpus. An important consequence of using
such information is that the learning task is framed as finding word vectors that are globally
optimized. Of course, this does not make GloVe unique because the learning of many models
like NLM and Word2Vec itself admits a simple formulation as a global optimization problem,
e.g., maximizing the likelihood over the entire input space. However, the objectives in those
problems are complex, and most of them are in practice trained via online learning, e.g.,
updating the model parameters on a batch of samples each time. Given this, GloVe actually
defines a more efficient global model as compared with NLM and Word2Vec.

3.5.3 Remarks

We have seen in the previous sections how word vectors are learned by using several different
methods. We now turn to discussions of issues that one might be interested in when training
and/or applying word vectors.

• Count-based vs Neural Network-based. The simplicity and interpretability of count-
based methods have long been appreciated. The use of the distributional hypothesis
greatly simplifies the problem, but makes a strong assumption on the information source
the word vectors can be learned from, and generally leads to data sparsity due to the
curse of dimensionality. At the other end of the spectrum is learning with no assumptions.
In these methods, we remove the constraints on the meaning of each dimension, but
treat word vectors as low-dimensional intermediate states of a neural network that is
developed to accomplish some NLP task. This enables the learning of features that are
hard to describe in representing a word. The comparison of the two types of methods
here can fall under the comparison of two well-known learning paradigms, say, feature
engineering vs. end-to-end learning. Here we do not want to get bogged down by this
topic. It is, however, worth pointing out that it does not necessarily restrict word vectors
to certain forms. In general, the choice of the types of word vectors depends on in what
application we apply them and what interpretation we place on them. For example, if
we wish to have some interpretable, easy-to-learn word representation, inducing word
vectors from co-occurrence matrices might be a good choice; if we wish to have some
real-valued, low-dimensional word vectors that will be integrated into a bigger neural
network, deep learning methods might be worth a try. Note that, learning continuous
word vectors has become more and more common recently, given that the past few
years have significant progress toward neural models of NLP. Also, there has been much
interest in comparing count-based and neural network-based methods, and in exploring
relationships between them [Levy and Goldberg, 2014b; Baroni et al., 2014; Levy and
Goldberg, 2014c; Schnabel et al., 2015a; Levy et al., 2015; Gladkova et al., 2016].

• Shallow Models vs Deep Models. While it has become popular to solve the word
vector learning problem using neural networks, the model structures we introduced in
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this chapter are simple. Technically, they all have one or two layers of neurons and
are often thought of as instances of shallow models. A similar example is the vLBL
word embedding model [Mnih and Kavukcuoglu, 2013]. It models the interaction
among words using a two-layer neural network. This model, which does not even
involve a Softmax function, is one of the simplest word embedding models subject
to our knowledge. Such a simple model, however, still works well in many cases. A
benefit of shallow models is that they are efficient and scalable to a large amount of
data. This makes it easier to use them to deal with more “difficult” NLP problems. A
good example is the fastText system for text classification [Joulin et al., 2017]. It has a
similar architecture to the CBOW model (see Section 3.5.1). In fastText, the input text is
represented as a bag of word vectors that are averaged to form a hidden representation
of the text. This is followed by an output layer that maps the hidden representation to
a distribution over predefined classes. In this way, the classification model and word
vectors are trained jointly. Although shallow models are remarkably effective for word
vector learning, there are deeper models that one may be interested in for more modeling
power. As with most multi-layer neural networks, learning word vectors with deep
neural networks has a couple of benefits [Telgarsky, 2016]. First, by using a deep model,
we can exploit potentially better hypotheses in a large hypothesis space. Second, deep
models introduce more non-linearity into modeling, and thus increase the ability of the
model to describe complex problems. There are many examples of learning word vectors
in deep models. The simplest of these might be to simply stack more layers on the
word embedding layer in those systems. The stacked layers can be feed-forward layers,
recurrent layers, convolutional layers, or some combination of them. More recently,
word vectors have been employed and/or trained by very deep and complex systems,
achieving state-of-the-art performance on many NLP tasks [Radford et al., 2018; Devlin
et al., 2019]. However, stronger models come with added computational and training
challenges. So there are several lines of research on meeting these challenges [Pascanu
et al., 2013; Bapna et al., 2018; Wang et al., 2019a; Zhang et al., 2019a; Pham et al.,
2019; Li et al., 2020b]. In Chapters 4-6, we will see several successful NLP systems that
are based on very deep neural networks.

• Training Objectives. The idea of taking word vector representations as parameters
of a model fits well with the latent-variable modeling: a model is parameterized with
learnable word vectors, and the values of these word vectors are inferred by maximizing
or minimizing some objective function of the entire model. While such a learning process
is regular in most situations, the training objective varies somewhat. A difficulty with
this is that there is no obvious objective for directly signaling the training of word vectors.
A simple solution to this difficulty is to resort to well-defined NLP tasks. For example,
we can use word vectors to represent the input of an NLP model (such as language
modeling and text classification systems). Hence the word vectors can serve as standard
parameters of the model and be optimized as usual. Another solution is to develop “new”
training tasks. As in general machine learning problems, however, this is a wide-ranging
topic and there are so many choices to design a training objective. So a general method
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is to slightly update existing tasks. For example, the training objective of CBOW is
essentially based on the general word prediction problem, and has a similar form as that
used in language modeling. We will also see several new tasks that stem from language
modeling in Chapter 7. Yet in another sense these training tasks do not directly concern
themselves with the issue of learning word vectors, but generally offer a way to inject it
into a well-designed, efficient training procedure. Note that, in word vector applications,
we may not assume a supervised learning scenario: the learned word vectors can be
used in various systems that we have no idea of these application systems in the training
stage. This makes the problem more like an unsupervised learning problem because
there is no supervision information from the task where the word vectors are in actual
use. Sometimes, when the target application is accessible, and there is some labeled data,
we can have further training on those word vectors that have been trained somewhere.

3.6 Evaluating Word Embeddings
Having obtained the vector representation of words, we need to assess the quality of these
vectors. Ideally, we wish to evaluate the word vectors against a gold standard. However,
unfortunately, there is in general no such gold standard data since no one can annotate a vector
of numbers for describing a word. A simple solution in this case is to resort to the result of
some working system in which these word vectors are involved. Typically, there are two types
of evaluation approaches [Schnabel et al., 2015b].

• Extrinsic Evaluation (or end-to-end testing). We directly incorporate the word vectors
into an NLP system which is easy to evaluate, and see how the performance of the
system is influenced by the word vectors.

• Intrinsic Evaluation. We test the ability of the word vectors to model the given aspects
of morphological, syntactic, and semantic problems.

We will briefly describe below how these approaches are applied to word vector evaluation.

3.6.1 Extrinsic Evaluation
This approach is often taken in practice since it allows researchers and engineers to glean
a quick understanding of how a real-world system behaves when changing part of it. Since
many NLP systems use words as inputs, it is common to replace the symbolic representation
of words in these systems with the word vectors. So far, we have seen several systems of
this kind, commonly with an embedding layer transforming the one-hot representation to the
real-valued vector representation of each input word, see for example the neural language
model in Chapter 2.

Given such a system and a set of learned word vectors, we can use its performance as a
measure of the quality of the word vectors. Considering the way we use the word vectors, there
are two ways to train the system:

• Word Vectors as Fixed Parameters. We fix the word vectors, and train other parameters
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of the system as usual.

• Word Vectors as Initial Parameters. We train all the parameters in the same manner.
In this way, the provided word vectors can be seen as initial values of some of the
parameters, and would be updated during training.

Both methods fall under the area of pre-training, and could be extended to cover many
problems where part of a model is well trained before seeing the downstream task. By fixing
word vectors, we simplify the training process, leading to a quick evaluation of the word vectors.
In contrast, treating the word vectors as learnable parameters may increase the difficulty of
training, but could learn “new” word vectors that are better suited for the working system.

Note that although extrinsic evaluation is of interest to practitioners, the results from this
evaluation are highly dependent on the system in which we apply the word vectors. Because
developing a desired NLP system often involves sophisticated training and tuning procedures
other than word representation, the conclusion drawn by experimenting with such a complex
system is greatly influenced by the way we build and use the system. This is also the case for
many other NLP problems. For example, a tokenization method that is helpful for a machine
translation system might not be a good choice for an information retrieval system. Therefore,
to test the generalizability of the given word vectors, a widely-used approach is to carry out
experiments on a variety of NLP systems.

3.6.2 Intrinsic Evaluation
Although much of word representation research involves end-to-end tests in NLP applications,
it also involves examining the ability of the representation to deal with certain problems, such
as interpreting the relationship between two words. There are many ways to design intrinsic
evaluation, each addressing a specific problem. In the following we describe some of these
methods. For more comprehensive descriptions about intrinsic evaluation, the reader can refer
to papers on this subject [Baroni et al., 2014; Bakarov, 2018; Rogers et al., 2018].

1. Semantic Relatedness

Modeling the relatedness between words is perhaps the most popular method to evaluate the
quality of word vectors in NLP [Reisinger and Mooney, 2010; Huang et al., 2012; Baroni et al.,
2014]. It is fundamentally about computing some distance between words (call it the word
semantic distance or word distance for short). The motivation is that the word distance in
a word vector space should agree with the judgments on the word relatedness in our mind
[Rubenstein and Goodenough, 1965]. For example, we wish that dog is close to wolf, and
peach is far from television. Mathematically, there are a lot of ways to calculate the distance (or
angle) between two vectors. A simple and commonly used distance measure is the Euclidean
distance. Also, we can compute the cosine similarity of two vectors to obtain a score in the
interval [−1,1]20.

In evaluation, we are given a set of word pairs, each of which is assigned an expected

20It is often to use the absolute value of the cosine score so that 0 indicates two vectors in the same direction and
1 indicates two orthogonal vectors.
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distance by humans. Then, given a pair of words, we compare the expected distance with
the distance in the word vector space. The quality of the word vectors is reflected in the
difference between the two distances. However, a difficulty here is that there is, in practice,
no gold-standard distance between words. Even for humans, it is still very difficult to give
an exact number to describe how close a word is to another. An alternative method in this
case is to categorize the distance into a few categories or rating scores, such as an integer in
[1,5] [Reisinger and Mooney, 2010]. This greatly reduces the difficulty in data annotation.
Another way to reduce the difficulty is to let the model find the most similar word in a small
set of candidates to a given word. Such a method prevents us from predicting an absolute
distance between words. Instead we only need some mechanism to obtain the relative distance
or similarity between words [Baroni et al., 2014].

Judging the relationship between words, however, may result in a highly ambiguous
task because of the ambiguous nature of language use and understanding. In general, many
factors may affect one’s thoughts on how words are related [Faruqui et al., 2016]. For
example, corn and cornea are similar if we consider string overlaps in the suffix, but they are
semantically dissimilar because they refer to different meanings. The ambiguity also comes
from the definition of relatedness. Sometimes, relatedness and similarity are two terms used
interchangeably but they may refer to different concepts. For example, car is related to road,
but in another sense car is similar to van. Another problem is that the meaning of a word is
often context-dependent. This makes it more difficult to establish the relationship between
words with multiple different meanings (i.e., polysemy). Broadly speaking, this is an inherent
problem with statistic word vector models where every word is assumed to be mapped to a
single vector. For contextualized modeling of word vectors, we will describe in the following
chapters several methods that consider a word to be different in representation given different
contexts.

2. Word Analogy

Word analogy is concerned with modeling analogical relations between pairs of words. The
assumption here is that the relation between words can be captured by performing simple
algebraic operations on the corresponding word vectors. A well-known example is the one
presented in Mikolov et al. [2013d]’s paper, where it is found that the way a word is related to
another word can be described by vector subtraction. This leads to an interesting result: if we
subtract man’s word vector from king’s word vector, and add woman’s word vector to it, then
we will obtain a word vector close to queen’s. That is

eking−eman +ewoman ≈ equeen (3.61)

Formally, word analogy is a task of comparing two word pairs (a,a∗) and (b,b∗). An
analogy can be made if the way a is related to a∗ is similar to the way b is related to b∗. This
essentially reflects some sort of linguistic regularity in word vectors, which can be expressed
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by using vector subtraction:

ea∗−ea ≈ eb∗−eb (3.62)

The word analogy can be framed as an analogical reasoning task: we try to predict eb∗
using ea, ea∗ and eb. More specifically, we wish ea∗−ea+eb to be close to eb∗ if (a,a∗) and
(b,b∗) hold similar relations. Also, improvements can be made on such a formulation. For
example, we can consider the angle between vectors ea∗ −ea and eb∗ −eb, rather than the
difference in ea∗−ea+eb and eb∗ [Levy and Goldberg, 2014b].

Word analogy provides a simple way to examine the linearity property of a word vector
model which is not typically involved in classic methods. An interesting point here is that the
recent word vector models exhibit good linear behavior, although we do not consider this in
modeling and/or training. It also gives researchers useful insights into the models learned by
those methods and into potential ways of applying these models [Levy and Goldberg, 2014b;
Linzen, 2016; Allen and Hospedales, 2019]. On the other hand, word analogy is not a general-
purpose method. In many cases, it does not correlate well with the performance of downstream
systems, and is thereby used as a way to study certain issues of word representation.

3. Word Categorization (or Clustering)

Another way to see how well the word vectors correlate with our understanding of word
meaning is to see how well these vectors can be categorized into meaningful groups. This
is often achieved by performing clustering algorithms on the word vectors. We wish that
similar words are grouped into the same cluster, and dissimilar words are grouped into different
clusters. For example, apple, grape, peach, and orange belong to the same group of words
because they are all fruits. An advantage of this kind of evaluation is that many clustering
algorithms and word clustering benchmarks have been developed and are straightforwardly
applicable here. On the other hand, as in most clustering tasks, there are practical issues that
we have to deal with, such as determining the number of clusters.

In machine learning, most clustering methods require computing the distance between
data points. In this sense, word clustering is essentially based on the same idea of modeling
the word relatedness, though we do not need to judge the quality of the distance in this case.
This shows some intrinsic connections among different evaluation methods. However, as a
side-effect, word clustering inherits the same problem with related methods (such as semantic
relatedness). As discussed in Section 3.6.2, it is difficult to design a gold-standard criterion to
measure how well the words are clustered, since we can group words into clusters in so many
different ways.

4. Subconscious Evaluation

The general idea of subconscious evaluation is to examine the correlation between the use
of word vectors and subconscious behaviors or brain functions when one reads text. A wide
variety of psycholinguistic phenomena can be used as the test [Mitchell and Lapata, 2010]. A
well-known method is priming which studies how a person responds to stimuli [Schacter and



3.6 Evaluating Word Embeddings 167

Buckner, 1998; Tulving and Schacter, 1990; Wiggs and Martin, 1998]. For example, we can
design an experiment to test the speed with which a person reads a given word (call it the target
word) when it follows another word (call it the prime word) [Meyer and Schvaneveldt, 1971;
Lund, 1995; McNamara, 2005]. If the target word t is read more quickly when following a word
a than when following another word b, then we would say that t correlates more with a than b.
Then, we can use such a psychological measure to judge the distance or similarity between
word vectors. To obtain the time the participant takes in reading, a popular method is to frame it
as a self-paced reading task21. Another method is to use eye-tracking to automatically record
the information of the eye movement and position. By using these techniques, several methods
and data sets have been used for studying a variety of psycholinguistic issues [Mitchell and
Lapata, 2010; Hutchison et al., 2013; Lapesa and Evert, 2014; Klerke et al., 2015; Søgaard,
2016; Auguste et al., 2017].

In addition to tracking human behavior in reading, we can monitor brain activity by using
neurological tests, such as functional magnetic resonance imaging (fMRI) and electroen-
cephalography (EEG) [Devereux et al., 2010; Søgaard, 2016; Bhattasali et al., 2020]. For
example, it is often hypothesized that, when a person reads and understands words, some
activations occur in his or her brain. Therefore we can link the meaning of words with brain
functions. On the other hand, an objection is that the knowledge about the mechanism behind
these processes is still limited, making it difficult to correlate the results of these studies with
real-world NLP systems [Baroni et al., 2014; Bakarov, 2018].

5. Linguistically Motivated Evaluation

Linguistically motivated evaluation is based on an assumption that word vectors learned
from data should explain linguistic resources. One interesting approach to performing such
evaluation is to align the word vectors with some representations of the entries of a dictionary
[Tsvetkov et al., 2015; Acs and Kornai, 2016]. The quality of the word vectors is measured
in terms of the correlation between these word vectors and the linguistic representations22.
Apart from standard dictionaries, we can compare the word vectors against a semantic network,
such as WordNet. In this way, the evaluation would be improved if we consider graph-based
algorithms on resources of this type [Agirre et al., 2009].

3.6.3 Visualization
Taking word vectors as data points, we can adopt general approaches to visualizing multi-
dimensional data to locate data points in a 2 or 3-dimensional map. In this way, we can analyze
patterns encoded in these word vectors and interpolate the relationship between words. Since a
word vector generally has hundreds of dimensions in practical applications, we need dimension
reduction techniques to map it to 2 or 3-dimensional data for visualization. One method is PCA
which seeks a linear mapping from a high-dimensional space to a low-dimensional space (see

21In self-paced reading, the text is segmented into words (or phrases), and the participant is asked to press a
button to request the display of a segment.

22A linguistic representation can be seen as a feature vector that is manually built on a linguistic resource (such
as a dictionary).
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Section 3.3.3). Another well-known method is t-distributed stochastic neighbor embedding
(t-SNE) [Hinton and Roweis, 2002; Van der Maaten and Hinton, 2008]. t-SNE is a non-linear
dimension reduction method, and has been widely used in visualizing high-dimensional data.
Apart from these, one can consider the methods presented in Section 3.3.3 as well as those
tailored for visualizing word vectors [Zhang et al., 2019b; Liu et al., 2017].

3.7 Summary
In this chapter we discussed two interesting problems in NLP: tokenization and word (or
token) representation. First, we introduced models for dividing a sentence into units that are
meaningful and/or well suited for downstream tasks. Second, we introduced the idea of word
vector models with particular attention to learning both count-based high-dimensional models
and real-valued low-dimensional models. While most of these models are simple, they are
often used in complex NLP systems and form the basis of many advanced models, as will be
shown in the following chapters.

Tokenization (or segmentation) is an important “operation” in NLP, commonly as a pre-
processing step for many applications [Webster and Kit, 1992]. However, the use of the term
tokenization is somewhat misleading because it originally refers to a process of dividing a
string into substrings and is more often used as a general computer science term. In NLP,
tokenization can draw on concepts and results from several sub-fields. On the linguistics side,
tokenization is highly related to two fundamental questions: how words are composed and how
words form sentences. It is therefore natural to use theories and methods of morphology and
syntax to define the basic units of a language, leading to many rule-based tokenization systems
covering a variety of languages. On the machine learning side, tokenization has long been cast
as a problem of learning token boundaries from data in either a supervised or unsupervised
manner [Mielke et al., 2021]. A common approach is to first annotate some tokenized text with
human knowledge about what basic language units should be, and then learn to tokenize on
this annotated data (see Section 3.1.3). More recently, learning tokenizers without linguistic
constraints has been found to be promising (see Section 3.1.4). Since natural languages are
themselves sets of characters or byte sequences, it is also possible to segment a sentence into
characters or bytes [Ling et al., 2015; Lee et al., 2017]. The tokenization-free method in
general may help when one wants a language-independent tokenizer and a simpler pipeline for
processing the text.

From a more mathematical perspective, tokenization can be thought of as a mapping from
the input data to a sequence of variables. In this way, the concept of tokenization can be
generalized by relaxing the assumption that both the input and output variables are constrained
to discrete values. In recent image and speech processing systems, for example, researchers
try to transform continuous input data (such as pixels and acoustic signals) into a sequence
of vector-based “tokens” [Schneider et al., 2019; Dosovitskiy et al., 2021]. Some interesting
extensions of these ideas are even to transform image and speech data to a sequence of indices,
leading to approaches bearing a closer relation to NLP [Oord et al., 2017; Baevski et al., 2020;
Hsu et al., 2021].
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Given that the input text is divided into smaller pieces, a natural next step is to represent
these pieces in some way that captures their underlying features. While representing language
units as vectors of numbers has been the de facto standard for the development of recent NLP
systems, the work on vector representation dates back to the very early days of computational
linguistics. According to many popular textbooks and papers [Manning and Schütze, 1999;
Jurafsky and Martin, 2008], the idea of using a distribution to represent word meaning, also
known as distributional semantics, started in the 1950s with the rise of empiricism. At the
time, most of the work was influenced by Harris’s distributionalism [Harris, 1954] and related
work [Firth, 1957; Wittgenstein, 1953]. In parallel, Osgood [1952] proposed to define the
meaning of a concept as a point in a multidimensional space in a psychological manner. All
these ideas greatly influenced the way linguistics and NLP people think of word meaning in
the following decades.

Modern approaches to distributional semantics appeared in the 1990s, mainly as a result of
the revival of empiricism in artificial intelligence [Church, 2011]. Most of these were driven by
the distributional hypothesis: words having similar meanings are more likely to occur in similar
contexts. In response, a number of methods were developed, differing in the way the contexts
are modeled. For example, a context can be the words in a context-window, or the words
with a relation to the given word in a syntax tree. Apart from those mentioned in Section 3.3,
methods that are not covered in this chapter include hyperspace analogue of language (HAL)
[Lund and Burgess, 1996], distributional memory [Baroni and Lenci, 2010], dependency-based
semantic space models [Padó and Lapata, 2007], and so on. For comprehensive descriptions of
distributional semantics models, the reader can refer to papers that survey this topic [Lenci,
2018; Mitchell and Lapata, 2010]. Note that most of the above-mentioned work can be
thought of as instances of the vector space model which can deal with problems beyond lexical
semantics. For example, in compositional distributional semantics, the meaning of a phrase or
a sentence can be represented as a vector obtained by performing simple algebraic operations
on the word vectors [Clark et al., 2008; Mitchell and Lapata, 2010; Blacoe and Lapata, 2012].

While distributional models have attracted attention in the NLP community for many years,
word embedding models that learn low-dimensional, real-valued word vectors directly from
texts have been a predominant approach recently. As described in Sections 3.4-3.5, models
of this type do not depend on strong assumptions like the distributional hypothesis, but learn
to represent a word as a vector of hidden attributes (or features) describing the word. The
resulting model is an extension of the feature-based semantic model [Markman, 2013]. A
recognized difference with traditional feature-based methods is that we do not need to manually
define the features. We instead take these features as parameters of the model, and train them
in the way as in common (supervised) machine learning systems.

Formulating word representation as an end-to-end learning problem brings with it several
benefits. One of the benefits is that new features can be found because no constraints are
placed on how these features are learned and interpreted. On the other hand, as shown in
Section 3.6.2, the word vectors obtained in this way indeed show some linguistic properties,
though the word embedding models are not trained to achieve this. Another benefit is that
the word embedding models also fall in the vector space models in NLP, enabling the easy
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use of word vectors in various applications. There are also many examples of methods that
attempt to improve standard word embedding systems. For example, researchers have tried to
incorporate additional linguistic information into word vectors [Levy and Goldberg, 2014a;
Cotterell and Schütze, 2015; Tissier et al., 2017], and to learn universal word vectors across
multiple languages [Klementiev et al., 2012; Mikolov et al., 2013b; Ammar et al., 2020; Smith
et al., 2017; Artetxe et al., 2017].

Widely associated with neural models in NLP, the idea of distributed representation has
been successfully applied to problems beyond word representation, e.g., sentence representation
[Le and Mikolov, 2014; Kalchbrenner et al., 2014; Kiros et al., 2015; Hill et al., 2016; Arora
et al., 2017; Lin et al., 2017; Conneau et al., 2017b], tree/graph-structure representation [Socher
et al., 2011; Perozzi et al., 2014; Tai et al., 2015; Grover and Leskovec, 2016], and so on. In
particular, contextualized representations of words, though not discussed in this chapter, are
generally appreciated for modeling sequential data [McCann et al., 2017; Peters et al., 2018;
Devlin et al., 2019].
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Chapter 4

Recurrent and Convolutional Sequence Models

The whole is more than the sum of its parts.

–Aristotle, 384-322 BC [Ross, 1924]

Aristotle might or might not think of linguistic phenomena when having this thought, but it is
indeed something we want to express in this chapter: there is something different in a sentence
or phrase besides words. Of course, words have meanings, alone. However, when they come
together to form a sentence or phrase, the meaning of the whole could be much more complex
and diverse. This leads to the most beautiful aspect of language that human beings can express
any meaning using a finite set of elements (e.g., words or characters).

The infinite and non-compositional nature of language makes it more difficult to model a
sequence of words than to model individual words. A difficulty is that a word may repeatedly
alter its meaning in different contexts. Taking the idea of word embedding that a word can be
represented as a low-dimensional, real-valued vector, the “meaning” of a language unit could
be continuous. It is therefore possible to extend methods of distributed representation from
words to sequences of words. This leads us to explore models in which the process of dealing
with variable-length word sequences is fundamentally continuous.

Here we consider the general approach to learning the distributed representation of word
sequences. In particular, we consider recurrent and convolutional neural networks which have
been extensively used in many fields ranging from speech processing to computer vision. For
natural language inputs, the result of applying these models is a sequence-level representation
of the input. The representation could be either a single real-valued vector, or a sequence of
such vectors, each corresponding to a contextualized representation for an input word of the
input sequence. Such a model of representation, that can broadly be called an encoder, is
generally used with a variety of systems whose input is sequential data. We will see several
examples of it in this chapter.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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4.1 Problem Statement
For many NLP applications, our objective is to make predictions based on an input sequence.
Let us consider again the text classification problem mentioned in Chapter 1. If we obtain
a text that may talk about food or not, we want to assign one of the two classes to it (say
Food or Not-food). To do this, a common method of classification is to represent the text as a
bag of features, denoted as H. Then, a probability is assigned to each of the classes using a
probabilistic model Pr(y|H). The predicted class is the one that has the maximum probability
ŷ = argmaxyPr(y|H).

While this is a standard procedure for classification, the underlying idea can be used to
describe a general problem. Formally, let w = w1...wm be a sequence of words1. A sequence-
level NLP system can be formulated as a function that maps the sequence w to some output
y. This can be divided into two steps, called the representation (or encoding) step and the
prediction step.

• Representation (or Encoding). It transforms the input sequence w to some “features”
H by using an encoder Enc(·):

H = Enc(w) (4.1)

• Prediction. A predictor Predict(·) takes H and generates an output:

y = Predict(H) (4.2)

A simple form of H is a feature vector. For example, H could be a set of human-designed
indicator features extracted from w (as a high-dimensional sparse representation), or a set of
real numbers indicating some latent features (as a low-dimensional dense representation). In
NLP, another common form of H is a sequence of vectors in which each vector hi corresponds
to an input word wi (see Figure 4.1). In this case, hi can be viewed as a “new” representation
of both wi and its context in w2. The correspondence between hi and wi enables the represen-
tation to make distinctions among different positions of the sequence, and more importantly, to
vary its modeling power for variable-length inputs.

The form of y is dependent on the problem we intend to deal with. For example, for
classification problems, y is the index of a class (or a distribution of classes); for regression
problems, y is a real number; for translation problems, y is a sequence of words in another
language, and so on. Note that, in the above model, representation and prediction can be
regarded as two separate problems. A great advantage of isolating representation and prediction
is that we can use the same encoder in many applications with different predictors. This also
motivates a promising line of research in which a general-purpose encoder is trained on large-
scale data and then used as components in different downstream systems [Peters et al., 2018;

1Although we restrict ourselves to word sequences for discussion, the methods can be used to deal with
sequences of any language units, e.g., sub-words, characters, etc.

2This architecture can be extended to encoders in which the input and output have different lengths, say, the
input is w1...wm and the output is h1...hn (m ̸= n).
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· · ·w2w1 wm−1 wm

H (a single vector)

(a) Encoding the sequence as a vector

Encoder

· · ·w2w1 wm−1 wm

· · ·h2h1 hm−1 hm

(b) Encoding the sequence as a vector sequence

Figure 4.1: Representing a word sequence as (a) a vector or (b) a sequence of vectors.

Devlin et al., 2019].

There are many possible forms for Enc(·) and Predict(·). For text classification, for
example, one way is to define Enc(·) as a function computing a feature vector using a set
of hand-crafted feature templates, and define Predict(·) as a statistical classification model
(such as SVMs and maximum entropy-based models). Another way is to define Enc(·) as a
multi-layer neural network that outputs a real-valued vector, and define Predict(·) as a simple
neural network that involves only one Softmax layer. In this chapter we will focus on neural
network-based encoders. We will show that such a type of encoder could be applied to a
number of NLP tasks in Section 4.5.

4.2 Recurrent Models

A study of various sequence models is not easy work. It is convenient, however, to first
introduce one of the most common and practical neural models, called recurrent neural
networks (RNNs). We will see later that RNNs are extensively used in sequence modeling,
and the techniques presented here are generic and applicable to many systems.

4.2.1 An RNN-based Language Model

Perhaps the most popular use of sequence models in NLP is estimating the probability of a
word sequence, also known as language modeling. Mathematically, language modeling is an
instance of a well-known problem in the field of stochastic processes (or random processes):
the problem of modeling time series data [Hamilton, 1994; Chatfield, 2003; Fuller, 2009]. As
a time series, a sequence of words can be treated as a sequence of data points at time intervals
that are equally spaced. In this sense, the methods we present here are somewhat general,
although the discussion on a broader range of time series problems is beyond the scope of this
book.

Given a sequence of words w1...wm, the goal of language modeling is to compute
Pr(w1, ...,wm). This joint probability is typically written as a product of conditional probabili-
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ties using the chain rule:

Pr(w1, ...,wm) = Pr(w1) ·Pr(w2|w1) · · ·Pr(wm|w1, ...,wm−1) (4.3)

In other words, the problem of generating w1...wm is the same as the problem of generating
a word wi+1 at a time based on the previous words w1...wi. RNN-based language models
represent w1...wi via a recurrent unit RNN(·) [Mikolov et al., 2010], like this

hi = RNN(hi−1,xi) (4.4)

where xi ∈ Rde is the word vector (or word embedding) for wi. Let V be the vocabulary from
which we can choose a word. If wi ∈ R|V | is a one-hot word representation 3, xi is given by
multiplying wi with the word embedding table C ∈ R|V |×de :

xi = Embed(wi)

= wiC (4.5)

As shown in Chapter 1, the use of C transforms a |V |-dimensional (and probably high-
dimensional) vector to a de-dimensional (and probably low-dimensional) vector. Note that C
is essentially a lookup table, with a distinct table entry (i.e., a row) for each word in V . So, the
right-hand side of Eq. (4.5) is in practice a function that selects a row from C with the word
index.

Now we go back to Eq. (4.4). The equation is not difficult to understand: the state of
the context we have seen so far (i.e., hi) is some representation of the combination of the
current input (i.e., xi) and the state of the earlier context (hi−1). Put another way, it can be
thought of as a process of repeatedly adding information of a new word to a cache of “history”.
An elegant aspect of this process is that it can be easily implemented by running Eq. (4.4) a
number of times until the end of the sequence.

RNN(·) can be any function that takes hi−1 and xi, and produces a new vector hi. The
vanilla RNN has a form

RNN(hi−1,xi) = ψ(hi−1U+xiV) (4.6)

where ψ(·) is an activation function, such as TanH(·) and Sigmoid(·). Together with Eqs.
(4.4) and (4.5), we can define hi as a function of hi−1 and wi

hi = ψ(hi−1U+wiCV) (4.7)

where U ∈Rdh×dh , V ∈Rde×dh , and C ∈R|V |×de are learnable parameters of the model, and
dh is a hyper-parameter indicating the number of dimensions of hi and hi−1.

We now have an encoder that represents the word sequence w1...wm as a sequence of

3The one-hot representation wi is a |V |-dimensional vector in which only one entry is 1 and all other entries
are zeros. Following the notation used throughout this book, a vector is in general represented as a variable in bold
text. Here we treat wi as a word index and interchangeably use it with the one-hot representation.
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RNN’s outputs H = {h1, ...,hm}. Given that each hi encodes the sub-sequence spanning
from w1 to wi, we can place a Softmax layer on hi to obtain a distribution of words:

yi+1 = Softmax(hiO+b) (4.8)

where O ∈ Rdh×|V | and b ∈ R|V |. Taking the word index wi+1, we have

Pr(wi+1|w1, ...,wi) = yi+1(wi+1) (4.9)

Thus, we have developed a language model that produces a probability Pr(wi+1|w1, ...,wi)

at each step. Figure 4.2 shows an illustration of the RNN-based language model for an example
sequence. To run this model on a word sequence, we surely wish to start with predicting w1 but
this requires a preceding word w0 that is taken as the input. A simple and widely applicable
method for giving an appropriate starting state to RNNs is to add a beginning symbol ⟨SOS⟩
to the sequence so that all sequences start with the same “word”. Likewise, we can attach an
end symbol ⟨EOS⟩ to the sequence to model the completeness of the sequence. This leads to a
new form of the probability of the sequence

Pr(⟨SOS⟩,w1, ...,wm,⟨EOS⟩) = Pr(⟨SOS⟩) ·
Pr(w1|⟨SOS⟩) ·
Pr(w2|⟨SOS⟩,w1) ·
· · ·
Pr(wm|⟨SOS⟩,w1, ...,wm−1) ·
Pr(⟨EOS⟩|⟨SOS⟩,w1, ...,wm) (4.10)

We can simply assume Pr(⟨SOS⟩) = 1. To obtain Pr(⟨SOS⟩,w1, ...,wm,⟨EOS⟩), we take
⟨SOS⟩ w1...wm as an input sequence and w1...wm ⟨EOS⟩ as the output sequence.

4.2.2 Training
As a neural network, the RNN-based language model can be trained in a regular way. The
training problem has been well discussed in Chapter 2. So, we do not give a full description in
this chapter, but a little bit about its basic idea as well as some refinements.

RNN-based language modeling can be framed as a next-step-prediction problem. Suppose
we are given a collection of word sequences S. For each sequence w = w1...w|w| in S, we
have a sequence of pairs of an input word and the corresponding gold-standard answer, like
this4

{(w1,w2),(w2,w3), ...,(w|w|−1,w|w|)}

The language model takes the input sequence w1...w|w|−1 and returns a sequence of

4While the ⟨SOS⟩ and ⟨EOS⟩ tricks are generally considered in real-world systems, we drop the ⟨SOS⟩ and
⟨EOS⟩ symbols from now on for simplification.
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Embedding Embedding · · · Embedding Embedding

RNN RNN · · · RNN RNN

Softmax Softmax · · · Softmax Softmax

w0 (⟨SOS⟩) w1
· · ·

wm−1 wm

wi−1C

ψ(hi−1U+xi−1V)

Softmax(hiO+b)

h1 h2 hm−1 hm

Pr(·|w0)

Embedding Layer

Hidden Layer

Output Layer
· · ·

Pr(⟨EOS⟩|w0, · · · ,wm)Pr(w1|w0)

Figure 4.2: Illustration of using an RNN-based language model to calculate
Pr(⟨SOS⟩w1...wm⟨EOS⟩). The input is ⟨SOS⟩w1...wm, and the output is the proba-
bility Pr(w1|⟨SOS⟩)Pr(w2|⟨SOS⟩ w1)...Pr(⟨EOS⟩|⟨SOS⟩ w1...wm). As Pr(⟨SOS⟩) =
1, the probability of generating the sequence is simply Pr(⟨SOS⟩w1...wm⟨EOS⟩) =
Pr(⟨SOS⟩)Pr(w1|⟨SOS⟩)Pr(w2|⟨SOS⟩ w1)...Pr(⟨EOS⟩|⟨SOS⟩w1...wm). For each input
wi, we first represent it as a word vector xi via the embedding layer, resulting in a sequence
of word vectors x0...xm. The RNN layer maps x0...xm to a sequence of hidden states
h1...hm+1. In this process, we repeat the same thing: an RNN unit takes both hi−1 and xi
and produces a new state hi. On top of that, we use the output layer (Softmax) to obtain
Pr(wi+1|⟨SOS⟩ w1...wi).

distributions y2...y|w|. See the following table for an illustration of the inputs and outputs of
the model.

Step History Input Output Gold-
(One-hot) (Distribution) Standard

1 w1 y2 w2

2 w1 w2 y3 w3

3 w1,w2 w3 y4 w4

... ... ... ... ...
|w|−2 w1,w2, ...,w|w|−3 w|w|−2 y|w|−1 w|w|−1

|w|−1 w1,w2, ...,w|w|−3,w|w|−2 w|w|−1 y|w| w|w|

A loss function L(yi,wi) is defined to measure how many “errors” we will make if we use
yi instead of the one-hot representation wi. A common choice is the cross-entropy loss which
computes the divergence of a distribution from another [Mitchell, 1997; Bishop, 2006].
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Then, the loss over the entire set is defined to be

L =
∑
w∈S

|w|∑
i=2

L(yi,wi) (4.11)

Once we know the loss, the training of the RNN-based language model can be achieved by
using gradient descent. A simple form of this method is the delta rule

θnew = θold− lr ·
∂L

∂θ
(4.12)

where θ stands for the parameters. For the model described in Section 4.2.1, θ includes C,
U, V, O and b. ∂L∂θ is the derivative of the loss with respect to the parameters, called error
gradient.

Eq. (4.12) can be understood as a process of moving the current parameters a small step
in the steepest downhill direction (i.e., the direction of −∂L

∂θ ). Here lr stands for how far we
move in each step of going downhill, also called the learning rate. Obtaining ∂L

∂θ often requires
a back-propagation process that flushes the error gradient from the output to the input. In
modern implementations of deep learning systems, in which neural networks are represented as
computation graphs, back-propagation is simple since it is just a by-product of graph traversal
and there are many automatic differentiation toolkits to do this. Similar algorithms, called
back-propagation through time (BPTT), were also used in earlier systems [Werbos, 1990].
For further information about training neural networks, see Chapter 2 and/or textbooks on this
subject [Goodfellow et al., 2016; Zhang et al., 2021].

If the input is a long sequence, the application of RNNs would result in a deep neural
network. In this case, the use of the chain rule of ordered derivatives makes large or small loss
derivatives accumulate, and the update to the parameters in Eq. (4.12) is consequently very
large or small. These are typically known as the exploding and vanishing gradient problems.
There are several methods to mitigate these problems for RNNs [Sutskever, 2013]. Some of
them are

• Regularization. Introducing regularization terms (such as the l1 and l2 norms on
parameter matrices) into training can avoid models in which most of the parameters have
large values, and thus help to avoid exploding gradients. Similarly, one can penalize the
cases in which the norms of the gradients are too small [Pascanu et al., 2013].

• Gradient Clipping. When the norm of the gradients is too large, it is natural to directly
scale down their magnitudes. A simple method is to clip the gradient norm in terms of
a threshold τ . If the norm ||∂L∂θ || is larger than τ , we can rescale ∂L

∂θ accordingly, say,
∂L
∂θ = τ

|| ∂L
∂θ

|| ·
∂L
∂θ .5

5It is usually formulated as an equation

∂L

∂θ
=

τ

max(τ, ||∂L∂θ ||)
· ∂L
∂θ

(4.13)



178 Chapter 4. Recurrent and Convolutional Sequence Models

• Truncated Back-propagation. Another idea is to break a long sequence of input-output
pairs into shorter pieces, and train RNNs on these separate sub-sequences [Williams and
Peng, 1990; Elman, 1990]. This reduces both the cost of training and the risk of too
large or small values in accumulating error gradients.

• Improved Architectures. It is also possible to redesign the model to overwhelm the
limits of standard RNNs, usually using the memory mechanism. In Section 4.3, we
will see a few examples of redesigning the recurrent unit for addressing the vanishing
gradient problem.

• Initialization and Constraints of Parameters. Initializing the model parameters to
a desirable region is generally helpful for optimization, and, sometimes, helpful for
preventing very small gradients. An alternative method is to randomly set the model and
only learn the parameters of the output layers [Jaeger and Haas, 2004].

• Non-saturating Activations. Many common activation functions have a compact
range of outputs, e.g., the Sigmoid function has a range of [0,1]. They are also called
saturating activation functions6. The use of saturating activation functions often leads
to the decay of gradients over layers, i.e., the vanishing gradient. It is therefore promising
to use non-saturating activation functions instead, e.g., the ReLU function.

• Normalization of Activations. Saturating activations may also result in getting stuck
in a saturated region of outputs, and we need a large learning rate to escape from
local optimums [Ioffe and Szegedy, 2015]. Thus, the training would be unstable, and
subtle changes in inputs and/or model parameters would lead to a big variance in model
behavior. A possible solution is to normalize the activations to reduce the variance,
e.g., subtracting the mean of the activations in a group of samples (e.g., samples in a
mini-batch of training), and dividing by their standard derivation.

4.2.3 Layer Stacking
If we think of the application of a recurrent unit as a function mapping a variable sequence to a
new variable sequence of the same length, it is natural to compose this function with another
function of the same type, or even with itself. This makes it very easy to extend RNNs to deep
neural networks: all you need is to stack RNNs.

Let hli be the output of the l-th recurrent unit in the stack at position i. We can apply a new
recurrent unit to hli, resulting in a new output at level l+1

hl+1
i = RNN(hl+1

i−1,h
l
i) (4.14)

where hl+1
i−1 is the output of the previous step at level l+1. To make Eq. (4.14) well-formed,

we typically define h0
i = xi. In other words, the stack starts off with the word vector xi, then a

series of RNN outputs (i.e., h1
i , h

2
i , h

3
i , etc).

To illustrate, Figure 4.3 (a) shows a stacked RNN for language modeling. We see that

6An activation function f(x) is non-saturating if and only if when x→∞ (or −∞), f(x)→∞. An activation
function is saturating if it is not a non-saturating activation function.
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(a) A 3-layer RNN.
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(b) A 3-layer RNN with residual connections.

Figure 4.3: 3-layer RNNs (with and without residual connections). To stack RNN layers,
we feed the output of layer l to layer l+ 1. Thus the output of layer l+ 1 is given by
hl+1
i =RNN(hl+1

i−1,h
l
i). Lines in red color stand for the residual connections which directly

add the input of a layer to its output, resulting in hl+1
i =RNN(hl+1

i−1,h
l
i)+hli.

applying a stack of recurrent units is equivalent to creating multiple layers of RNNs simultane-
ously. However, there would be a risk of confusion if we call an unrolled recurrent network
a layer, as the term layer typically refers to a set of neurons receiving the same inputs in a
feed-forward neural network. Here we extend the term layer to cover a more general concept:
a group of neurons that are topologically placed on the same level. So, we say that the language
model in Figure 4.3 has 3 RNN layers.

Stacking multiple layers of RNNs, we build a model which is deeper but more difficult
to train. This difficulty arises in part from the barriers of passing information through many-
layered RNNs. To make the training easier, a widely-used approach is to introduce skip
connections or residual connections into a multi-layer neural network [He et al., 2016a].
These connections are intended to leverage an additional path to allow information to skip
layers. As described in Chapter 2, the form of a residual neural network is given by

yl+1 = F (yl)+yl (4.15)

where yl is the output of layer l. Extending this formulation to Eq. (4.14) leads to multi-layer
RNNs with residual connections, given by

hl+1
i = RNN(hl+1

i−1,h
l
i)+hli (4.16)



180 Chapter 4. Recurrent and Convolutional Sequence Models

The only difference from Eq. (4.14) is that we introduce the identity map of hli to the
right-hand side of Eq. (4.16). Thus, the input hli is directly accessible from layer l+1. This
greatly simplifies the way that the information flows through the neural network, and allows
the system to “skip” layers in propagating errors. Figure 4.3 (b) shows a 3-layer RNN with
residual connections.

4.2.4 Bi-directional Models

The use of RNNs enables us to formulate the problem of encoding a word sequence as a
problem of left-to-right generation of words. One advantage of this approach is that the
modeling of context words arises naturally: the output of an RNN unit in some way describes
the history words up to that point. This feature makes it very straightforward to model the
probability distribution Pr(wi+1|w1, ...,wi), as we can use hi as a representation of the context
w1...wi, that is, Pr(wi+1|w1, ...,wi) = Pr(wi+1|hi).

The left-to-right generation is widely used in sequence generation, such as machine
translation. It can be viewed as an instance of autoregressive processes (AR processes) in
which the state of a variable is dependent on the state of the previous variables [Chatfield, 2003;
Box et al., 2015]7. However, such a method is not the only choice for modeling sequences.
We do not even necessarily restrict ourselves to language modeling for training a sequence
encoder. This gives rise to an interesting question: how can we develop an encoder of word
sequences without assumptions regarding the predictor? Answering the question leads us to
isolate the learning of the text encoder from a specific NLP task, and to regard it as a separate
task whose result can be applied to many other systems. A more detailed discussion is not the
focus here and we leave it to subsequent chapters.

We now present a simple extension of the left-to-right sequence model by returning to
RNNs. Note that in sequence modeling our desire is some representation of the entire sequence.
A problem with usual RNNs is that they are uni-directional models in which the context
words following wi are absent. To consider both the left and right contexts of a given word,
we can instead use bi-directional models. Figure 4.4 shows an example of the bi-directional
RNN. There are two sub-models: a left-to-right RNN and a right-to-left RNN. They have the

7As a stochastic process, an autoregressive process expresses a variable at time t by relating it to the past values
of the process and the current value of an error process [Chatfield, 2003]. Formally, a time series {z1, ...,zT }
describes an autoregressive process of order p if for any t ∈ {p+1, ...,T}

zt =

p∑
i=1

αizt−i+ ϵt (4.17)

where {α1, ...,αp} are the parameters of the process, and ϵt is the error at time t. This process is called regressive
because it has the same form as the multiple linear regression model. The prefix auto- comes from the way we
regress zt: zt is dependent on its past values instead of additional independent variables. One way to interpret
language modeling in an autoregressive process perspective is to simply treat {z1, ...,zT } as representations of a
sequence of words {w1, ...,wT }. Thus, we can gain some idea of predicting wt using previous words {w1, ...,wt}
by considering the autoregressive property of the problem. However, it should be noted that most of the sequence
generation models used in NLP are not mathematically equivalent to Eq. (4.17), although they are often called
regressive models. For example, the RNN-based language model discussed here is not a linear model. Rather, it
takes layers of non-linearity to describe the complex relationships among words.



4.3 Memory 181

Embedding Embedding Embedding

wi−1 wi wi+1

RNN
(left-to-right)

RNN
(left-to-right)

RNN
(left-to-right)

· · · · · ·

RNN
(right-to-left)

RNN
(right-to-left)

RNN
(right-to-left)

· · · · · ·

hi−1 = [
−→
h i−1,

←−
h i−1] hi = [

−→
h i,
←−
h i] hi+1 = [

−→
h i+1,

←−
h i+1]

−→
h i

←−
h i

Figure 4.4: A bi-directional RNN model. Given a word sequence, we run an RNN from left to
right and another RNN from right to left. Therefore, at each position we obtain a left-to-right
representation and a right-to-left representation. The output is the concatenation of the two
representations so that it involves both the left and right contexts.

same architecture but work in opposite directions. For each input word wi, the left-to-right
RNN outputs a vector representing the context {w1, ...,wi} (denoted by

−→
h i), and the right-

to-left RNN outputs a vector representing the context {wi, ...,wm} (denoted by
←−
h i). We can

concatenate
−→
h i and

←−
h i to obtain a bi-directional representation

hi = [
−→
h i,
←−
h i] (4.18)

Thus, the bi-directional RNN has the same form of output as that of the uni-directional RNN,
that is, a sequence of vectors {h1, ..,hm}. Unlike the uni-directional RNN, the representation
hi here describes the context on both sides.

For a stronger model, the bi-directional RNN can be extended to a neural network of
multiple RNN layers. For example, we can run deep RNNs in two directions and combine their
results as in Eq. (4.18). Such model architectures have been extensively used in language and
speech processing tasks, including machine translation [Wu et al., 2016], sentiment analysis
[Tang et al., 2015], POS tagging [Huang et al., 2015], speech recognition [Graves et al.,
2013a;b], and so on.

4.3 Memory
RNNs can be appropriate for sequence learning in which we summarize at each step the past
inputs and then make some prediction on this summary of the “history”. A benefit of RNNs is
that we can represent a history of arbitrary length as a fixed-size vector, and update it when
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new information arrives. In other words, we have a memory, though not explicitly defined, to
store the information. Next we show that such a memory mechanism is general and can be
used to improve sequence models.

4.3.1 Memory as A System
In psychology, memory is the ability of the mind to retain and recall information. There
are many cognitive models of psychology. A well-known model is the multi-store model
[Atkinson and Shiffrin, 1968]. It defines memory as a system consisting of three components:
short-lived sensory memory, short-term memory, and long-term memory. The sensory
memory retains the sensory information that is very quickly ceased, such as immediate data
from the senses of sight and smell. The short-term memory stores information for a longer
time but is not permanent. An example of the short-term memory is that we try to memorize a
sequence of digits (e.g., a phone number) but may forget it after a short while. The long-term
memory is permanent. This also means that the information is retained indefinitely. For
example, adults can remember details of the events that occurred in their childhood.

Given this categorization, there appear to be interesting connections between the above
model of memory and the neural networks we discuss here. For example, the state of a recurrent
unit can be simply thought of as a short-term memory. It maintains information until we get
to the end of a sequence and would be reset if we switch to a new sequence8. On the other
hand, the entire language model and associated parameters perform more like a long-term
memory: the language model is intended to learn and memorize some useful information
about probabilistic word prediction from the text, so that it can be used whenever we want
to. Moreover, there are other concepts that may stem from psychology but are used in several
different fields. For example, coding or encoding is referred to as how the information is stored
in a memory, duration is referred to as how long the information is stored in a memory, and
capacity is referred to as how much information is stored in a memory.

In machine learning and NLP, we can gain an understanding of memory by considering it
from an information processing point of view. Broadly, memory can be viewed as a system
that writes information to a “storage” and reads it when queried. It has the following functions.

• Encoding. The input of the system is encoded in a form that is easy to process. For text
inputs, this can be simply thought of as the same encoding process as we discuss in both
Chapter 3 and this chapter: a word or a sequence of words is represented as a feature
vector or a sequence of feature vectors.

• Update. Given the encoded information, we store it in the memory. This operation is
generally dependent on the organization of the memory. For example, one can treat a
group of encoded items as a datastore with an indexing system. In this case, storing
an item requires finding the right place to keep it. Alternatively, one can represent the
memory as a single vector of numbers.

• Retrieval. The stored information can be retrieved. This typically involves matching

8Another explanation is that the state of a recurrent unit at step i may contain little information about very early
steps.
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each item in the memory against an input query. If the memory is represented in a
simpler form, such as a vector, it may not be explicitly retrieved, and we return the entire
memory when required.

These functions can be designed in many different ways, leading to a variety of NLP
systems. One simple example is information retrieval [Manning et al., 2008]. A typical
information retrieval system indexes a large number of documents (or other resources) and
allows users to search for interested information in this collection of documents. To enable
search, documents are represented in forms that are convenient to use, for example, we may
use the bag-of-words model to compute the matching score between a document and a query,
and may use the inverted index to make an efficient mapping of a document to its location
in the storage. Systems of this type cover a wide range of applications, including translation
memory, dialogue, summarization, document classification, and so on.

Another design choice made for memory systems is to consider, either partially or fully,
a continuous form for the above components. One method is to encode each input item as a
real-valued vector (e.g., a word embedding) but use the same modules of update and retrieval
as in usual information retrieval-like systems [Weston et al., 2015; Khandelwal et al., 2019].
An alternative method is to adopt differentiable functions for all the steps in building and
accessing the memory. These models are typically implemented using neural networks and
trained using gradient descent [Sukhbaatar et al., 2015; Graves et al., 2014; Kumar et al., 2016;
Graves et al., 2016; Miller et al., 2016]. This idea motivates work on exploring approaches to
coupling neural networks with memories, such as end-to-end memory networks and neural
Turing machines. Note that the above models are sometimes called external memories, as
they are used as separate modules working with other systems.

Memory can also work as an internal or hidden component of a system. In this case, the
memory is typically rebuilt for each input sample, and so it can be regarded as an instance of the
short-term memory. There are various ways of using this type of memory to improve sequence
models. In the remainder of the section, we will focus on using the memory mechanism
in RNNs. In Chapter 5, we will see how the idea of memory is extended to model the
correspondence between tokens of two sequences.

4.3.2 Long Short-Term Memory

In the vanilla RNN presented in Section 4.2.1, the summarization of the context words was
given by the output of a recurrent unit. It implicitly defines a memory, and thus enables the
prediction based on past information for an arbitrary duration. The memory simply combines
the representations of the earlier history w1...wi−1 and the input at the current step wi, but does
not consider how much information from different steps should be squeezed into a fixed-length
representation. A problem with this model is that, if long-term dependencies are required for
prediction, memory may provide little information about it, and it may be hard to learn these
dependencies through back-propagation [Bengio et al., 1994; Pascanu et al., 2013]. A more
powerful approach, therefore, is to compute what should be retained at each step, and to let the
model learn to decide whether to memorize or forget.
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Long short-term memory (LSTM) is perhaps the best-known variant of RNNs to accom-
plish the above goal [Hochreiter and Schmidhuber, 1997]. The basic idea of LSTM is that a
recurrent unit can learn to memorize useful things and forget unuseful things by maintaining an
explicit memory [Gers et al., 2000]. To this end, the vanilla recurrent unit is replaced with an
LSTM unit that is made up of an output vector (call it a recurrent cell), a memory vector (call
it a memory cell), and three gates to control the information flow inside the LSTM unit. As an
extension to RNNs, an LSTM network deals with an input sequence as usual: it starts with
some initial states, and then repeatedly takes an input and outputs a vector. A key difference
between LSTM networks and RNNs is that the LSTM unit of step i takes both the recurrent
cell and the memory cell of its previous step. The form of an LSTM unit is given by

(hi,ci) = LSTM(hi−1,ci−1,xi) (4.19)

where hi ∈ Rdh is the recurrent cell of step i, ci ∈ Rdh is the memory cell of step i, and
xi ∈ Rde is the input of step i. Given LSTM(·), applying the LSTM model is straightforward.
We simply repeat the call of LSTM(·) for the inputs {x1, ...,xm} and obtain the outputs
{h1, ...,hm}. This resembles the way we use vanilla RNNs, making it very easy to extend
LSTM to multi-layer models (see Section 4.2.3) and bi-directional models (see Section 4.2.4).

We can divide LSTM(·) into three steps.

• Step 1: Forget. Assuming that ci−1 contains the information that the model memorizes
at step i−1, we need to determine how much information in ci−1 is discarded in building
ci. To do this, a gate is used to control to what extent we forget for each dimension of
ci−1. The forget gate is defined to be:

fi = Sigmoid(hi−1Uf +xiVf +bf) (4.20)

where fi ∈ [0,1]dh is a vector with the same number of dimensions as ci−1. The Sigmoid
function maps the input data to the range [0,1]. Thus, an entry of fi indicates how much
is preserved for the same entry of ci−1. Taking this further, fi⊙ ci−1 describes the
memory that is left out after passing through the forget gate. See Figure 4.5 (a) for an
illustration of the forget gate in the LSTM unit.

• Step 2: Update. Next we update the memory by considering both the previous state
of the memory (i.e., ci−1) and the input of the LSTM unit (i.e., xi and hi−1). We first
combine xi and hi−1 using a simple neural network, like this

ĉi = TanH(hi−1Uc+xiVc+bc) (4.21)

ĉi can be treated as the new information we intend to add to the memory at step i. Again,
we need a way to control the amount of information coming into the memory. Hence we
define an input gate as

gi = Sigmoid(hi−1Ug+xiVg+bg) (4.22)
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This equation is similar to Eq. (4.20) but with different parameters. We then define
gi⊙ ĉi to be the actual new information that we are interested in. Taking both fi⊙ci−1

and gi⊙ ĉi, the memory cell at step i is given by

ci = fi⊙ci−1+gi⊙ ĉi (4.23)

In other words, we forget something old in ci−1 and memorize something new in ĉi.
See Figure 4.5 (b) for an illustration of the update step.

• Step 3: Output. In the last step we generate the output hi based on the memory ci.
Instead of copying ci to hi, we feed ci to a hyperbolic function and multiply its result
with the output gate. Like Eqs. (4.20) and (4.22), the output gate is given by

oi = Sigmoid(hi−1Uo+xiVo+bo) (4.24)

Then, the output of the LSTM unit is defined to be

hi = oi⊙TanH(ci) (4.25)

See Figure 4.5 (c) for an illustration of the output step.

The LSTM model is parameterized by Uf ,Uc,Ug,Uo ∈ Rdh×dh , Vf ,Vc,Vg,Vo ∈
Rde×dh , and bf ,bc,bg,bo ∈ Rdh . Compared with vanilla RNNs, additional parameters are
introduced here because of the use of three gates. In practice one can implement them in many
different ways, e.g., using activation functions other than Sigmoid(·) and TanH(·), removing
the bias terms bf , bc, bg, and bo, and so on. Training LSTM models follows the standard
paradigm of training RNN-based models. For example, we can build an LSTM-based language
model and train it by using the methods presented in Section 4.2.2.

4.3.3 Gated Recurrent Units

Above, we saw the important role played by the gate units and the memory cell. In general the
use of these neural networks makes the model computationally more expensive. An alternative
to LSTM in a cheap case, namely gated recurrent units (GRUs), uses a simplified model
structure with fewer gate functions [Cho et al., 2014; Chung et al., 2014]. Unlike LSTM, a
GRU does not have a memory cell so, as an RNN unit, it takes both the previous state vector
hi−1 and the current input vector xi, and produces the current state vector hi.

In GRUs, there are two gate units: the reset gate and the update gate. The reset gate, as
the name suggests, is used to reset (or rescale) the state of the GRU (i.e., hi−1). Following the
gate functions used in LSTM, the reset gate is defined to be

ri = Sigmoid(hi−1Ur+xiVr+br) (4.26)

where ri ∈ [0,1]dh is a vector of scalars, each dimension describing how much information in
the corresponding dimension of hi−1 is retained. Thus, we have a representation of retained



186 Chapter 4. Recurrent and Convolutional Sequence Models

Gate♯1 Gate♯2 FFN Gate♯3

+

TanH×

+×

hi−1

xi

ci−1

Gate♯1 Forget Gate

fi

fi⊙ci−1

(a) The forget gate.

Gate♯1 Gate♯2 FFN Gate♯3

+

TanH×

+×

hi−1

xi

ci−1

Gate♯2 Input Gate

Gate♯1 Forget Gate

gi ĉi

gi⊙ ĉi
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Figure 4.5: The architecture of the LSTM unit. At step i, it takes the input xi, and then updates
both the memory cell (ci−1→ ci) and the recurrent cell (hi−1→ hi). This process involves
three gates: the forget gate controls how much information in ci−1 is retained at step i, the
input gate controls how much information in ci−1 and xi is retained at step i, and the output
gate controls how much information in ci is used to form hi.

information

υi−1 = ri⊙hi−1 (4.27)

Taking both the retained information υi−1 and the current input xi, a new state vector is defined
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to be

ĥi = TanH(υi−1Uh+xiVh+bh) (4.28)

The update gate is then given by

ui = Sigmoid(hi−1Uu+xiVu+bu) (4.29)

ui can be thought of as a coefficient vector which could be used to control the trade-off in
choosing the new state vector ĥi or the old state vector hi−1. Finally, the output of the GRU is
defined as a linear interpolation of ĥi and hi−1

hi = ui⊙ ĥi+(1−ui)⊙hi−1 (4.30)

Figure 4.6 shows how the information flows in a GRU unit. The parameters here are
Ur,Uh,Uu ∈ Rdh×dh , Vr,Vh,Vu ∈ Rde×dh , and br,bh,bu ∈ Rdh . Therefore, the GRU
model is smaller than the LSTM model because of the use of fewer gate units. Note that
removing the memory cell makes GRUs more efficient. In this case, the role of memory is
implicitly played by GRU’s output hi, and we maintain it by memorizing more “important”
information.

4.4 Convolutional Models
In this section we describe another type of model for sequence modeling, called convolutional
neural networks (CNNs). Our description is mostly standard, but not a full introduction to
the numerous variants of CNNs and cutting-edge techniques. In particular, we focus on using
CNNs to deal with sequential data and presenting some refinements.

4.4.1 Convolution

CNNs feature their shared-weight architectures by which a kernel or filter slides over the input
data and produces a map of features. The idea is that the filter only receives signals from a
restricted region of data at a time (call it the receptive field), and computes the weighted sum
of these input signals. To illustrate this, we follow the convention that a filter in CNNs is
generally used to deal with 2D data. Consider a 3×3 data matrix

A =

1 9 7

3 1 2

0 1 −1

 (4.31)

and a 2×2 filter with a weight matrix

W =

[
2 0

2 2

]
(4.32)
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Figure 4.6: The architecture of the GRU. Unlike the LSTM unit, the GRU does not involve
a memory cell, and thus follows the same input and output forms of a standard RNN unit.
There are two gates in the GRU. The reset gate controls how much information in hi−1 is
retained at step i. The retained information is then taken to fuze with the input xi, generating
the candidate output ĥi. The update gate seeks a balance between ĥi and hi−1 in computing
the final output of the GRU.

We can apply the filter to every 2×2 sub-matrix of A (there are four 2×2 sub-matrices here),
and compute the sum of the 2×2 entries weighted by W. For example, consider the 2×2

sub-matrix in the upper left corner of A. The output of the filter is given by

Conv(

[
1 9

3 1

]
,W) = Conv(

[
1 9

3 1

]
,

[
2 0

2 2

]
)

= 1×2+9×0+3×2+1×2

= 10 (4.33)

Conv(·) defines a convolution operation that sums the entries of the element-wise product
of the two matrices. The convolution operation can be extended to cover the entire input matrix
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by sliding the filter over it, as follows

Conv(A,W) = Conv(

1 9 7

3 1 2

0 1 −1

 ,W)

=


Conv(

[
1 9

3 1

]
,W) Conv(

[
9 7

1 2

]
,W)

Conv(

[
3 1

0 1

]
,W) Conv(

[
1 2

1 −1

]
,W)


=

[
10 24

8 2

]
(4.34)

The output

[
10 24

8 2

]
is also called the feature map for the filter W on A. Sometimes,

the convolution operation Conv(A,W) is written as A∗W where the symbol ∗ stands for
the convolution product.9

Now let us consider a more general description of convolution in CNNs. Suppose that A
is a multi-dimensional data array. A filter defines a window (or receptive field) on A. We can
move the window on A in different directions. This results in a set of data arrays, denoted by
Ω. Each data array ap ∈ Ω is formed by the elements from the corresponding region of A. For

example, there are four sub-matrices in Eq. (4.34)): a1 =

[
1 9

3 1

]
, a2 =

[
9 7

1 2

]
, a3 =

[
3 1

0 1

]
,

and a4 =

[
1 2

1 −1

]
. Also, we suppose the filter is parameterized by a weight array W with the

same size of a, i.e., |ap|= |W|. The result of applying the filter to A is an array of features

Conv(A,W) =
[
v1 ... v|Ω|

]
(4.37)

9In mathematical analysis, given two integrable functions f(·) and g(·), convolution defines a new integrable
function f ∗g(·) to describe the integral of f(·) weighted by reflected, shifted g(·). More formally, the convolution
for continuous functions is defined as

f ∗g(x) =

∫
R
f(y)g(x−y)dy (4.35)

where f(y) is the function that we are concerned with, and g(x−y) is the weight function which is translated by
reflecting g(y) along the y-axis and then shifting it by x. A special case is that x and y are both integers. In this
case, we can define f ∗g(·) as

f ∗g(x) =
∑
y

f(y)g(x−y) (4.36)

which is the basic form of Eq. (4.33). In CNNs, x, y and x−y can be seen as indices of items in data arrays. f(y)
is a data item in the input array, and g(x−y) is the corresponding weight in the filter. By using Eq. (4.36), we
calculate the value of the item indexed by x in the output array f ∗g(x) (i.e., the feature map).
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Each feature vp is given by

vp = Conv(ap,W)

= ap ·W

=

|W|∑
k=1

ap(k) ·W (k) (4.38)

where ap(k) and W (k) are the k-th elements of ap and W, respectively. Note that the array[
v1 ... v|Ω|

]
can be organized into different shapes, such as a matrix or a 3D tensor, though

they are essentially the same thing from the data storage viewpoint. For example, for 2D input
data and a 2D filter, the feature map is a matrix like Eq. (4.34).

Furthermore, we need to consider two things to make the model practical. First, we need
to specify the stride of each move of the filter over A. In the above example, we simply use
stride= 1. By choosing a larger stride, we can compress A into a smaller number of features.
Second, in some situations, to ensure that the feature map has a desired size, we can add
dummy elements (or paddings) around the input data. A common method of padding is to set
zeros to the elements outside the input region. For example, consider a 2×2 data matrix.

A =

[
1 9

7 3

]
(4.39)

We can add zero-valued entries around it to obtain a 4×4 matrix, like this

Apadding =


0 0 0 0

0 1 9 0

0 7 3 0

0 0 0 0

 (4.40)

Using the same filter as in Eq. (4.33) with stride= 1, we have a 3×3 feature map

Convstride=1(Apadding,W) =

 2 20 18

14 22 24

0 14 6

 (4.41)

If stride= 2, then we would have a feature map with the same size of the input data

Convstride=2(Apadding,W) =

[
2 18

0 6

]
(4.42)

4.4.2 CNNs for Sequence Modeling
Following the formulation in the previous sections, we assume that the input of a sequence
model is a vector sequence x1...xm and the output is another vector sequence h1...hm. For
example, we can think of x1...xm as a matrix X ∈ Rm×de in which the i-th row vector is the



4.4 Convolutional Models 191

0
0
x 1

x 2
x 3

x 4
x 5

x 6
0

0

Input Sequence
Features

Filter 1 Filter 2

padding

h 1h
2h

3h
4h

5h
6

Figure 4.7: Two filters applied to a sequence of word vectors. The input involves ten word
vectors (words x1...x6 and two padding words on each of the two ends of the sequence). Each
word vector has 6 dimensions, and so, the input is a 10× 6 matrix. Filter 1 has a receptive
field of size 3×6. By sliding it over the input matrix, we obtain a sequence of outputs, each
corresponding to a position (i.e., a sequence of 6 outputs). Similarly, we apply filter 2 to the
input sequence and obtain another sequence of outputs. The two output sequences are then
organized as a 2×6 matrix in which the i-th row vector is hi.

representation of the i-th word of the sequence.

It is straightforward to perform convolution on X. Since xi is just a set of unordered
features, it is not necessary to slide a filter over different features. Hence we can use a receptive
field of size r× de, and consider all the dimensions of xi in the convolution operation. In
practical applications, there might be multiple filters for representing the inputs in different
aspects. For example, one can use a filter with a large receptive field to involve more contexts
in modeling, and use a filter with a small receptive field to concentrate more on local features.
See Figure 4.7 for two filters that are used to deal with a sequence.

To distribute features to {h1, ...,hm}, we can associate each application of a filter to a
position of the sequence. To ensure the input and output sequences are of the same length, a
padding vector is added to each end of the sequence. The following shows the input and output
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of a CNN for an example sequence.

Position Input Receptive Field Output

0 x0(= 0) N/A N/A

1 x1 {x0,x1,x2} h1

2 x2 {x1,x2,x3} h2

3 x3 {x2,x3,x4} h3

4 x4 {x3,x4,x5} h4

5 x5(= 0) N/A N/A

An activation function is typically used to introduce some non-linearity to the final output.
In this way, we build a standard convolutional layer which can be viewed as a sequence of
fully connected neural networks, each taking inputs from a fixed-size window. For the i-th
position, the output of the convolutional layer is given by

vi = ψ(Conv(ai,W)) (4.43)

where ai is the inputs in the receptive field10, and W is the parameters of the filter. In situations
involving multiple filters (say dh filters), we have a set of parameters {W(1), ...,W(dh)}, a
set of activation functions {ψ(1), ...,ψ(dh)}, and a set of inputs {a(1)i , ...,a

(dh)
i }. Each tuple

(W(k),ψ(k),a
(k)
i ) gives an output by

v
(k)
i = ψ(k)(Conv(a

(k)
i ,W(k))) (4.44)

Note that v(k)i is simply an entry of hi. Thus, hi can be written as

hi =
[
v
(1)
i ... v

(dh)
i

]
(4.45)

Many CNN-based systems of practical interest comprise two or more convolutional layers.
The simplest way to achieve this is layer stacking, as in multi-layer RNNs (see Section 4.2.3).
That is, we treat the output of a convolutional layer as the input of the following layer. See
Figure 4.8 for an example of a CNN involving three convolutional layers. One of the benefits
of multi-layer CNNs is a larger scope for representation. As seen from Figure 4.8, a neuron in
layer 1 connects three input vectors, while a neuron in layer 3 connects, though not directly,
seven input vectors. Since neurons of the higher-level layers receive and process signals
from a larger span of the sequence, they are expected to produce a higher-level representation
of the sequence and to be able to deal with more difficult problems, such as long-distance
dependencies.

In some applications, we need a fixed-length, low-dimensional representation of the entire
sequence. A common way is to add a pooling layer to merge {h1, ...,hm} into a single vector.
For example, we can select the maximum value (i.e., max-pooling) or average the values (i.e.,

10For an r×de receptive field, ai is defined to be {x⌈i− r
2 ⌉, ...,x⌈i+ r

2−1⌉} or {x⌊i− r
2 ⌋, ...,x⌊i+ r

2−1⌋}.



4.4 Convolutional Models 193

0 x1 x2 x3 x4 x5 0

CNN CNN CNN CNN CNN

CNN CNN CNN CNN CNN

CNN CNN CNN CNN CNN

0 0

0 0

Input

Layer 1

Layer 2

Layer 3

Scope for Representation

Padding Padding

Figure 4.8: A CNN with 3 convolutional layers (stride = 1 and r = 3). Each layer takes a
sequence of vectors and produces another sequence of vectors. In this process a filter moves
over the input and performs the convolution operation in each move. In layer 1, the receptive
field of the filter is a region of three input items (see green shadows). The higher a layer is,
the larger receptive field a filter has. For example, in layer 3, an application of the filter can at
most cover the entire input sequence (see orange shadows).

max-pooling) along each dimension. This is a generic method in machine learning and is
applicable to most of the sequence models discussed in this book.

4.4.3 Handling Positional Information

One interesting property of CNNs is their ability to balance complexity and efficiency. This
is achieved by restricting full connectivity to only a small region of the input data. This also
leads us to describe a convolution layer using the same mathematical form of a layer in a
fully-connected neural network: the output of a neuron is some transformation of the weighted
sum of the input numbers. Despite the simplicity inherent in modeling, a problem with such
models is that the order of inputs is completely ignored. An interesting point, however, is
that, if we restrict ourselves to sequence modeling, this should not be a problem because the
output of the model is itself a sequence. It seems reasonable to assume that the output sequence
preserves the ordering information of the input sequence. On the other hand, applying CNNs
to sequential data does not guarantee a one-to-one mapping between the input and output items.
Technically, hi is not simply a representation of xi. It instead encodes a window of inputs
centered at xi. This, in turn, makes the problem very complicated, since it is difficult to work
out from hi how those inputs are ordered.
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Explicitly modeling word orders is very important in NLP, and has been extensively
studied in tasks like machine translation [Lopez, 2008; Koehn, 2010]. For neural network-
based models, one may address the problem by resorting to order-sensitive model architectures
like RNNs. A more popular approach in recent systems is to develop a positional encoding
sub-model and incorporate it into existing sequence models [Gehring et al., 2017b; Vaswani
et al., 2017; Shaw et al., 2018; Dufter et al., 2022]. Formally, we say that the input at position i
is a combination of the original input xi and the positional encoding of i (denoted by PE(·)):

xpi = Merge(xi,PE(i)) (4.46)

where Merge(·) combines xi and PE(i) in some way. The use of positional encoding is
straightforward: all you need is to replace {x1, ...,xm} with {xp1, ...,xpm} in a sequence
model. So, this approach is model-free.

In this subsection, we present several versions of PE(·) and ways to combine them with
xi. Note that the following discussion is not specific to CNNs. We consider it here because
positional encoding is useful for models that are insensitive to the order of inputs, and CNNs
are a good example to see how it is used [Gehring et al., 2017a;b]. In Chapter 6, we will see an
application of positional encoding in Transformer which is a state-of-the-art neural model in
many areas.

1. Offset-based Positional Encoding

The simplest way to describe a position i is to just leave it as it is. This can be formulated as
the “distance” from a reference point

PE(i) = i− i0 (4.47)

where i0 is an integer indicating where we start counting. If i0 = 0, PE(i) = i gives the normal
way to define a position. Note that PE(i) could be a negative number if i0 > i. In this sense,
PE(i) is not a real distance but it is fine with considering it as a feature in a machine learning
system. To design a non-negative measure, the right-hand side of Eq. (4.47) can be defined as
an absolute value

PE(i) = |i− i0| (4.48)

Treating positions as simple integers leads to unbounded, discrete positional encoding.
A more desirable method might be to use a continuous representation in a range of values,
because it allows the system to work within a sample space that is smooth and easy to optimize.
A simple way to do this is normalization. For example, dividing i− i0 by some maximum
value, we obtain a normalized version of the offset-based encoding

PE(i) =
i− i0

imax− i0
(4.49)

For example, we can set imax = the maximum possible length of the sequence and i0 = 0,
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so that PE(i) chooses its value in [0,1]. Another common choice is to set imax =m (i.e., the
length of the input sequence) and define PE(i) as a ratio whose value varies as m changes.

To make use of these scalar positions, it is straightforward to enrich the original input
vectors by adding new dimensions, provided they can be viewed as new features. Thus, xpi is
given by

xpi = [xi,PE(i)] (4.50)

where [·] stands for the concatenation operation.

2. Sinusoidal Positional Encoding
The next obvious step is to represent positions as vectors instead of scalars. Although vector-
izing the representations of positions sounds complicated, a simple idea is to use a carrying
system which describes how a natural number is expressed by a polynomial with respect to a
base [Kernes, 2021]. For example, i can be written as

i =

kmax∑
k=0

a(i,k)bk (4.51)

where a(i,k) is the k-th digit, kmax+1 is the maximum number of digits, and b is the base of
the system. The carrying occurs when a(i,k) reaches b: we increase a(i,k+1) by 1 and roll
back a(i,k) to 0. In this way we can change a(i,k) with a period of bk, that is, a(i,0) changes
with a period of b0, a(i,1) changes with a period of b1, a(i,2) changes with a period of b2, and
so on.

Using this system, i can be represented as a vector

PE(i) =
[
a(i,0) a(i,1) ... a(i,kmax)

]
(4.52)

For example, when b = 2, PE(11) =
[
1 1 0 1

]
. However, in Eq. (4.52), PE(i) is still

a discrete function. As discussed throughout this book, we may want a continuous vector
representation that can describe intermediate states between discrete events. Considering
a(i,k) as a periodic function, a common choice is the sine function. Thus a(i,k) can be
re-defined, as follows

a(i,k) = sin(i ·ωk) (4.53)

This function has an amplitude of 1 and a period of 2π
ωk

. Using an analogous form of periods to
that used in Eq. (4.51), we define ωk as

ωk =
1

(bmodel)k/dmodel
(4.54)

where bmodel > 0 and dmodel > 0 are hyper-parameters of the model. Obviously, we have
2π
ω0
< 2π

ω1
< ... < 2π

ωkmax
.
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Figure 4.9: A heat map of the positional embedding model of Eqs. (6.14) and (6.15) (bmodel =
10,000 and dmodel = 512). Consider a position i (i.e., the i-th row), then move another position
j from i upwards or downwards. Intuitively, when i and j are closer, the corresponding row
vectors are more similar. By contrast, when j moves away from i, the similarity is not that
obvious. This property helps explain the idea behind the positional embedding model: the
“distance” between two positions is implicitly modeled by comparing their multi-dimensional
representations.

Similarly, we can define a(i,k) via the cosine function

a(i,k) = cos(i ·ωk) (4.55)

Taking both Eqs. (4.53) and (4.55), we create a new representation of i, as follows

PE(i) =
[
sin(i ·ω0) cos(i ·ω0) ... sin(i ·ωkmax) cos(i ·ωkmax)

]
(4.56)

Vaswani et al. [2017] instantiated the above form by setting bmodel = 10,000. Let PE(i,k)
be the k-th dimension of PE(i). Vaswani et al. [2017]’s version of positional encoding is
written as

PE(i,2k) = sin(i · 1

100002k/dmodel
) (4.57)

PE(i,2k+1) = cos(i · 1

100002k/dmodel
) (4.58)

Choosing bmodel = 10,000 is empirical. One can adjust it for specific tasks. Figure 4.9
plots the positional encoding for different positions. We see that, when k becomes larger, the
change of the color follows a larger period.

Note that Eqs. (6.14) and (6.15) have a useful property that PE(i+µ) can be easily
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expressed by a linear function of PE(i) for a given offset µ11

PE(i+µ,2k) = PE(i,2k) ·PE(µ,2k+1)+

PE(i,2k+1) ·PE(µ,2k) (4.61)

PE(i+µ,2k+1) = PE(i,2k+1) ·PE(µ,2k+1)+

PE(i,2k) ·PE(µ,2k) (4.62)

The resulting benefit is that the encoding can somewhat model relative positions. That is, the
state at position i+µ can be described by starting with i and then appending it with the offset
µ.

When applying the sinusoidal positional encoding, one way is to use Eq. (4.50) to
concatenate xi and PE(i). In Vaswani et al. [2017]’s work, they instead assume PE(i) to be a
vector of the same size as xi (i.e., |PE(i)|= |xi|= de), and add PE(i) to xi, like this

xpi = xi+PE(i) (4.63)

This sinusoidal additive model has been the basis of many positional encoding approaches
[Dehghani et al., 2018; Likhomanenko et al., 2021; Su et al., 2021].

3. Learnable Positional Encoding

The result of sinusoidal positional encoding is a lookup table CPE ∈ Rmmax×de (where mmax

is the maximum sequence length we can choose)

CPE =

 PE(1)

...

PE(mmax)

 (4.64)

In this table, each row vector PE(i) corresponds to the embedding of a position i. These
vectors, as described above, are computed based on some assumptions and heuristic algorithms.
An alternative approach is to treat vectors of positions as parameters of the model and learn
them as usual. In this case, both word embeddings and position embeddings can be trained in
the same manner. See Chapters 2 and 3 for more information about learning word embeddings
in neural language models.

One last note on positional encoding. What we have shown in this section can broadly
be characterized as an absolute positional encoding paradigm: a position is described by its
location in a coordinate system. Another concept that is worth exploring is relative positional
encoding [Shaw et al., 2018]. For example, we can extend Eq. (4.48) to define the distance

11One can derive these by taking

sin(α+β) = sin(α) · cos(β)+cos(α) · sin(β) (4.59)

cos(α+β) = cos(α) · cos(β)− sin(α) · sin(β) (4.60)
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between two positions i and j

PE(i, j) = |i− j| (4.65)

In this case, the positional encoding is no longer an attribute of the i-th input but some
representation of the distance relative to a reference position j. In fact, most of the methods
for relative positional encoding are variants on a theme in which positions are described by
their pair-wise relationships. This forms the basis of several models of this type as we will see
in Chapter 6.

4.5 Examples

Both recurrent and convolutional models have been successfully used in numerous applications.
Here we discuss a few of the interesting examples. While these models are mostly basic, they
form the foundations of many state-of-the-art systems.

4.5.1 Text Classification

To illustrate how sequence models could be used, we first consider the text classification
problem in which we assign one of some pre-defined classes to a text. It can be extended to
cover a broad range of problems in NLP, including classifying news texts, flagging sentiment
sentences, identifying spam emails, detecting fake comments, and so on.

In text classification we are interested in selecting the best class from a set C, given a word
sequence w1...wm:

ĉ = argmax
c∈C

Score(c,w1...wm) (4.66)

Here Score(c,w1...wm) measures how well a class c is predicted for the input sequence
w1...wm. Here we map the sequence of words to the sequence of word vectors (or word
embeddings), that is, w1...wm→ x1...xm. Assuming Score(·) is a probabilistic function that
describes the distribution of the classes, we can reformulate the problem as

ĉ = argmax
c∈C

Pr(c|w1...wm)

= argmax
c∈C

Pr(c|x1...xm) (4.67)

The central issue here is the modeling of Pr(c|x1...xm). We define Pr(c|x1...xm) by
following the general encoder + predictor framework, as follows

• The input x1...xm is represented as a feature vector H ∈ Rdh by using an encoder

H = Encoder(x1...xm) (4.68)
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Figure 4.10: A CNN-based text classifier [Kim, 2014]. The input is a sequence of word
vectors. A convolutional layer involving multiple filters is used to extract features in different
dimensions. A pooling layer is used to reduce the number of features for representing the input
text, leading to a low-dimensional feature vector H. The prediction conditions on H and is
made by using a standard Softmax layer.

• H is fed to a standard Softmax layer to predict the class distribution

Pr(·|H) = Softmax(H ·Uc+bc) (4.69)

where Uc ∈ Rdh×|C| and bc ∈ R|C| are model parameters.

Encoder(·) is exactly the same thing we discussed in the preceding sections. There are,
therefore, many encoding models that are applicable here. For example, consider the CNN-
based encoder presented in Kim [2014]’s work. Kim [2014]’s model is based on a single
convolution layer involving dh filters. The application of a filter produces a set of features,
each being associated with a position of the sequence. Since we want a single vector for
representing the entire sequence, a pooling layer is added so that the number of features for
each filter is reduced to one. Then, for any c, the probability Pr(c|H) can be computed trivially
according to Eq. (4.69). See Figure 4.10 for an illustration of this classifier.

To train such a model, we just need to optimize it on some loss, and, as mentioned several
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times in this book, one of the most common methods is to minimize the cross-entropy loss
using gradient descent. Also, we can use regularization to improve the training of CNNs. More
details about these techniques can be found in Chapter 2.

Note that while the model described here is quite “simple”, it is among the most effective
models known for text classification. There are, of course, improvements to this kind of
classifier. Examples of such systems include deep CNNs [Conneau et al., 2017c], character-
based CNNs [Santos and Gatti, 2014; Zhang et al., 2015], recurrent CNNs [Lai et al., 2015],
and so on.

4.5.2 End-to-End Speech Recognition

Speech recognition is a task of taking a sequence of acoustic signals and mapping it to a
sequence of words or characters (call it a transcription) [Reddy, 1976; Rabiner and Juang,
1993]. Since the original input is an acoustic waveform over the time domain, it is common to
transform it into a sequence of waveform fragments (call them frames). Typically, a frame
is represented as a feature vector, denoted by xi. This is achieved by using either feature
functions in signal processing [Davis and Mermelstein, 1980; Picone, 1993; Campbell, 1997]
or learnable embeddings [Chorowski et al., 2019; Schneider et al., 2019]. Regarding the output,
speech recognition systems generally do not produce words. Instead, they produce sequences
of transcription units (or transcription labels), e.g., phonemes, characters, sub-words, etc.
In this subsection we assume that the output of a speech recognition system is a sequence of
English letters, denoted by y1...yn ∈ V n

y . The alphabet Vy consists of normal English letters
(a− z), numbers (0−9), spaces (⟨sp⟩), periods (⟨pe⟩), and other punctuation marks. As with
most modern speech recognition systems, we add a blank symbol ϵ to the alphabet in order to
indicate the null output.

The goal here is to find a string ŷ1...ŷn for a given input sequence x1...xm, so that

ŷ1...ŷn = argmax
y1...yn

Pr(y1...yn|x1...xm) (4.70)

This model is relatively difficult compared to the classification model described in the
previous subsection, as the output can be an arbitrary string, rather than a class in a predefined
class set. The string generation problem leads to two difficulties. First, we need some
mechanism to model Pr(y1...yn|x1...xm) for an exponentially large number of pairs of input
and output sequences. Second, in practice y1...yn is often much shorter than x1...xm (i.e.,
n <m), and so we need some mechanism to align a long sequence to a short one. However,
we do not need to consider these difficulties in the stage of representing the input sequence,
and can still encode the input sequence x1...xm in the same way as other sequence models.
Specifically, we represent x1...xm in the following form

h1...hm = Encoder(x1...xm) (4.71)

The encoder can be RNNs, CNNs, or more advanced models (such as Transformer). Here
we consider the encoder architecture used in Graves et al. [2013b] and Graves and Jaitly



4.5 Examples 201

[2014]’s work. It is a multi-layer bi-directional LSTM model. We skip the details of this model
without loss of continuity, as the reader may be already familiar with it in Sections 4.2.3, 4.2.4
and 4.3.2.

Having obtained the sequence representation H= h1...hm, a softmax layer is used to map
each hi ∈ Rdh to a distribution of transcription labels, given by

Pr(·|hi) = Softmax(hi ·Us+bs)

where Us ∈ Rdh×|Vy| and bs ∈ R|Vy| are model parameters. Pr(·|hi) ∈ R|Vy| is a probability
distribution over Vy, and the probability of transcription label li at position i is simply Pr(li|hi).
We can then write the probability of a label sequence in the form

Pr(l1...lm|H) =
m∏
k=1

Pr(lk|hi) (4.72)

This formulation looks simple. We can appeal to the argmax operation to find the most
probable label sequence as usual. However, l1...lm cannot be straightforwardly used as a
system output, because it often contains many duplicate and blank symbols. To “post-process”
l1...lm, we first merge the sub-sequence of labels to a single label when they are the same, and
then remove the blank symbols. For example, consider a label sequence

s s ϵ e e ϵ ϵ e ⟨sp⟩ y ϵ o o u

By merging “s s”, “e e”, and “o o”, we have

s ϵ e ϵ ϵ e ⟨sp⟩ y ϵ o u

Then, we remove all ϵ and obtain

s e e ⟨sp⟩ y o u

The above sequence is what we would call a transcription. Obviously, different label se-
quences can correspond to the same transcription. Let B(y1...yn) be the set of label sequences
corresponding to y1...yn12. We now turn to the following form of the transcription probability
(see Figure 4.11 for an illustration)

Pr(y1...yn|x1...xm) =
∑

l1...lm∈B(y1...yn)

Pr(l1...lm|H) (4.73)

A problem with this model is that the number of the sequences in B(y1...yn) grows
exponentially with n (and m). Fortunately, there are very efficient methods for comput-
ing
∑

l1...lm∈B(y1...yn)
Pr(l1...lm|H). See [Graves et al., 2006] for a dynamic programming

12B(y1...yn) may contain label sequences of arbitrary lengths. However, if we restrict input to the sequence
x1...xm, then each sequence in B(y1...yn) is of length m.
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Figure 4.11: An end-to-end speech recognition architecture. The input of the system is
a sequence of acoustic signals that are represented as a sequence of feature vectors (i.e..,
x1...x14). These feature vectors are taken by a bi-directional LSTM encoder. The output
of the encoder is a sequence of contextualized representations (i.e., h1...h14) which is then
fed into a softmax layer for generating a distribution of labels at each position. We can then
draw a sequence of labels from these distributions. We map each label sequence to a form of
final output by eliminating duplicate symbols and blank symbols. An output of the system
corresponds to a number of label sequences, and the probability of the output is the sum of the
probabilities of these label sequences.

algorithm for solving this problem.

Note that Eq. (4.73) is also known as a form of connectionist temporal classification
(CTC) [Graves et al., 2006]. It is one of the most widely used methods for training end-to-end
speech recognition and speech translation systems. One of the merits of CTC is that it allows
us to align any label sequence to a transcription in a very simple and efficient way. It is easy to
make use of CTC in training a speech recognition system. Suppose there is a set of pairs of
input sequence and transcription, denoted by S. A common training objective is to maximize
the likelihood of these transcriptions given the corresponding inputs, written as

θ̂ = argmax
θ

∑
(y1...yn,x1...xm)∈S

logPr(y1...yn|x1...xm;θ) (4.74)

where Pr(y1...yn|x1...xm;θ) is the probability computed via Eq. (4.73), and θ is the parameters
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of the model.

When testing on new data, we search for an optimal transcription as in Eq. (4.70).
This process, also known as decoding, generally involves optimized search algorithms and
pruning techniques. For example, we can use the 1-best label sequence instead of all possible
label sequences to obtain an approximation to Eq. (4.73), that is, Pr(y1...yn|x1...xm) =

maxPr(l1...lm|H). This leads to an efficient decoding method, called Viterbi decoding,
which has been extensively used in speech recognition and machine translation [Lopez, 2008].
For more details about the decoding of sequence generation, we refer the reader to Chapter 5.

4.5.3 Sequence Labeling with LSTM and Graphical Models

Sequence labeling is a conceptually straightforward approach to classifying data in sequence.
In NLP, it has penetrated many sub-areas like word segmentation, part-of-speech tagging, and
chunking. Learning in these models consists of simply predicting a label in a label set Vy at
each position of a sequence. Ideally, we wish to perform a sequence of labeling actions based
on the entire input, given by

ŷ1...ŷm = argmax
y1...ym

Pr(y1...ym|x1...xm) (4.75)

where x1...xm is an input sequence (such as a sequence of word vectors), and y1...ym is a
label sequence in which each label yi corresponds to an input item xi.

As we have seen in this chapter, Eq. (4.75) perfectly fits the form of the sequence modeling
problem. As a first step we use an encoder to map x1...xm to a sequence of contextualized
representations, as follows

h1...hm = Encoder(x1...xm) (4.76)

We define Encoder(·) as a bi-directional LSTM model because it involves a memory
mechanism for modeling long-range dependencies in both left and right contexts. Hence, the
architecture of the encoder is the same as that used in the preceding subsection.

h1...hm can then be taken to be the input of a usual sequence labeling system (see Figure
4.12). The sequence labeling problem has been discussed in Chapter 1, and many models are
applicable to it. The simplest is the one that involves a classifier (such as maximum entropy
and SVM-based models) for predicting a label distribution for each hi. A problem with these
models is that the predictions are made independently. A more powerful approach is to use
graphical models to consider dependencies among predicted labels. For example, hidden
Markov models (HMMs) describe how a sequence of observations (i.e., x1...xm) is generated
given a sequence of variables (i.e., y1...ym). The key idea is to rewrite Pr(y1...ym|x1...xm)

using the Bayes’ rule and approximate Pr(y1...ym|x1...xm) by a product of simple factors.
However, these models require probability density functions of continuous variables (e.g.,
Pr(xi|yi)) which are difficult to estimate. This differentiates the use of HMMs in neural
models greatly from that in conventional models where all states and observations are discrete
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Figure 4.12: The BiLSTM + graphical model architecture for sequence labeling. The encoder
is a standard bi-directional LSTM model. Given a sequence of input feature vectors (i.e.,
x1...xm), it produces a new sequence of feature vectors for mapping the input to contextualized
representations (i.e., h1...hm). A CRF network is placed on h1...hm to predict a distribution
of label sequences. The optimal label sequence is the one that has the maximum probability.

variables13.
HMMs and their descendants can be viewed as instances of generative models. Another

type of model that has been commonly used to solve sequence labeling problems is discrimina-
tive models. One such model is conditional random fields (CRFs) [Lafferty et al., 2001]. The
CRF model features its ability to directly model the joint probability of the entire input and

13In HMMs, a sequence of variables can be viewed as a path of transiting over some states whose values are
chosen from a pre-defined set. In each transition from one state to another, something is observed (call it an
observation). By making some assumptions, we can approximate Pr(y1...ym|x1...xm) in the following fashion

Pr(y1...ym|x1...xm) =
Pr(y1...ym) ·Pr(x1...xm|y1...ym)

Pr(x1...xm)

≈
∏m

i=1Pr(yi|yi−1) ·
∏m

i=1Pr(xi|yi)
Pr(x1...xm)

=

∏m
i=1Pr(yi|yi−1)Pr(xi|yi)

Pr(x1...xm)
(4.77)

where Pr(yi|yi−1) is the transition probability of moving from yi−1 to yi (when i=1, we define Pr(yi|yi−1) =
Pr(y1|y0) = Pr(y1)), and Pr(xi|yi) is the emission probability of observing xi given yi. As the denominator
Pr(x1...xm) is a constant number for different y1...ym, it can be dropped in the argmax operation of Eq. (4.75),
as follows

ŷ1...ŷm = argmax
y1...ym

m∏
i=1

Pr(yi|yi−1)Pr(xi|yi) (4.78)

To estimate Pr(xi|yi), a possible solution is to take Pr(xi|yi) = Pr(yi|xi)Pr(xi)
Pr(yi)

, and use a neural network to
compute Pr(yi|xi).
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label sequences, and to allow us to make use of a variety of features to do this. Consider, for
example, the linear-chain CRF [Sutton and McCallum, 2012]. It defines Pr(y1...ym|h1...hm)

in the following form

Pr(y1...ym|h1...hm) =
Pr(y1...ym,h1...hm)

Pr(h1...hm)

=
exp(Score(y1...ym,h1...hm))

Z(h1...hm)
(4.79)

where Z(h1...hm) is a normalization factor, and has the form

Z(h1...hm) =
∑
y
′
1...y

′
m

exp(Score(y
′
1...y

′
m,h1...hm)) (4.80)

Score(·) is a score for weighting the sequence pair (y1...ym,h1...hm). It is given by
summing over the values of a set of feature functions {f1(·), ...,fJ(·)}, like this

Score(y1...ym,h1...hm) =

m∑
i=1

J∑
j=1

fj(yi,yi−1,hi) (4.81)

The outer loop of the summation corresponds to a visit to each position i. Given i, each
function fj(·) takes the current label yi, the previous label yi−1 and the current input vector hi,
and then returns the value of a feature.

This model is called linear-chain because it represents y1...ym as a chain structure where
each node yi, along with an observed variable hi, only connects to its preceding node yi−1 and
its following node yi+1

14, like this

y1 — · · · — yi−1 — yi — yi+1 — · · · — ym
| | | | |
h1 · · · hi−1 hi hi+1 · · · hm

In CRFs, it is assumed that the variables in the graph is only dependent on its neighboring
variables. Therefore, fj(yi,yi−1,hi) can be defined according to how yi is connected. There
are generally two types of features.

• Transition-like Features. This type of features models the connection between consec-
utive labels (yi−1,yi), given by

f1(yi,yi−1,hi) = u(yi−1,yi) (4.82)

where u(yi−1,yi) is an entry of a weight matrix u, indexed by (yi−1,yi).

• Emission-like Features. The second type of features models the connection between a

14CRFs can broadly be categorized as a type of undirected graphical models. They define a graph over a set
of observed variables and a set of unobserved variables. These variables are connected in some way that forms a
graph.
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label yi and the associated input xi, given by

f2(yi,yi−1,hi) = gi(yi) (4.83)

where gi(yi) is the entry yi of a vector gi ∈ R|Vy|. The vector gi represents the weights
of associating hi with each label in the form

gi = hi ·v (4.84)

where v ∈ Rdh×|Vy| is a weight matrix.

To simplify notation, we use yi (or yi−1) to denote the one-hot representation for a label15.
Then, substituting the above feature functions into Eq. (4.81) allows the scoring function to be
written in the form

Score(y1...ym,h1...hm) =
m∑
i=1

u(yi−1,yi)+gi(yi)

=
m∑
i=1

yi−1 ·u ·yTi +hi ·v ·yTi

=
m∑
i=1

(yi−1 ·u+hi ·v) ·yTi (4.85)

The right-hand side of the equation only involves simple algebraic operations on vectors
and matrices, allowing viewing this model as a normal neural network. In this way, it is
convenient to implement the sequence labeling system with various neural network toolkits.
We just need to stack a CRF network on an encoder network and learn the entire network
as usual. For example, one can train this system by maximum likelihood, and optimize the
loss function by gradient descent. Note that, as with other chain or lattice-based models, the
CRF network can be efficient because there are dynamic programming algorithms, called
the forward-backward methods, for computing both Score(y1...ym,h1...hm) and Z(h1...hm).
We refer the interested reader to related papers for more detailed discussions [Lafferty et al.,
2001; Sutton and McCallum, 2012].

One advantage of marrying the worlds of distributed representation and sequence labeling
is that we do not need to specify any feature templates as in conventional approaches. Instead,
the model is free to learn features that describe whatever input sequences are most effective at
optimizing some objective for sequence labeling. Such an architecture has been used as the
backbone model for several state-of-the-art systems [Huang et al., 2015; Lample et al., 2016;
Ma and Hovy, 2016; Li et al., 2020c].

15In this case, yi ∈ R|Vy|, although it is originally used as a scalar.
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4.5.4 Hybrid Models for Language Modeling
As we have already noted, many sequence modeling problems can be dealt with by either RNN-
based or CNN-based models. Each of these two types of models has its own characteristics:
RNNs are originally designed for dealing with variable-length temporal data, and CNNs are
more effective in interpreting local information in restricted regions of input. Here we consider
a hybrid approach to language modeling for obtaining the benefits of both.

Recall from Section 4.2.1 that a neural language model is learned to predict a probability
distribution over a vocabulary, given some representation of the history words. Let w1...wm
be a word sequence to which we want to assign a probability. First, we represent each word
wi as a word vector xi. Then, an RNN model takes a word vector at a time and outputs the
probability

Pr(wi+1|w1...wi) = Pr(wi+1|x1...xi)

= Pr(wi+1|hi) (4.86)

where hi is the state of the recurrent unit at step i.
The process of converting words from symbols to continuous representations plays an

important role in this model. While it is common for practitioners to obtain xi from a word
embedding table, this approach treats each word as a whole and simply ignores its internal
structure. In consequence, it might be difficult to learn distinct vectors for rare words in
languages with large vocabularies [Bojanowski et al., 2017].

Here we consider a different way of representing words. The idea is simple: an additional
neural network is used to embed words [Ling et al., 2015; Kim et al., 2016]. Suppose every
word wi can be expressed as a sequence of characters. We represent these characters as
real-valued vectors ei,1...ei,leni via a character embedding table. Following Kim et al. [2016]’s
work, we can use a CNN to represent ei,1...ei,leni as a word vector in the following form

xi = CNN(ei,1...ei,leni ,W)

= Pooling(TanH(Conv(ei,1...ei,leni ,W))) (4.87)

where Conv(·,W) is a convolutional layer with parameters W, TanH(·) is a hyperbolic
tangent function, and Pooling(·) is a pooling layer.

Figure 4.13 shows the architecture of the model. We see that there is a hierarchical structure
behind this model, that is, characters form a word, and words form a sentence or phrase. On
a practical side, in many NLP tasks it is quite natural to consider the hierarchical nature of
language. We will see a few examples of making use of the relationships between different
levels of language representations in later chapters.

4.6 Summary
This chapter has introduced the recurrent and convolutional neural approaches to modeling
sequences of words. On one hand, recurrent neural networks are designed for dealing with
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Figure 4.13: A language model with character-aware word representations [Kim et al., 2016].
As a language model, the goal of this model is to compute the probability Pr(wi+1|w1...wi)
for each i. We represent each word wi as a real-valued vector xi. This vector is the output of a
CNN that takes a sequence of characters corresponding to this word. Then, the sequence of the
word vectors x1...xm is used as the input to an RNN + Softmax model. The model outputs
at each position i a distribution of words, where the entry wi+1 describes Pr(wi+1|w1...wi).
This hierarchical structure provides a multi-scale approach to language modeling: a sentence
is modeled by considering words, and a word is modeled by considering characters.

sequential data, and have broad applicability in NLP. To improve the modeling power of these
models, the memory mechanism is generally used. In particular, we have introduced LSTM
and GRU which are two popular types of models in dealing with long sequence problems. On
the other hand, while convolutional neural networks are commonly used to process vision data,
they are straightforwardly applicable to sequence modeling. We have seen that all these models
can be used in several language and speech processing tasks, including text classification,
speech recognition, sequence labeling, and language modeling.

The roots of modeling sequences of language units can be traced back to early work in
several different fields. For example, the process of generating a sequence of words can be
described as a Markov chain where the prediction of a word only depends on a limited number
of previous words [Markov, 1913]. This idea motivates the n-gram methods for sequence
modeling [Shannon, 1948a], as well as hidden Markov models which later appeared and
became popular in modeling sequences of pairs of observed and unobserved variables [Baum
and Petrie, 1966; Baum et al., 1970]. These models and their variants lay the foundations of
many successful NLP systems in past decades [Manning and Schütze, 1999; Jurafsky and
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Martin, 2008].
The idea of using neural networks in sequence modeling has also been investigated for

some time. One example to see how neural networks are developed and applied to sequence
modeling is speech recognition [Lippmann, 1989]. Most of the studies in the early days
of this research area try to either combine neural networks with existing models [Bourlard
and Wellekens, 1990; Bourlard and Morgan, 1993; Trentin and Gori, 2001], or address sub-
problems of speech recognition [Tank and Hopfield, 1987; Waibel et al., 1989; Lang et al.,
1990; Bengio, 1991]. However, scaling neural networks up in size was challenging because
training deep neural networks requires a lot of computation resources and data. The field had
long been dominated by approaches based on hidden Markov models and Gaussian mixture
models (GMMs), with a pipeline of several modules that require careful tuning. On the other
hand, while fully neural approaches were not state-of-the-art during that time, researchers were
aware of their potential in learning representations of acoustic inputs and freeing them from
hand-crafted features [LeCun and Bengio, 1995].

A dramatic shift from conventional pipelined approaches to end-to-end approaches comes
with the revival of neural networks in the 2000s [Hannun et al., 2014; Graves et al., 2013b].
The shift is so influential that a broad set of fields comes together like never before, e.g., in
computer vision and speech processing, the past ten years have, meanwhile, witnessed great
performance gains brought by very deep neural networks and end-to-end learning [Hinton et al.,
2006; Graves et al., 2013b; He et al., 2016a; Krizhevsky et al., 2017]. In NLP, the paradigm
shift starts with the work on word embeddings [Mikolov et al., 2013a; Pennington et al., 2014],
and continues as more powerful sequence representation models are developed [Vaswani et al.,
2017]. A simple approach to sequence modeling, though not discussed in depth in this chapter,
is compositional models [Janssen, 2012]. For example, we can use the bag-of-words model
to sum or average word vectors of a sequence. Despite the simple architectures of these
approaches, they achieve satisfactory results in many tasks, providing strong baselines for
further research on more advanced models [Conneau et al., 2018]. As the next step, applying
recurrent and convolutional neural models to sequence modeling is straightforward. This is
not surprising because these models are fairly well studied in other fields [Lipton et al., 2015;
Li et al., 2021d; Khan et al., 2020]. In particular, the LSTM model is well suited to deal with
long sequences and thus of great interest to NLP researchers [Sundermeyer et al., 2012; Huang
et al., 2015; Wu et al., 2016]. However, we are always on the way. Learning sequence models
is one of the most active research fields with no end in sight. There are many models that are
based on new architectures and show stronger performance in various tasks. More discussions
on some of these models can be found in Chapters 6, 7 and 8.

Note that the term sequence modeling is currently used in many different ways, referring
to different tasks. In many cases it is more common to use the terms encoding and encoder
to emphasize the process of mapping a sequence of symbols to a continuous representation.
As discussed in the previous sections, a benefit of viewing encoding as an individual task is
that we can learn a general representation model that is not dependent on where we apply it.
It opens the door to a wide range of pre-trained encoders for learning to represent various
types of data, such as text [Peters et al., 2018; Devlin et al., 2019], speech [Oord et al., 2018;
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Hsu et al., 2021; Chen et al., 2022], vision [Chen and He, 2021; Bao et al., 2021; He et al.,
2022], and combinations of them [Chuang et al., 2020; Li et al., 2021c; Kim et al., 2021]. A
closely related concept to text encoding is text embedding or sentence embedding [Conneau
et al., 2017a; Cer et al., 2018]. These can be broadly considered the same thing. In general,
an embedding model in NLP means a process of transforming the input text into a single
low-dimensional vector rather than producing sequences of contextualized vectors [Kiros et al.,
2015; Hill et al., 2016].

In many NLP problems, systems are not necessarily sequential on their input and/or output.
For example, in text classification, a system may take tree-structured input and produces a
label [Tai et al., 2015; Yang et al., 2016]. In this case we need some mechanism to encode
hierarchical structures. An alternative approach is to convert trees to sequences (or linearized
trees) so that we can directly make use of sequence models to handle non-sequential data
[Vinyals et al., 2015]. This is a great idea because it opens up the possibility of developing a
universally applicable encoder to represent various types of data if the input of the encoder can
be linearized in some way. For example, by representing an image as a sequence of patches,
sequence models can be directly applied to image classification, achieving state-of-the-art
results on several tasks [Chen et al., 2020a; Dosovitskiy et al., 2021].
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Chapter 5

Sequence-to-Sequence Models

天下万物之理，无独必有对。

According to the Principle of Heaven and Earth and all things, nothing
exists in isolation but everything necessarily has its opposite.

–《近思录》

Reflections on things at hand

朱熹/Xi Zhu (AD 1130-1200)
吕祖谦/Zuqian Lv (AD 1137-1181)

translated by Chang [1967]

In the language world, things often come in pairs. If there is a question, there would be an
answer; if there is a Chinese text, there would be an English translation; if there is a sentence,
there would be a parse of it according to some syntax. Many NLP systems are designed to
model the correspondence between these pairs, i.e., one of the two is taken as input and the
other is taken as output. These problems can be expressed in a form that we have encountered
several times, like this

ŷ = argmax
y

Pr(y|x) (5.1)

where x is an input variable, y is an output variable, and Pr(y|x) is a model that estimates how
likely y would be the true output given x.

This chapter is more interested in a particular family of problems where both x and
y are sequences of words, called sequence-to-sequence (or seq2seq) problems. Unlike
classification problems where the output ŷ is selected from a fixed set of classes, sequence-to-
sequence problems require producing an output from an exponentially larger set of sequences.
Obtaining ŷ in this case turns out to be a much more complex problem than the case of
classification, because we need more powerful models to describe Pr(y|x) and more efficient
search algorithms to solve Eq. (5.1).

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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This chapter will discuss the well-known encoder-decoder architecture for sequence-
to-sequence modeling. Also, this chapter will discuss the attention mechanism which is an
improvement on this architecture. Both of these models lay the foundation of discussions of
several state-of-the-art models in the following chapters. Furthermore, this chapter will discuss
the search problem which plays an important role in sequence generation and related problems.

5.1 Sequence-to-Sequence Problems
We choose machine translation as an illustrative example throughout this chapter, because it
is now one of the most popular sequence-to-sequence tasks. We use x = x1...xm to denote
a sequence of words in one language (call it a source-side sequence or source sequence),
and use y = y1...yn to denote a sequence of words in another language (call it a target-side
sequence or target sequence). We can write Eq. (5.1) using the new notation, as follows

ŷ = argmax
y

Pr(y|x)

= argmax
y1...yn

Pr(y1...yn|x1...xm) (5.2)

As discussed in Chapter 1 and in [Brown et al., 1993], this formulation implies three
fundamental issues.

• Modeling. First, we need to define the form of Pr(y|x). In this chapter we show that
Pr(y|x) can be computed using a single neural network based on the encoder-decoder
architecture and the attention mechanism. Note that sometimes we just need a model for
discriminating “good” from “bad” target sequences. In this case, it is not necessary to
require the model to make probability sense, and we can take a discriminant function
instead.

• Training. Then, we need to learn parameters of the model Pr(y|x) given some training
data. As Pr(y|x) is expressed as a neural network, we can train it in a regular way:
we optimize some loss by gradient descent. See Chapter 3 for common approaches to
training neural networks. We will also discuss techniques that are tailored for specific
tasks in this and the following chapters.

• Search (or Decoding). Once we have learned a model, we will obtain ŷ by searching for
the target sequence that maximizes Pr(y|x). This is a computational challenge because
the number of candidate sequences grows with the maximum length of the sequences
and the size of the vocabulary. In Section 5.4, we will discuss efficient and effective
search methods for sequence-to-sequence problems, particularly for machine translation.

Many NLP problems that fit the form of Eq. (5.2) can fall into sequence-to-sequence
problems, and the research on these problems is largely motivated by discussions of the above
issues. Table 5.1 shows common examples of sequence-to-sequence problems taken from
the literature. When the target-side is a text, the problems can broadly be categorized as the
text generation problems, although a general text generation system does not require the



5.2 The Encoder-Decoder Architecture 213

Task Source Target

Machine Translation Text Translation
in One Language in Another Language

Question Answering Question Answer
Dialogue Systems Text/Speech for Conversation Response

Summarization Long Text Summaries of the Text
Text Simplification Text Simpler Text
Text Style Transfer Text Same Content

in One Style in Another Style
Grammar Correction Text with Errors Corrected Text
Speech Recognition Speech Transcription

Speech Synthesis Text Speech
Speech Translation Speech Translation

in One Language in Another Language

Table 5.1: Examples of sequence-to-sequence problems.

source-side to be sequential. In addition to language and speech processing, sequence-to-
sequence problems can be generalized to cases where the input and/or output of a system
are not naturally sequential. For example, image-to-text generation (or image captioning)
and text-to-image generation systems both involve dealing with images that are typically
represented as 2D data. By representing images as sequences in some way (such as sequences
of patches), sequence-to-sequence models are directly applicable to these tasks.

Historically, most systems in these tasks were developed somewhat independently, resulting
in different architectures, features, and training methods for different tasks. However, as shown
in this chapter, when we represent these models as neural networks and train them in an
end-to-end fashion, there appears to be a “universal” paradigm for all these problems. This is a
big change for the AI community because many research fields come together and systems can
be shared across them. We can gain some insight into the common nature of a broad variety
of problems, though there are many task-specific considerations in practice. In the following
sections, we will discuss some of the common threads among sequence-to-sequence models.

5.2 The Encoder-Decoder Architecture
In this section we discuss the encoder-decoder architecture and a simple neural machine
translation model based on this architecture.

5.2.1 Encoding and Decoding
From a supervised learning viewpoint, we would ideally like to learn a model from a number
of sequence pairs such that any source-side sequence can be mapped to the corresponding
target-side sequence. However, learning the mapping between sequences of discrete variables
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is typically a problem of learning from high-dimensional data. It inevitably suffers from the
curse of dimensionality, making the modeling and training difficult.

One approach to learning such a mapping is to divide the problem into “simpler” sub-
problems. We assume that there is a low-dimensional representation shared by x and y,
denoted by H. Then, the mapping x→ y can be achieved by mapping x to H and then to
y. Formally, given a source-side sequence x, we map it to the representation H by using an
encoding system (call it an encoder)

H = Encode(x) (5.3)

Then, we map H to the target-side sequence y by using a decoding system (call it a
decoder)1

y = Decode(H) (5.4)

This architecture, also known as the encoder-decoder architecture, is widely used in recent
sequence-to-sequence systems (see Figure 5.1 for an illustration). It is easy to see that the
form of Eq. (5.3) is the same as those of the sequence models mentioned in Chapter 4, and so
there are many encoding models to choose from, such as bi-directional LSTM. The goal of the
decoder is to produce a “best” target-side sequence given the representation of the source-side
sequence. Like classification models, the prediction is made by first producing a distribution
over all possible sequences, and then selecting the one with the maximum probability. As such,
we can re-define Decode(·) as a probability function

Pr(·|H) = Decode(H)

= Decode(Encode(x)) (5.5)

In other words, given a target-side sequence y, the decoder assigns it a probability

Pr(y|x) = Pr(y|H) (5.6)

Then, the optimal sequence ŷ is obtained by performing argmaxyPr(y|x) as in Eq. (5.2). In
many systems based on the encoder-decoder architecture, both Encode(·) and Decode(·) are
models constructed from neural networks. Thus, we can treat the sequence-to-sequence model

1It is important to distinguish between the concept of decoding (or decoder) used in conventional sequence-to-
sequence systems and that used in the encoder-decoder architecture. The two are often confused, though they are
different somehow. In many machine translation or speech recognition systems, decoding has the same meaning as
translation or transcription, that is, we recover the optimal y from x. As pointed out in Eq. (5.2), this process
involves a search over all candidate y. Therefore, the conventional use of decoding in these systems is to refer
to a search process (i.e., the argmax operation in Eq. (5.2)) [Koehn, 2010]. By contrast, in the encoder-decoder
architecture decoding means a process of recovering the target-side sequence y from the intermediate representation
H. It is all about modeling rather than searching. It is also worth noting that, while the term decoding (or decoder)
is used in different ways, it can be thought of as a process of mapping an encoded message back to the original
message in a communication system as defined in information theory [Shannon, 1948b]. In this sense, the decoding
processes in these systems do the same thing as the word sounds like: convert something to its original form.
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Source-side sequence: x= x1...xm

Target-side sequence: y = y1...yn

.2 -1 6 5 .7 -2 Representation: H

Encoder
(H= Encode(x))

Decoder
(y =Decode(H))

Figure 5.1: The encoder-decoder architecture. In the case of sequence-to-sequence problems,
it transforms a source-side sequence x= x1...xm to a target-side sequence y = y1...yn. This
procedure involves two steps: x is first encoded as a representation H, and this representation
is then decoded to y.

as a single neural network and train it as usual, provided the entire model is some combination
of Encode(·) and Decode(·).

To apply the encoder-decoder architecture to a real-world task, we need to make a number
of design choices, such as the forms of H, Encode(·) and Decode(·). As a very simple
example, consider the task of regenerating an input word. We can define Encode(·) as a
feed-forward neural network that takes a word (in one-hot representation) and outputs a word
vector. In this way, H is a distributed representation of the word. Then, we define Decode(·)
as another feed-forward neural network that takes the word vector and generates a distribution
over the vocabulary. For training, we wish to learn a system that assigns the largest probability
to the input word. As discussed in Chapter 2, we can call this an auto-encoder which is a
special instance of the encoder-decoder architecture.

5.2.2 Example: Neural Machine Translation

Next we illustrate the application of the encoder-decoder architecture using a working example
— neural machine translation (NMT). We consider a well-known NMT model which uses
RNN or its variants for building both the encoder and decoder [Cho et al., 2014; Sutskever et al.,
2014]. The encoder of the NMT model is a standard RNN-based encoder. As the RNN-based
sequence model has been discussed in detail in Chapter 4, we just give a brief review of this
model here. Suppose that the source-side vocabulary is Vx and each source-side word xj is
represented as a one-hot vector in R|Vx|. Then, xj is transformed into a hs-dimensional vector
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(or word embedding)

xe
j = Embeds(xj) (5.7)

where Embeds(·) is the word embedding function. More details about word embedding
models can be found in Chapter 3.

The RNN model takes the sequence of the word vectors xe
1...x

e
m and produces a sequence

of RNN state vectors h1...hm. An RNN state vector hj ∈ Rdh is defined to be

hj = RNN(hj−1,x
e
j) (5.8)

Here RNN(·) is an RNN unit that summarises the information up to position j by combining
the previous state hj−1 and the current input xe

j in some way. Then, the last state hm can be
treated as a representation of the input sequence x1...xm, and we can use hm as the output of
the encoder, written as

hm = Encode(x1...xm) (5.9)

Figure 5.2 (a-b) shows an illustration of the encoding process. Note that the model
described above just involves a single-layer RNN. In practical systems, this framework can be
easily extended to include multiple layers and more powerful recurrent units (such as LSTM
units).

The decoder of the NMT model is a standard RNN-based language model, that is, we
predict the next word yi+1 given all previous words y1...yi. To incorporate the source-side
information into translation, a simple and straightforward method is to treat hm as the initial
state of the target-side RNN. Let ye

0 ∈ Rds be the word vector of the start symbol ⟨SOS⟩
(denoted by y0). The corresponding RNN state is given by

s0 = RNN(hm,y
e
0) (5.10)

Here RNN(·) has the same form as the recurrent unit used in the encoder, but with different
parameters.

For i > 0, the state vector si ∈ Rds is given in the form

si = RNN(si−1,y
e
i ) (5.11)

Then, si is fed into a Softmax layer to produce a distribution over the target-side vocabulary
Vy. The output of the Softmax layer is given by

Pr(·|y1...yi,x1...xm) = Pr(·|si)
= Softmax(siUy+by) (5.12)

where Uy ∈Rds×|Vy| and by ∈R|Vy| are the parameters of the Softmax layer. Pr(yi+1|y1...yi,x1...xm)
can be seen as the probability of predicting word yi+1 by conditioning on both the translated
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RNN RNN ... RNN
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1 xe

2 xe
m

h1 h2 hm(H)

RNN RNN ... RNN

Soft. Soft. Soft.
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s0 s1 sn

Pr(y1|y0,x) · · · Pr(yn+1|y0...yn,x)

(d) The decoder predicts the target-side words

RNN RNN ... RNN

xe
1 xe

2 xe
m

h1 h2 hm(H)

RNN

ye
0

s0

(c) The decoder takes the representation of x

RNN RNN ... RNN

xe
1 xe

2 xe
m

h1 h2 hm(H)

(b) The encoder represents x as H

RNN

xe
1

h1

(a) The encoding process starts

Figure 5.2: The encoding and decoding steps for an RNN-based NMT system. The encoder is
a standard RNN. The encoding process starts with the first source-side word and ends up with
the last source-side word. The last state of the RNN is taken to be the representation of the
entire source-side sequence (i.e., H= hm). The decoder is another RNN. At the first step, it
takes H from the encoder. After representing (ye

0...h
e
i ,H) as si at position i, a softmax layer

is built to predict the next word yi+1.

words y1...yi and the source-side sequence x1...xm. See Figure 5.2 (c-d) for an illustration of
the word predictions of a decoder.

Armed with this model of word prediction, we turn to a form that is frequently used in
papers on NMT, like this

Pr(y|x) = Pr(y0y|x)
= Pr(y0y1...yn|x1...xm)
= Pr(y0|x1...xm)Pr(y1...yn|y0,x1...xm)

=

n−1∏
i=0

Pr(yi+1|y0...yi,x1...xm) (5.13)
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Sometimes, this equation is also written in an equivalent form

Pr(y|x) =

n∏
i=1

Pr(yi|y0...yi−1,x1...xm) (5.14)

Here we assume that y always starts with y0 (i.e., ⟨SOS⟩) and so Pr(y0|x1...xm) = 1. In
many practical systems, it is also common to assume that y ends with a special symbol ⟨EOS⟩.
Therefore, we can modify this equation to involve ⟨SOS⟩ and ⟨EOS⟩ on both the source and
target-sides, as follows

Pr(y0yyn+1|x0xxm+1) = Pr(y0y1...ynyn+1|x0x1...xmxm+1)

= Pr(y0|x0...xm+1) ·
Pr(y1...ynyn+1|y0,x0...xm+1)

=

n∏
i=0

Pr(yi+1|y0...yi,x0...xm+1) (5.15)

where x0 = y0 = ⟨SOS⟩, xm+1 = yn+1 = ⟨EOS⟩, and Pr(y0|x0x1...xmxm+1) = 1.

Since Pr(y|x) can be expressed as a neural network, training this model is straightforward.
As described in Chapter 4, RNN-based language models are trained by using the cross-entropy
loss and gradient descent. NMT can use this same method for training model parameters. Once
we have obtained the optimized model, we can then use it to translate new sentences. Finding
the best translation for any given source-side sentence is a standard search problem. We will
discuss it in Section 5.4.

5.3 The Attention Mechanism

The NMT model discussed in the previous section was based on a fixed-length representation of
the source-side sequence. While this model is easy to implement, in many practical applications
it is unsatisfactory because a fixed-length vector might not be sufficient for representing a
variable-length sequence, especially when the sequence is long. This system will therefore
need some mechanism to couple the encoder and the decoder in a fine-grained manner. In this
section we discuss the attention mechanism by which a system can learn, for each word of the
target-side sequence, an adaptive representation that focuses more on important parts of the
source-side sequence.

In fact, the discussion here is related to the attention models in psychology because
translation is itself a cognitive process [Sternberg, 1996; Neisser, 2014]. The key idea behind
this type of model is natural: attention is generally concentrated on specific parts of the
data when we process something. This forms the basis of many state-of-the-art sequence-
to-sequence models, and the attention mechanism has been the de facto standard for the
development of these systems.
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(a) An NMT system without attention
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(b) An NMT system with attention

Figure 5.3: NMT architectures without (left) and with (right) the attention model. When the
attention model is not involved, a fixed-length representation is considered for generating
the entire target-side sequence. By contrast, when the attention model is involved, a new
representation is computed specifically for each target-side state so that the decoder can learn
to concentrate on different parts of the source-side sequence for predicting a target-side word.

5.3.1 A Basic Model
Recall that in the NMT model of the previous section, the encoder represents a source-side
word sequence as h1...hm, and the decoder represents a target-side word sequence as s1...sn.
The attention mechanism addresses the question of how a representation can be learned from
h1...hm so that this representation can explain the source-side sequence well for a given target
state si

2. From an information processing perspective, so long as we ignore the meanings of
h1...hm and si in NMT, attention can be thought of as a generic process of processing the
input information h1...hm by considering how each hj is related to the interest si. Figure 5.3
compares NMT architectures with and without the attention mechanism.

More formally, an attention model produces a linear combination of {h1,...,hm} in the
form

ci =
m∑
j=1

αi,j ·hj (5.16)

where αi,j is the attention weight that describes how much the model should rely on hj when

2Following the convention in machine translation [Brown et al., 1993], we use j to represent a position in the
source-side sequence, and use i to represent a position in the target-side sequence.
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computing ci for si. Sometimes ci is also called a context vector.

A common approach to computing attention weights is to normalize alignment scores in
the following form

αi,j = Softmax(a(si,hj))

=
exp(a(si,hj))∑m
j′=1 exp(a(si,hj′))

(5.17)

Here the alignment score a(si,hj) measures how strong hj is related to si. In general, a(si,hj)
can be defined in several different ways [Graves et al., 2014; Bahdanau et al., 2014; Luong
et al., 2015]. A comprehensive list of these functions can be found in survey papers on this
subject [Chaudhari et al., 2021]. Here we introduce some of the common ones.

• Dot-product Attention. One of the simplest methods is to measure the similarity
between hj and si. Thus, we can calculate the dot-product of the two vectors, as follows

a(si,hj) = sih
T
j

=

dh∑
k=1

si(k) ·hj(k) (5.18)

A variant of this model, called scaled dot-product attention, adds a scalar factor 1
β to

the right-hand side of Eq. (5.18), as follows

a(si,hj) =
sih

T
j

β
(5.19)

We will see an example of this model later in this section.

• Cosine Attention. Another commonly used similarity measure in vector algebra is the
cosine of the angle between two vectors, given by

a(si,hj) = cos(si,hj)

=
sih

T
j

∥si∥2 · ∥hj∥2
(5.20)

where ∥a∥2 = (a ·a)
1
2 is the Euclidean norm of the vector a.

• Weighted Dot-product Attention. This attention model involves a linear mapping of
the input vectors before performing the dot-product operation, given by

a(si,hj) = siWah
T
j (5.21)

where Wa ∈ Rdh×dh is the parameter matrix of the linear mapping. Both this approach
and the dot-product attention approach are also called multiplicative attention [Ruder,
2017].
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• Additive Attention. In additive attention, the entries of the two vectors are summed in
some way. A widely-used form is given by Bahdanau et al. [2014]

a(si,hj) = vT
a TanH(siWs+hjWh) (5.22)

where Wh,Ws ∈ Rdh×da and va ∈ Rda are parameters. TanH(siWs+hjWh) pro-
duces a da-dimensional vector where each entry is a transformed weighted sum of the
entries of hj and si. It is followed by a dot-product with another weight vector va.

Now let us return to Eqs. (5.16-5.17) and rethink the role of attention weights. Eq. (5.17)
informally defines a “distribution” over h1...hm, written as

Pr(hj |si) = αi,j (5.23)

If we consider h a random variable that takes a value from {h1, ...,hm}, then αi,j can be
thought of as the probability of h= hj , conditioned on si, and Eq. (5.16) can be rewritten as

ci =

m∑
j=1

Pr(hj |si) ·hj

= Eh∼Pr(h|si)(h) (5.24)

In other words, ci can be viewed as an expected representation of the source-side sequence
given the target-side state si, that is, the expectation of {h1, ...,hm} under the distribution
Pr(hj |si). This provides a general framework for describing the way the decoder receives the
information from the encoder: the decoder is a receiver that determines how much information
is accepted from each sender. For example, in the NMT model of the previous section, there
is only one sender hm, and so the receiver receives all the information the sender sends.
By contrast, in the NMT model armed with the attention mechanism, there are m senders
{h1, ...,hm} and the receiver receives information according to a distribution of preferences
for the senders.

It is straightforward to introduce the attention model into the process of word prediction.
We modify our treatment of si so as to make use of both the source-side and target-side
information at each decoding step. We slightly modify the definition of si to include the
context vector corresponding to the previous state si−1, as follows

si = RNN(si−1,ci−1,y
e
i ) (5.25)

Compared with the model of Eq. (5.11), the model of Eq. (5.25) takes ci−1 as an additional
input. Therefore, this model considers both the representation of the target-side words y1...yi−1

(as encoded in si−1 and ye
i ) and the representation of the entire source-side sequence x1...xm

(as encoded in ci−1). Then, the distribution of target words at position i can be conditioned on
si as usual

Pr(·|y1...yi,x1...xm) = Pr(·|si) (5.26)
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Figure 5.4: An attention model for NMT. Suppose we have obtained the representations
{h1, ...,hm} and the decoder state si−1 up to this point. We wish to obtain the decoder state at
the next step. To this end, we first compute attention weights by normalizing some attention
scores between si−1 and {h1, ...,hm}, and then compute a context vector ci−1 by summing
over {h1, ...,hm} with the attention weights. A new decoder state si is created by taking the
context vector ci−1, the previous state si−1, and the word representation ye

i . si will be used as
a condition for predicting a distribution of words at step i+1.

where Pr(·|si) is generally a Softmax layer. This process is illustrated in Figure 5.4.
We now have a model for computing Pr(yi+1|y1...yi,x1...xm). A brief outline of the key

steps of this model is given by

1. Encode the source-side sequence as h1...hm where hj =RNN(hj−1,x
e
j).

2. Repeat the following procedure from i= 1 to n−1.
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a. Compute the alignment score a(si−1,hj) for each j.

b. Compute the attention weights {αi−1,1, ...,αi−1,m}
where αi−1,j =

exp(a(si−1,hj))∑m
j′=1 exp(a(si−1,hj′ ))

.

c. Compute the context vector ci−1 =
∑m

j=1αi−1,j ·hj .

d. Compute the target-side state si =RNN(si−1,ci−1,y
e
i ).

e. Compute the distribution of target-side words Pr(·|si).

f. Compute Pr(yi+1|y1...yi,x1...xm) = Pr(yi+1|si) for a given word yi+1 (as in
training), or select the most likely word ŷi+1=argmaxyi+1

Pr(yi+1|y1...yi,x1...xm)
(as in testing).

In real-world systems, this basic model can be modified to better predict the target-side
words. For example, we can introduce fusion layers to combine si, ci−1, and ye

i before the
Softmax layer so that we have a deeper model for prediction [Bahdanau et al., 2014]. Another
commonly used approach is to stack multiple RNN layers on the target-side. In this case, one
can perform attention in either each layer of the stack [Wu et al., 2016] or the top-most layer
of the stack [Luong et al., 2015]. See Section 5.3.5 for more information about multi-layer
approaches to attention.

5.3.2 The QKV Attention
Because the attention mechanism is such a powerful approach, many variants have been
developed. Perhaps the most widely used approach is to reframe the attention problem as one
of matching a query in a set of key-value pairs. It lays the foundation for the well-known
sequence model — Transformer [Vaswani et al., 2017].

Here we assume that there are a number of key-value pairs {(k1,v1), ...,(km,vm)} and a
query q. The goal of the query-key-value attention (or QKV attention) model is to obtain a
value by considering the correspondence between the query and the keys. This is a standard
searching problem in database systems in which information is returned in its original form
or a new form when it matches the query. In the QKV attention, the result of searching is
not a single value in {v1, ...,vm} but instead a combination of these values. This is the key
difference of this attention model compared with the conventional models of searching.

Formally, the result of the QKV attention is defined to be

c =
m∑
j=1

αjvj (5.27)

where

αj = Softmax(
qkT

j

β
) (5.28)

is the attention weight. It turns out that the above model has precisely the same general form
as the model described in the previous subsection, and c can be simply viewed as a context
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vector.

While the basic form of the QKV attention is not something “new”, it can handle a variety
of problems by giving q, kj and vj appropriate meanings. Here we consider a more general
case where there are n queries {q1, ...,qn} and n output vectors {c1, ...,cn}. To simplify
notation, we use Q to denote a matrix where the i-th row vector is qi, like this

Q =

q1
...
qn

 (5.29)

Likewise, we can define K=

k1
...

km

, V =

v1
...

vm

, and C=

c1...
cn

. Then, the attention model

can be formulated as

C = Softmax(
QKT

β
)V (5.30)

Figure 5.5 shows an illustration of this equation. Note that Softmax(QKT

β ) computes a
matrix of attention weights

Softmax(
QKT

β
) =

α1,1 ... α1,m
...

...
αn,1 ... αn,m

 (5.31)

where a row vector
[
αi,1 ... αi,m

]
represents a distribution over {v1, ...,vm}. We can then

expand Eq. (5.30) for easy understanding of the model

C =

c1...
cn



=


∑m

j=1α1,jvj
...∑m

j=1αn,jvj



=

α1,1 ... α1,m
...

...
αn,1 ... αn,m


v1

...
vm

 (5.32)

In sequence-to-sequence modeling, Q, K and V can be defined in several different
ways. To describe the correspondence between the source-side and target-side sequences, one
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Figure 5.5: The QKV attention model for batches of queries (Q), keys (K), and values (V). The
figure shows a direct implementation of the formula C= Softmax(QKT

β )V. Softmax(QKT

β )

computes the attention weights by normalizing a scaled dot-product of Q and KT. This results
in a matrix α in which a row vector describes weights of different values. By multiplying α
with V, we obtain a sequence of new values, each expressing a weighted sum of the original
values.

approach, called encoder-decoder attention, is to simply assume that

Q =

s1...
sn

 (5.33)
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and

K = V =

h1
...

hm

 (5.34)

In this case, C is a sequence of new representations of the source-side sequence given the
representations of the target-side sequence. As with the model described in the previous
subsection, each ci ∈C can be used to predict the word yi+1.

In addition to applying the model to sequence-to-sequence problems, another type of
approach is to regard it as a sequence model, that is, we use the QKV attention to represent a
sequence in one language. In this case, the QKV attention is also called self-attention which
forms the basis of the well-known Transformer model [Vaswani et al., 2017]. Consider, for
example, the sequence of states h1...hm. The self-attention model assumes that

Q = K = V =

h1
...

hm

 (5.35)

Then, the output of the model is a sequence of representations c1...cm. cj is a representation
which considers the correlations between hj and any other element of the input sequence. We
will see a more detailed discussion on this model in Chapter 6.

5.3.3 Multi-head Attention

Multi-head attention is an interesting extension to the above models. The key idea is to
perform attention in different sub-spaces of representations simultaneously rather than in a
single space of representations. To illustrate, consider a standard attention model that takes
sequences of source-side and target-side states and outputs a sequence of new states, written as

c1...cn = Att(h1...hm,s1...sn) (5.36)

where hj ,si,ci ∈ Rdh , and Att(·) is the attention function. We can map hj into τ vectors
{h[1]

j , ...,h
[τ ]
j } via the following linear transformations

h
[1]
j = hjW

[1]
h (5.37)

...

h
[τ ]
j = hjW

[τ ]
h (5.38)

where h
[1]
j , ...,h

[τ ]
j ∈ R

dh
τ , and W

[1]
h , ...,W

[τ ]
h ∈ Rdh×

dh
τ .

Similarly, we can map si into τ vectors {s[1]i , ...,s
[τ ]
i }. We then define τ feature sub-spaces

in which the attention function is performed independently. For the k-th feature sub-space, we
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have

c
[k]
1 ...c

[k]
n = Att(h

[k]
1 ...h

[k]
m ,s

[k]
1 ...s

[k]
n ) (5.39)

The output of the model is a sequence of dh-dimensional vectors, each of which is obtained
by concatenating the vectors that are produced in all these feature sub-spaces, followed by a
linear transformation. This procedure is given by

c1 = [c
[1]
1 , ...,c

[τ ]
1 ]Wc (5.40)

...

cn = [c[1]n , ...,c
[τ ]
n ]Wc (5.41)

where Wc ∈ Rdh×dh .

Following the notation used in the previous subsection, we can express a sequence of

vectors as a matrix, say, H=

h1
...

hm

 ∈Rm×dh , S=

s1...
sn

 ∈Rn×dh , and C=

c1...
cn

 ∈Rn×dh .

Using this notation, we rewrite Eq. (5.36) as

C = Att(H,S) (5.42)

To give a formal definition of multi-head attention, we first introduce the split and merge
functions. The split function divides each row vector of a matrix into a number of sub-vectors,
resulting in a 3D tensor. For example, splitting am×dh matrix A with τ produces a τ×m× dh

τ

tensor3

Aheads = Split(A, τ) (5.43)

The merge function has a reverse form of the split function. Given a τ ×n× dh
τ tensor (say

Aheads), it merges each group of τ dh
τ -dimensional sub-arrays in the form

Amerge = Merge(Aheads, τ) (5.44)

Thus the form of multi-head attention is given by

C = CmergeWc

= Merge(Cheads, τ)Wc

= Merge(Att(Hheads,Sheads), τ)Wc (5.45)

Hheads = Split(HWh, τ) (5.46)

Sheads = Split(SWs, τ) (5.47)

3A a× b× c tensor can be treated as an array of a matrices whose shapes are b× c.
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H ∈ Rm×dh S ∈ Rn×dh

Project & Split
Split(HWh, τ)

Project & Split
Split(HWs, τ)

Hheads

∈ R3×m× dh
3

Sheads

∈ R3×n× dh
3

Att(Hheads,Sheads)

Cheads

∈ R3×n× dh
3

Merge & Project
Merge(Cheads, τ)Wc

C ∈ Rn×dh

Figure 5.6: An attention model with τ = 3 heads. First, we transform the input matrices
into multi-head representations, i.e., 3D tensors Hheads ∈ R3×m× dh

3 and Sheads ∈ R3×n× dh
3 .

These tensors are then taken by an attention model. The output of this model is a tensor

Cheads ∈ R3×n× dh
3 . We then merge the heads of Cheads, followed by a linear transformation.

Finally, we obtain n vectors of size dh, represented by an n×dh matrix.

where Wh,Ws ∈ Rdh×dh are the parameters. Split(HWh, τ) implements the projections of
Eqs. (5.37-5.38) for all hj . Likewise, we can have the meaning of Split(HWh, τ). Note that
here Att(·) is extended to deal with multi-head inputs. See Figure 5.6 for an illustration of this
model.

Multi-head attention is a very general approach that can be extended to many models. As a
simple example of this extension, consider the QKV attention model discussed in the previous
subsection. Let AttQKV(Q,K,V) be the attention function, and Q ∈Rdk ,K ∈Rdk ,V ∈Rdv
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be the inputs. The multi-head QKV attention model is given by

C = Merge(AttQKV(Qheads,Kheads,Vheads))Wc (5.48)

Qheads = Split(QWq, τ) (5.49)

Kheads = Split(KWk, τ) (5.50)

Vheads = Split(VWv, τ) (5.51)

where Wq ∈ Rdk×dk ,Wk ∈ Rdk×dk ,Wv ∈ Rdv×dv ,Wc ∈ Rdv×dv are the model parameters.

One advantage of multi-head attention is that the feature sub-spaces will each describe a
different perspective of attention (call it an attention head or head for short). Therefore, the
concatenation of the outputs over these heads represents an ensemble of attention models that
deal with different parts of the data. This is similar to learning a group of models independently
and combining them to form a stronger model. This type of machine learning approach has
been proven to be useful in many problems [Opitz and Maclin, 1999; Zhou, 2012b]. Note that
the multi-head attention models discussed here are parameterized by the linear projections
on the input and output spaces. The use of these linear projections is generally helpful as the
models become deeper and can describe more complex problems.

From an architecture design perspective, multi-head attention falls into a broad class of
neural networks — those involving a number of branches of layer stacks for dealing with
the same input (call them multi-branch neural networks). However, unlike conventional
approaches, which require different model architectures for different branches, the multi-head
attention approach is based on a single model for all the heads. As a result, such systems are
very efficient in practice because the attention procedure can run in parallel over these heads.

5.3.4 Hierarchical Attention

In many cases the underlying structure of an NLP problem is hierarchical. For example,
documents may have a multi-level structure: a document is made up of sentences, a sentence is
made up of words, and a word is made up of characters. It is therefore desirable to modify the
attention models to take into account the hierarchical nature of this data [Yang et al., 2016].

To illustrate, we consider a simple problem where the source-side has a 2-level tree
structure. Suppose the source-side sequence is a concatenation of a number of sub-sequences
{ū1, ..., ūT }. Each ūt yields a sequence of words

ūt = xp(t,1)...xp(t,|ūt|) (5.52)

where p(t, i) is the position of the i-th word of ūt in the entire source-side sequence x1...xm.
Then, the sequence x1...xm can be written as a composition of T sub-sequences:

x1...xm = xp(1,1)...xp(1,|ū1|)︸ ︷︷ ︸
ū1

xp(2,1)...xp(2,|ū2|)︸ ︷︷ ︸
ū2

... xp(T,1)...xp(T,|ūT |)︸ ︷︷ ︸
ūT

(5.53)
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Similarly, the encoder output h1...hm can be written as

h1...hm = hp(1,1)...hp(1,|ū1|) hp(2,1)...hp(2,|ū2|) ... hp(T,1)...hp(T,|ūT |) (5.54)

On the target-side, we assume that there are two sequences of state vectors: one for
placing the standard representations of the target-side sequence (i.e., s1...sn) and one for
placing higher-level representations of s1...sn. Let ϕ(i) denote the position in the higher-level
sequence of si, and s̄ϕ(i) denote the corresponding state vector. For each i, we thus have a pair
of state vectors si and s̄ϕ(i). In general, the relationship between si and s̄ϕ(i) comes from the
hierarchical structure of the problem. For example, si is the representation of a word, and s̄ϕ(i)
is the representation of the sentence the word belongs to4.

As before, our goal is to obtain a context vector ci for each target-side position i. Here
we still take ci to be a weighted sum of {h1, ...,hm}, as in Eq. (5.16). All that remains is
to specify the attention weight for each hj . As a first step we attend si to each ut. This is a
standard procedure. We just need to run the attention model on hp(t,1)...hp(t,|ūt|) instead of
h1...hm, given by

h̄t = Att(hp(t,1)...hp(t,|ūt|),si)

=

|ūt|∑
k=1

πi,k,thp(t,k) (5.55)

where πi,k,t is the attention weight restricted to ut. h̄t is a representation of ut, and so we have
a new sequence of representations h̄1...h̄T .

Then, we run the attention model on h̄1...h̄T to perform a second round of attention.
This is done by attending sϕ(i) to h̄1...h̄T . The output is a context vector for the hierarchical
attention model, given by

ci = Att(h̄1...h̄T ,sϕ(i))

=

T∑
t=1

γi,th̄t (5.56)

where γi,t is the weight of attending sϕ(i) to h̄t. Substituting Eq. (5.55) into Eq. (5.56), we can
write ci as

ci =

T∑
t=1

|ūt|∑
k=1

γi,tπi,k,thp(t,k)

=

m∑
j=1

αi,jhj (5.57)

While the notation in this subsection is a bit complicated, the form of the resulting model

4If the a-th sentence covers words from position b to c, then ϕ(b) = ϕ(b+1) = ...= ϕ(c) = a.
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hp(t,1) ... hp(t,|ūt|)...hp(1,1) ... hp(T,|ūT |) si

sub-sequence ūt

Att(·)1st attention

h̄th̄1 ... ... h̄T sϕ(i)

Att(·)2nd attention

ci

Figure 5.7: A 2-level hierarchical attention model. The input sequence h1...hm is made
up of T sub-sequences. For each sub-sequence ūt, an attention model is used to produce
a context vector h̄t by considering the target-side state (i.e., si) and the representations of
the sub-sequence (i.e., hp(t,1)...hp(t,|ūt|)). The result of running this procedure on the T sub-
sequences is T level-1 representations h̄1...h̄T . They are then taken by a second attention
model to consider the attention between these representations and a higher-level target-side
state sϕ(i). This results in the context vector ci which describes the attention between the
target-side state si and the entire source-side sequence h1...hm.

is simple. We still combine {h1, ...,hm} in a linear manner but with new weights [Maruf
et al., 2019]. Computing αi,j describes a generative process in which we first determine the
weight of each sub-sequence and then determine the weight of each word in a sub-sequence, as
illustrated in Figure 5.7. See below for an alignment among different types of attention weight.

sequence h1 ... h|u1| h|u1|+1 ... h|u1|+|u2| ...... h∑T−1
t=1 |ut|+1

... hm

weight (α) αi,1 ... αi,|u1| αi,|u1|+1 ... αi,|u1|+|u2| ...... α
i,
∑T−1

t=1 |ut|+1
... αi,m

sequence hp(1,1) ... hp(1,|ū1|) hp(2,1) ... hp(2,|ū2|) ...... hp(T,1) ... hp(T,|ūT |)

weight (γ) γi,1 ... γi,1 γi,2 ... γi,2 ...... γi,T ... γi,T

weight (π) πi,1,1 ... πi,|ū1|,1 πi,1,2 ... πi,|ū2|,2 ...... πi,1,T ... πi,|ūT |,T
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5.3.5 Multi-layer Attention

So far we have considered the case of single-layer attention — the output of the attention
models is written as a linear combination of the source-side representations. Now we extend it
in a natural way to multi-layer attention in which the single-layer attention procedure runs a
number of times for forming a “deeper” attention model.

To do this, a multi-layer neural network is created on the target-side. The model architecture
is regular. We stack a number of attention layers, each interacting with the source-side sequence
and feeding its output to the next layer. In an attention layer, we perform attention as usual.
For the l-th layer in the stack, this step takes the source-side sequence (denoted by h1...hm) as
well as the output of the previous layer (denoted by sl−1

1 ...sl−1
n ), and produces a sequence of

vectors by

cl1...c
l
n = Att(h1...hm,s

l−1
1 ...sl−1

n ) (5.58)

where Att(·) could be any attention function described in this chapter.

Then, we create another neural network f(·) to give more modeling power to the model.
The output of the attention layer is thus defined to be

sl1...s
l
n = f(cl1...c

l
n,s

l−1
1 ...sl−1

n ) (5.59)

f(·) can be designed in many ways [Sukhbaatar et al., 2015; Wu et al., 2016; Vaswani et al.,
2017]. A popular choice is to define f(·) as a feed-forward neural network with a residual
connection, given by

f(cl1...c
l
n,s

l−1
1 ...sl−1

n ) = FFN(cl1...c
l
n) + sl−1

1 ...sl−1
n (5.60)

Substituting for the vectors cl1...c
l
n, using Eq. (5.58), the output of layer i is written in the

form

sl1...s
l
n = FFN(Att(h1...hm,s

l−1
1 ...sl−1

n )) + sl−1
1 ...sl−1

n (5.61)

As with the models in the previous subsections, it is convenient to use a more compact
notation by expressing a sequence of vectors as a matrix. Thus this model can be given in
another form

Sl = FFN(Att(H,Sl−1))+Sl−1 (5.62)

Here FFN(·) is generally a multi-layer neural network with non-linear activation functions.
The identity mapping (i.e., +Sl−1) creates a direct path from the input to the output of the
layer, making it easier to train a deep neural network.

Figure 5.8 shows the architecture of this model. The attention model starts with the initial
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H H S0 = S

Att(·)

FFN(·)

C1 Layer 1

S1H

Att(·)

FFN(·)

C2 Layer 2

S2

Figure 5.8: A 2-layer attention model. These layers take the same “key-value” pairs (i.e.,
H) but each takes a different “query” (i.e., Sl). The attention model is standard: context
vectors Cl are generated by taking both H and Sl. A feed-forward neural network is built
to transform Cl, followed by an addition of Sl. So this model can be formulated as Sl =
FFN(Att(H,Sl−1))+Sl−1. Sl is then used in the next layer as the query, that is, layer l+1
takes H and Sl, and repeats the above process. The output of the last layer can be viewed as a
deeper representation of H for S.

representation of the target-side sequence, that is, S0 = S =

s1...
sn

. If there are L attention

layers, then the final output will be SL.

5.3.6 Remarks

Above we considered a basic attention model and a series of refinements. The literature on
attention and related topics contains a wide range of methods for modeling how a system
concentrates on different parts of the input, as well as a wide range of applications of such
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models. This subsection provides discussions on some of the interesting issues.

1. Alignment vs Attention

Attention is related to a long line of research on alignment approaches to modeling the
correspondence between two groups of language units. In NLP, alignment is a very general
concept that is used to refer to several problems. For example, most statistical machine
translation systems are trained on bilingual texts which are annotated with word-to-word
alignment [Koehn et al., 2003; Chiang, 2005]. Word alignment models are thus developed to
generate links between words in two sentences [Vogel et al., 1996; Och and Ney, 2003; Taskar
et al., 2005; Dyer et al., 2013]. While the outputs of these systems are discrete variables, the
underlying models are mostly probabilistic and continuous. Therefore, the correspondence
between word alignment and the attention models discussed here is apparent because they are
both learned to assign a weight to each pair of words.

Note that despite the similarity between alignment and attention problems, their goals are
different. In most cases word alignment models are used as individual systems to produce
alignment results for downstream systems, whereas attention models are typically treated as
components of bigger systems and do not work alone (see Figure 5.9 for a comparison of these
models). This makes them fit different types of sequence-to-sequence systems in practice:
word alignment is one step of a pipelined system, and attention is some intermediate states of a
neural network.

Nevertheless, word alignment and attention are two related problems, and can help each
other in some cases. For example, one way to see how an attention model behaves is to induce
word alignments from it and measure the quality of these word alignments [Tu et al., 2016; Li
et al., 2019; Garg et al., 2019]. Also, systems equipped with the attention mechanism can be
guided by external word alignment resources [Mi et al., 2016b; Liu et al., 2016b].

2. Introducing Priors

As discussed in Section 5.3.1, the attention models implicitly define an attention distribution
over {h1, ...,hm} by which we can compute a weighted sum of these representations. This
distribution is expressed in terms of the alignment weights and is learned as part of a model.
In addition to learning the attention distribution in an end-to-end fashion, we can also define
it based on our knowledge about how we concentrate on different parts of a sequence when
reading it.

One approach is to directly impose some structure on the distribution. A simple example
is that we consider only a span of the sequence for attention and discard the rest. Let [ρi−
D,ρi+D] be a 2D+1 word window centered at position ρi of the source-side sequence. We
can connect si only to hρi−D...hρi+D and obtain a local context vector in the following form

ci = Att(hρi−D...hρi+D,si) (5.63)

This approach is also called local attention. The problem of determining ρi is similar
to the reordering problem in machine translation. For translation between languages with
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(a) A heat map of word alignments
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(b) A heat map of attention weights

Figure 5.9: Heat maps of a word alignment model and an attention model for a pair of Chinese
and English sentences. The heat maps are represented as shaded grids in which each cell
describes the correspondence of a pair of Chinese and English words. This correspondence
is shown on a color scale ranging from white denoting a weight of 0 to pure blue denoting a
weight of 1.
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similar word orders, it is common to assume that the translation is monotonic and ρi is linear
with respect to i [Koehn, 2004], e.g., ρi = ⌊m i

n⌋ or ⌈m i
n⌉. An alternative method is to use a

neural network to predict a relative position in the source-side sequence (denoted by ri) [Luong
et al., 2015]. ρi can then be defined to be ⌊mri⌋ or ⌈mri⌉.

In another thread of research, a new distribution is derived by combining the original
attention distribution and some prior distribution. The simplest such distribution takes the form
of linear interpolation

P̃r(hj |si) = η ·Pr(hj |si)+(1−η) ·Prior (5.64)

where Prior is the prior, and η is the interpolation coefficient. When η = 1, it is a standard
attention model. By contrast, when η = 0, the attention is completely dependent on the prior
[You et al., 2020].

The prior can be chosen in many ways. A simple choice is to assume Prior to be a
Gaussian distribution Gaussian(µ,σ2). This makes the model well explained: the attention
is concentrated on some point of the sequence and decreases its strength as we spread the
attention from this point. To determine the mean and variance of the Gaussian distribution, we
can use the same technique described above, say, we develop two neural networks to compute
them respectively.

The interpolation can also be considered an intermediate step of computing the attention
distribution. For example, consider the QKV attention discussed in Section 5.3.2. The
interpolation can be placed on the query-key dot-product [Yang et al., 2018a; Guo et al., 2019].
To this end, we can modify Eq.(5.28) in the following form

αj = Softmax(
qkT

j

β
+ηPrior)

= Softmax(
sih

T
j

β
+ηPrior) (5.65)

As
qkT

j

β (or
sih

T
j

β ) is not constrained in [0,1], Prior is re-scaled by a hyper-parameter η.

Sometimes, priors arise in the context where the knowledge of attention comes from
external sources. As discussed above, incorporating word alignments into attention models is
one of the simplest ways to do this. The idea can be extended to make use of more structural
information, such as fertility and coverage [Cohn et al., 2016; Feng et al., 2016; Tu et al.,
2016], or more task-specific constraints, such as monotonic alignments between input and
output sequences [Raffel et al., 2017; Chiu and Raffel, 2018]. Also, as with syntactic machine
translation systems, parse trees can be used to bias the process of attention as an auxiliary input.
For example, dependency trees are a widely used source of information in modeling word
correspondence for either sequence-to-sequence [Chen et al., 2018a] or sequence modeling
problems [Zhang et al., 2020c; Nguyen et al., 2020; Xu et al., 2021b].

Since attention models can be computationally expensive in large-scale applications,
researchers have also developed efficient attention models by introducing more inductive
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biases into model design [Tay et al., 2020b]. This line of research can broadly be categorized
into efficient methods for NLP. In Chapter 6 we will present a discussion.

3. Attention in Memory Networks
As well as being of great interest in sequence-to-sequence systems, the attention mechanism
is extensively used in memory-based neural models [Sukhbaatar et al., 2015; Graves et al.,
2014; Kumar et al., 2016]. As discussed in Chapter 4, a memory system maintains a collection
of data items and allows users to retain and retrieve information. Given a query, it computes,
in some way, the match between the query and the key of each data item. This procedure is
also called addressing [Graves et al., 2014]. Such addressing is typically implemented by
first representing the query and the data item as real-valued vectors, and then calculating a
weight by considering some similarity between the two vectors. The result of the retrieval is a
weighted sum of all the data items. This formalism fits perfectly with the model of the QKV
attention discussed in Section 5.3.2.

Provided the attention mechanism and the memory mechanism are correlated, though not
from a psychology perspective, we can view attention as a process of retrieving information in
a memory (i.e., {h1, ...,hm}) for a given query (i.e., si). Thus we can interpret a sequence-
to-sequence system with the attention mechanism as follows. On the source-side, we store
information in a memory represented as a sequence of vectors h1...hm. Then, we retrieve
from this memory to recover step by step the source-side information on the target-side.

4. Beyond Sequence-to-Sequence Problems
While we restrict our discussion to the problem of transformation from one sequence to another
sequence in this section, the general approach of attention can be used to deal with other
problems. As mentioned in Section 5.3.2, and will be discussed in Chapter 6, a well-known
variant of this approach is self-attention. In self-attention, the QKV attention model is used
as a sequence model, and we have only one sequence of variables as input. As a result, the
outputs of this attention model can be treated as new representations of the input sequence.
Self-attention provides a general approach to modeling the interactions and dependencies
between input variables, and so can be applied to a variety of problems. For example, we
can concatenate h1...hm and s1...sn as a new sequence h1...hms1...sn, and run this model on
the sequence. In this way, self-attention is easily extended to a sequence-to-sequence model
[Lample and Conneau, 2019; Raffel et al., 2020]. Such an approach even works when h1...hm
and s1...sn represent different types of data. For example, we can use h1...hm to represent
a text and use s1...sn to represent an image. Then, we have a multi-modal model that fuses
textual and visual representations by performing self-attention on them [Chen et al., 2020c].

Another approach to joint representation learning of sequences is to build multiple attention
models so that each sequence can learn from other sequences. An example of such models
is co-attention, which has been widely used in multi-modal language processing [Lu et al.,
2016]. For example, for the purposes of visual question answering (VQA), we wish to figure
out which parts of the image are related to a word of the question and to figure out which
words of the question are related to a given part of the image. To do this we will build two
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attention models: one for image-to-text attention, and one for text-to-image attention. The
outputs of both models can be thought of as joint representations for the image and text, and
thus can be used as features for answer prediction.

The attention models discussed in this section are order-independent for input. This is an
issue for dealing with sequential data, and can be addressed by encoding order information
in the inputs themselves (see Chapters 4 and 6). On the other hand, the simplicity of this
formulation makes these models general: the input data of the models needs not to be sequential.
As a result, the attention models can be directly applied to more complex data, such as graphs
[Veličković et al., 2018; Lee et al., 2019].

5.4 Search
Search is a fundamental issue in artificial intelligence, and plays an important role in many
NLP systems. The search problem is a computational challenge here because the number of
hypotheses in the search space increases exponentially with the length of the sequence and
the size of the vocabulary on the target-side. Exhaustive search in this case is simply slow.
Therefore, real-world systems often involve search algorithms or heuristics to ensure that
optimal or sub-optimal solutions can be found in an acceptable time.

For many practical sequence-to-sequence applications, the search problem, also called the
inference problem sometimes, can be formulated as the following equation

ŷ = argmax
y∈Ω

Score(x,y) (5.66)

where Score(x,y) is a model that measures the goodness of y given x.
This equation takes a slightly different form from that of Eq. (5.2). First, we use Score(x,y)

instead of Pr(y|x) as the goodness function. While a typical approach to training sequence-to-
sequence models is to maximize Pr(y|x) (or Pr(x,y)), we often need to consider task-specific
problems when performing inference on test data, for example the problem of length bias. It is
therefore common to involve other terms, as well as Pr(y|x), to define the objective function
for search (see Section 5.4.1). A second difference between Eq. (5.66) and Eq. (5.2) arises
from the form of the search space which is constrained to Ω. In general, Ω is a pruned search
space and contains a relatively small number of hypotheses. A common way to achieve this
is through the use of pruning techniques and advanced search algorithms (see Section 5.4.2).
In this section we consider solutions to these problems and some of the refinements. These
methods are largely motivated by the development of machine translation, but the discussions
here are general and can be considered in most text generation problems.

5.4.1 The Length Problem

Recall from Section 5.2.2 that the probability of the target-side sequence y given the source-
side sequence x can be written as a product of probabilities of each word yi given both the
generated words y0...yi−1 and x. Here we re-express Eq. (5.14) using simpler notation, as
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follows

Pr(y|x) =
n∏
i=1

Pr(yi|y<i,x) (5.67)

where y<i denotes the sequence y0...yi−1. This can be equivalently expressed in terms of log
probabilities

logPr(y|x) =
n∑
i=1

logPr(yi|y<i,x) (5.68)

Such a simple form of modeling has clear advantages as practical models for NLP, but
unfortunately, this leads to a preference for shorter target-side sequences over longer target-side
sequences. So it seems implausible to simply take Score(x,y) = Pr(y|x) or logPr(y|x) in
search because the result is very probably a short sequence, say, a sequence of one or two
words. This problem is a direct consequence of the inductive bias of the above model. From a
supervised learning perspective, another reason for this is that teacher forcing is used to train
the model: only a ground-truth target-side sequence is considered in training, and the model is
forced to output this ground-truth. By contrast, when applying this model to test data, we need
to explore a big set of y of different lengths, and to compare different y in terms of a function
that is different from the one learned on the training data.

This problem can be addressed through a technique called length reward, which gives
bonuses to longer sequences by adding a term to Score(x,y) [He et al., 2016c]. As discussed
in Chapter 3, a commonly used form of length reward is given by

Score(x,y) = logPr(y|x)+λ ·n (5.69)

Here the length reward term is the length of y (i.e., n= |y|), weighted by the parameter λ > 0.
Improvements on this approach involve replacing n with an estimated sequence length by
using a length prediction model. For example, we can bound the reward in the following form
[Huang et al., 2017b; Yang et al., 2018b]

Score(x,y) = logPr(y|x)+λ ·max(lp,n) (5.70)

where lp is a predicted length, and is generally defined to be a scaled length of x, that is,
lp = scalarp ·m.

If we substitute the log probability logPr(y|x) given by Eq. (5.68) into Eq. (5.69), we
obtain

Score(x,y) =
n∑
i=1

logPr(yi|y<i,x)+λ ·n

=
n∑
i=1

[logPr(yi|y<i,x)+λ] (5.71)
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Thus, we can interpret the length reward term as a reward to each word yi. Such a method has
been widely used in statistical machine translation (SMT) systems in which the rewards
are treated as features of a log-linear model [Koehn et al., 2003; Chiang, 2007]. To find an
appropriate value of λ, we can either use minimum error rate training [Och, 2003], following
the convention in SMT, or use gradient-based methods as in neural network-based systems
[Murray and Chiang, 2018].

A second approach to biasing search towards longer sequences, called length normaliza-
tion, is to divide logPr(y|x) by a length correction term, written in the following form

Score(x,y) =
logPr(y|x)
ncorrect

(5.72)

A simple example of this model is to define the length correction term as the sequence length
[Jean et al., 2015], like this

ncorrect = n

= |y| (5.73)

In this case, logPr(y|x)
n =

∑n
i=1 logPr(yi|y<i,x)

n can be viewed as the log-scale geometric mean
of the probabilities {Pr(yi|y<i,x)}5.

Another example is the one used in the GNMT system [Wu et al., 2016]. It takes the
exponential of the shifted, re-scaled n, as follows

ncorrect =
(5+n)α

(5+1)α
(5.76)

where the power α is a hyper-parameter and can be determined empirically on a tuning set. To
compare different methods, Table 5.2 shows a list of scoring functions for length reward and
length normalization.

In machine translation, the length problem is also closely related to the coverage problem
which has been discussed extensively in SMT. When translating a source-side sequence, we
wish to know how many times each word is translated. Then, we will say that over-translation
occurs (i.e., a longer translation) if some words are translated too many times, and that under-
translation occurs (i.e., a shorter translation) if some words are not sufficiently translated.
Traditionally, the coverage of a source-side sequence is described in terms of anm-dimensional

5Suppose {a1, ...,an} are n variables. Since

exp

(∑n
i=1 logai
n

)
=

(
n∏

i=1

ai

) 1
n

(5.74)

we have ∑n
i=1 logai
n

= log

(
n∏

i=1

ai

) 1
n

(5.75)



5.4 Search 241

Method Form of Score(x,y)

No Reward/Normalization Score(x,y) = logPr(y|x)
Length Reward Score(x,y) = logPr(y|x)+λ ·n

Bounded Length Reward Score(x,y) = logPr(y|x)+λ ·max(lp,n)

Length Normalization (Basic) Score(x,y) = logPr(y|x)
n

Length Normalization (GNMT) Score(x,y) = logPr(y|x)
(5+n)α/(5+1)α

Table 5.2: Scoring functions for length reward and length normalization. m = |x|, n = |y|,
and lp = scalarp ·m. λ and α are parameters.

vector
[
υ1 ... υm

]
, called the coverage vector. υj describes to what extent the source-side

word xj is translated. In SMT systems υj is a binary variable: 0 denotes untranslated, and
1 denotes translated. However, NMT systems have no such symbolic coverage mechanism.
Instead, they have models that compute the attention weights between xj and all the target-side
words. Therefore, one way to define what we mean by the coverage of a word is to consider
how strong xj connects to the target-side words. To do this, we extend υj to be a continuous
variable, given by

υj =
n∑
i=1

αi,j (5.77)

υj can thus be viewed as the “number of times” xj is translated, say, υj = 0 means that xj is
not translated at all, and υj = 1 means that xj is counted only once in translation. Consider the
example in Figure 5.9. For the source-side word建设, the corresponding attention weights are
shown below.
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建设

(j = 5)

υ5 =
∑12

i=1αi,5 = 2.75

We will say that建设is translated 2.75 times. It is possible to make use of {υ1, ...,υm} to
define how much the source-side sequence is covered in translation. A simple way to do this
is to develop a coverage score cp(x,y) by combining {υ1, ...,υm}. For example, the GNMT
system defines cp(x,y) in the following form

cp(x,y) = β

m∑
j=1

log(min(υj ,1)) (5.78)
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where β is a weight for the coverage model. The underlying idea is that when υj ≥ 1 the word
xj is assumed to be adequately translated; when υj < 1 the word xj is assumed to be lack of
translation. Thus cp(x,y) penalizes hypotheses in which some of the source-side words miss
parts of the translations. An improvement to this form is given by Li et al. [2018]

cp(x,y) = β
m∑
j=1

log(max(υj ,γ)) (5.79)

where γ is the hyper-parameter for truncation, giving a tolerance for under-translation. A
similar form was proposed in [Chorowski and Jaitly, 2017]

cp(x,y) = β

m∑
j=1

1(υj > γ) (5.80)

It just counts the number of times υj is greater than γ.
cp(x,y) can be easily introduced into search by adding it to Score(x,y). For example, the

GHKM-style scoring function is defined to be

Score(x,y) =
logPr(y|x)

(5+n)α/(5+1)α
+cp(x,y) (5.81)

In practice, modifying Score(x,y) is not the only way to address the length problem in
search. An alternative approach is to have architecture changes for modeling the problem
[Tu et al., 2016; Mi et al., 2016a; Sankaran et al., 2016; See et al., 2017; Malaviya et al.,
2018]. Note that, sometimes the length of the target-side sequence has been specified or
predicted in some way. In these cases, we can either develop models not dependent on the
auto-regressive assumption [Gu et al., 2018], or develop length-controllable text generation
systems for interesting applications [Rush et al., 2015; Kikuchi et al., 2016].

5.4.2 Pruning and Beam Search
There are many ways to define a search space. As a general concept in computer science, a
search space is often referred to as the domain of the problem that is searched. For sequence-to-
sequence problems, we can think of a hypothesis as a mapping from a source-side sequence x

to a target-side sequence y, and can think of a search space as a collection of such hypotheses6.
We can implement a search program by organizing hypotheses in an understandable way

so that we can look at the search space for the problem. Recall that in Eqs. (5.67-5.68)
we assign a probability of y given x by using a left-to-right factorization. A typical search
system maintains a set of hypotheses (or partial hypotheses) and builds up these hypotheses
from left to right7. The search procedure begins with an initial hypothesis set Z0 containing

6Here we use (x,y) to denote a hypothesis. When there are multiple mappings from x to y, a hypothesis can
be represented as (x,y,d) where d denotes the mapping. For example, if we transform x to y with a synchronous
grammar, there might be multiple derivations of grammar rules to do this.

7A hypothesis is called partial when the corresponding target-side sequence does not end with ⟨EOS⟩, i.e., an
incomplete target-side sequence. In this section we use the terms hypothesis and partial hypothesis interchangeably
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only one hypothesis z0 whose target-side is y0 by considering y0 = ⟨SOS⟩ is the start symbol
for all target-side sequences. Then, we extend this hypothesis set over a number of search
steps. Suppose we have a sequence of hypothesis sets Z0...Znmax where nmax is the maximum
number of search steps. At step i, we wish to extend each hypothesis by adding a new word vk
drawn from the vocabulary Vy. Let z.src be the source-side of z and z.tgt be the target-side
of z. Clearly, we have z.src= x for any z. Given a hypothesis zcur ∈ Zi−1, we can extend it
to |Vy| hypotheses {z1next, ...,z

|Vy|
next}, given by

{z1next, ...,z
|Vy|
next} = Extend(zcur,Vy)

=
⋃

vk∈Vy

Extend(zcur,vk) (5.82)

Here Extend(zcur,vk) is a function that extends the input hypothesis zcur with a word vk ∈ Vy.
The target-side of a resulting hypothesis is the concatenation of zcur.tgt and vk, written as8,

zknext.tgt = zcur.tgt◦vk (5.83)

These new hypotheses {z1next, ...,z
|Vy|
next} are then added to Zi. Figure 5.10 illustrates a

few steps in this hypothesis extension process. We see that all the hypotheses can easily be
represented as a tree structure. Here Zi corresponds to a set of the nodes at level i of the search
tree, and we simply have

|Zi| = |V | · |Zi−1| (5.84)

In other words, the size of Zi grows exponentially with the number of steps, say, |Zi|= |V |i.
Each hypothesis z is associated with a log probability logPr(z.tgt|z.src). logPr(z.tgt|z.src)

simply takes the form of Eq. (5.68), and can be defined in a recursive fashion

logPr(zknext.tgt|zknext.src) = logPr(zcur.tgt|zcur.src)+
logPr(vk|zcur.tgt,zcur.src) (5.85)

As an example, suppose zknext.tgt= y0...yi+1. The form of Eq. (5.85) becomes clear from the
following rewriting

logPr(y0...yi+1|x)︸ ︷︷ ︸
logPr(zknext.tgt|zknext.src)

= logPr(y0...yi|x)︸ ︷︷ ︸
logPr(zcur.tgt|zcur.src)

+logPr(yi+1|y0...yi,x)︸ ︷︷ ︸
logPr(vk|zcur.tgt,zcur.src)

=

i∑
k=1

logPr(yk|y<k,x)+ logPr(yi+1|y0...yi,x)

=
i+1∑
k=1

logPr(yk|y<k,x) (5.86)

because their forms are the same.
8We use a◦ b to denote the concatenation of two strings a and b.
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⟨SOS⟩
s : 0

z0

⟨SOS⟩ ◦An

s : −6.1×105

⟨SOS⟩ ◦A

s : −3.2×104

⟨SOS⟩ ◦ “

s : −1.6×107

⟨SOS⟩ ◦Because

s : −7.7×106

⟨SOS⟩ ◦ If

s : −3.9×106

...

...

⟨SOS⟩A◦ team

s : −5.0×1010

⟨SOS⟩A◦ taxi

s : −2.7×1012

⟨SOS⟩A◦ tail

s : −1.3×1012

⟨SOS⟩A◦ text

s : −1.0×109

⟨SOS⟩A◦ tiger

s : −3.2×1012

...

...

Step 1Step 0 Step 2
(Z1)(Z0 = {z0}) (Z2)

Figure 5.10: Illustration of hypothesis extension in first 3 steps. Each (partial) hypothesis is
represented as a box in which we show the corresponding target-side sequence and model
score. Each search step is associated with a hypothesis set Zi. We start with a hypothesis
z0 ∈ Z0 denoting the start symbol ⟨SOS⟩. In step i, we extend every hypothesis in Zi−1 by
trying to append every word from a vocabulary V (see words in red). This operation will result
in |V | · |Zi−1| hypotheses, forming the hypothesis set Zi. The hypothesis extension procedure
represents a breadth-first search algorithm: we create all the nodes (or search states) at depth
i−1 before moving to depth i. A tree structure is created along with this procedure, and a leaf
node of the tree can trace the search path back to the root node.

Given this probability, we can then compute z.score= Score(z.src,z.tgt), as in Section
5.4.1. This enables us to compare different hypotheses in terms of z.score. If a hypothesis ends
with the symbol ⟨EOS⟩, it is called complete and is not extended anymore. Once a hypothesis
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is complete, it is added to a max-heap9. We can dump the hypotheses with maximum model
scores from the heap. In general, the search procedure will stop if we find a certain number
of complete hypotheses. For example, we can stop searching when the heap is full (see more
discussions later in this subsection). The resulting search algorithm is described below.

Algorithm: A Simple Breadth-first Search Algorithm
SimpleSearch(x)

// Search for the best hypothesis given the source-side sequence x

1. Create a Heap with sizeheap elements
2. Z0 = {z0} where z0.src= x and z0.tgt= y0
3. For each step i= 1 to nmax

4. For each hypothesis zcur ∈ Zi−1

5. For each word vk ∈ Vy
6. znext = Extend(zcur,vk,x)

7. If znext.tgt ends with ⟨EOS⟩, then
8. Add znext to Heap

9. Else
10. Add znext to Zi
11. If Heap is full and/or other stopping criteria are met, then
12. Break all the loops
13. return Heap.Pop()

Extend(zcur,vk,src)

// Create a new hypothesis by appending a new word vk to the target-side of zcur
1. Create a new hypothesis znext
2. znext.src= src

3. znext.tgt= zcur.tgt◦vk
4. znext.prob= zcur.prob+logPr(vk|zcur.tgt,zcur.src) // see Eq. (5.85)
5. znext.score= score(znext.src,znext.tgt) // see Section 5.4.1
6. Return znext

If the hypothesis heap has an infinite capacity (sizeheap =∞), this algorithm will perform
an exhaustive search over a space of all hypotheses whose target-side lengths are up to nmax,
resulting in at most 1+ |Vy|+ |Vy|2+ · · ·+ |Vy|nmax =

|Vy|nmax+1−1
|Vy|−1 complete hypotheses. This

is an extremely huge search space which is computationally intractable in practice10. Therefore,
in practical systems it is common to prune the search space in order to make the search tractable.
In later parts of this subsection we will introduce two popular search algorithms, both adopting
pruning for efficient search.

9Given a max-heap a, we use a.Pop() to denote a function popping the top-1 item of a, and use a.PopAll() to
denote a function popping all the items of a.

10Consider, for example, a vocabulary size of 20,000 (|Vy|= 20,000) and a length limit of 20 (nmax = 20).
|Vy|nmax+1−1

|Vy|−1
would be 1.05×1086.
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1. Greedy Search

The greedy strategy is one of the most common concepts that one learns in textbooks on
algorithms. It is based on a heuristic that the globally optimal solution can be approximated by
making locally optimal decisions. Although such an approximation can only obtain a locally
optimal solution, this is sufficient for many practical applications and its low computational
complexity is a clear advantage.

Applying the greedy strategy to the search problem here is straightforward. In each
extension given step i, we only consider the best hypothesis up to i. To be more precise, for
any Zi, we only keep the hypothesis with the highest model score and discard the rest. The
output of each step of the greedy search is given by

zbest = argmax
znext∈Extend(Zi−1,Vy)

znext.score (5.87)

Here the function Extend(Zi−1,Vy) has the same meaning as that in Eq. (5.82), but operates
on a set of hypotheses, that is,

Extend(Zi−1,Vy) =
⋃

z∈Zi−1

Extend(z,Vy) (5.88)

Then, Zi is defined to be

Zi = {zbest} (5.89)

A greedy search algorithm for sequence-to-sequence problems is described below.

Algorithm: A Greedy Search Algorithm
GreedySearch(x)

// Search for the “best” hypothesis in a greedy manner
1. Create a hypothesis zbest
2. Z0 = {z0} where z0.src= x and z0.tgt= y0
3. For each step i= 1 to nmax

4. zbest.score=−∞
5. For each hypothesis zcur ∈ Zi−1

6. For each word vk ∈ Vy
7. znext = Extend(zcur,vk,x)

8. If zbest.score < znext.score, then
9. zbest = znext
10. If zbest.tgt ends with ⟨EOS⟩ and/or other stopping criteria are met, then
11. Break the loop
12. Zi = {zbest}
13. Return zbest

In each step of search, we have only one active hypothesis to extend (i.e., |Zi−1|= 1) and
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therefore need |V | extensions from which we select the best one for the next step of search.
The total number of times Extend(zcur,vk) is called is |V | ·nmax. Provided Extend(zcur,vk)

is a fixed-cost function, the time complexity of the algorithm is linear with respect to |V | and
nmax.

2. Beam Search
Beam search is a natural extension of the above 1-best greedy search algorithm. It is based
on the greedy heuristics as well, and is thus a type of greedy algorithm. The idea of beam
search is to keep at each step a number of the most promising hypotheses rather than the 1-best
hypothesis. A beam is a data structure that stores the best hypotheses we have generated so
far. The number of hypotheses in a beam is a predetermined parameter, called beam width or
beam size. Here we can simply view Zi as a beam, written as

Zi = {z1best, ...,z
sizebeam
best } (5.90)

where sizebeam is the beam size. z1best is the best hypothesis in the extension Extend(Zi−1,Vy)

(see Eq. (5.87)), z2best is the 2nd best hypothesis in Extend(Zi−1,Vy), and so on.
The following pseudo-code describes a beam search algorithm for sequence-to-sequence

problems.

Algorithm: A Beam Search Algorithm
BeamSearch(x)

// Search for the “best” hypothesis by considering a number of best candidates
// in each step
1. Create a Heap with sizeheap elements
2. Z0 = {z0} where z0.src= x and z0.tgt= y0
3. For each step i= 1 to nmax

4. Create a heap Beam with sizebeam elements
5. For each hypothesis zcur ∈ Zi−1

6. For each word vk ∈ Vy
7. znext = Extend(zcur,vk,x)

8. If znext.tgt ends with ⟨EOS⟩, then
9. Add znext to Heap

10. Else
11. UpdateBeam(Beam,znext)

12. If Heap is full and/or other stopping criteria are met, then
13. Break all the loops
14. Zi =Beam.PopAll()

15. Return Heap.Pop()

UpdateBeam(Beam,znext)

// Update Beam with a newly-generated hypothesis znext
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1. Add znext to Beam a

aBeam is a max-heap with sizebeam elements. So, if znext.score is lower than all the elements in the
heap, the heap will be left unchanged. In other words, Beam only stores top-sizebeam best hypotheses and
ignores the rest.

The function UpdateBeam(Beam,znext) is a direct implementation of histogram prun-
ing. Note that this general-purpose framework provides a simple way to implement other
pruning methods, and one can modify UpdateBeam(Beam,znext) as needed. For example,
an alternative method, called threshold pruning, retains the hypotheses whose differences in
model scores with the best hypothesis in Beam are below a threshold θbeam, say, we discard
znext in UpdateBeam(Beam,znext) if

znext.score < zbest.score−θbeam (5.91)

where zbest is the best hypothesis in Beam. Alternatively, we can consider a relative threshold
method [Freitag and Al-Onaizan, 2017], given by

znext.score < zbest.score ·θbeam (5.92)

Figure 5.11 shows a comparison of exhaustive search, (1-best) greedy search and beam
search. At one extreme, the optimal solution is guaranteed, but an exponentially large number
of search states are visited. At the other extreme, only the minimum number of search states are
visited, but the solution is sub-optimal. By contrast, beam search makes a trade-off between the
two methods. A larger beam size means more search effort and a higher possibility of finding
the optimum, while a smaller beam size means faster search and a higher risk of missing the
optimum. It is also possible to use a variable beam size to make a better trade-off during search
[Buckman et al., 2016; Post and Vilar, 2018; Kulikov et al., 2019].

An important problem related to these search algorithms is the problem of search errors.
In general, search errors can be defined in several different ways. Here we say that a search
error occurs if the search result is not the same as that of exhaustive search. Common sense
tells us that fewer search errors are helpful for finding “better” results. Thus, we often wish to
have a more desirable target-side sequence by enlarging the beam size. However, this is not
the case for some sequence-to-sequence systems. For example, a search with a larger beam
size may lead to a lower translation quality for neural machine translation systems [Koehn and
Knowles, 2017]. This inspires very interesting studies on the deterioration issue of large beam
search [Ott et al., 2018b; Yang et al., 2018b; Stahlberg and Byrne, 2019].

3. Stopping Criteria

Although the time complexities of the above algorithms are bounded by the maximum number
of search steps (i.e., nmax), it is important to have more efficient algorithms to stop searching as
early as possible, especially for latency-sensitive applications. This typically requires heuristics
to design additional criteria for stopping the search procedure at the appropriate point. Some
of these stopping criteria are:
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Figure 5.11: A comparison of exhaustive search, (1-best) greedy search and beam search. Balls
represent search states or partial hypotheses. Exhausted search explores all search states in the
search space. By contrast, greedy search keeps only the 1-best path of search states and prunes
away the rest. Beam search is a trade-off between them and keeps the most promising search
states in a beam in each step.

• If a given number of complete hypotheses are created, then we stop searching. For
example, in the beam search algorithm described in this subsection, the search program
terminates when we have sizeheap complete hypotheses. Another way to implement
this idea is to shrink the beam as the number of complete hypotheses increases. In
Bahdanau et al. [2014]’s system, once a new complete hypothesis is created, the beam
size decreases by 1. Therefore, the search program will terminate if the beam size is
reduced to 0.

• If every hypothesis at step i has a score lower than that of the best complete hypothesis in
Heap by some margin, then we stop searching. Suppose zbestinall is the best hypothesis
we have generated so far (i.e., zbestinall = Heap.Pop()). If every hypothesis znext at
step i satisfies

zbestinall.score−znext.score ≥ θall (5.93)

then we will finish the search process at this step. Here θall is a parameter. One
can specify it with an appropriate value through multiple tries. A simple choice is
θall = 0, which is employed in some of the popular sequence-to-sequence systems [Ott
et al., 2019]. Under some circumstances, such an early-stop strategy can guarantee the
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optimality of search [Huang et al., 2017b; Yang et al., 2018b].

• If every hypothesis at step i has a score lower than that of the last complete hypothesis in
Heap by some margin, then we stop searching. This is a weak condition for early-stop.

• If the top ranked hypotheses at step i are all complete hypotheses, then we stop searching.
This is a more aggressive version of early-stop. For example, in Klein et al. [2017]’s
system, the search program terminates at step i if the top-1 hypothesis is a complete
hypothesis.

• If the search program consumes a certain amount of computing resources, such as a
certain number of floating-point instructions and a certain amount of wall clock time,
then we stop searching. In applications where computer performance is limited and
latency plays an important role, we will often be interested in this kind of stopping
criterion.

Sometimes, the search algorithm will not find any complete hypothesis until hitting the
length limit nmax. As a practical matter it might be easy in this case to force the best partial
hypothesis to be complete by adding ⟨EOS⟩ to its end.

Note that choosing appropriate stopping criteria reflects a trade-off between fast computa-
tion and accurate prediction at inference time (call it the speed-accuracy trade-off). While it
is not always the case that more time a search program takes could result in better results for a
sequence-to-sequence system, we would always want to know how close we can get to a better
solution to the problem by searching through a larger region of the search space. A discussion
of accurate search algorithms can be found in Section 5.4.4.

5.4.3 Online Search

So far in our general discussion of sequence-to-sequence problems, we have assumed that
all the source-side words come together as a whole and can be accessed in the entire search
process. However, in some practical applications, the inputs are received in order, and we wish
to make predictions conditioned on some of the observed inputs. An example of this is online
automatic speech recognition in which the system continually takes new acoustic signals and
at the same time outputs the corresponding transcription units.

Intuitively, we might think of the generation of the i-th target-side word as a problem of
mapping a prefix of the source-side sequence to the target-side vocabulary. We can formulate
this by introducing a function g(i) which denotes the maximum length of the prefix of x we
use in generating yi. Thus, the probability of yi given the entire sequence x and the previously
generated words y<i can be approximated by

Pr(yi|y<i,x) ≈ Pr(yi|y<i,x≤g(i)) (5.94)

where x≤g(i) denotes the sub-sequence x1...xg(i). Then, the log probability of the target-side
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sequence y given the source-side sequence x is written as

logPr(y|x) =

n∑
i=1

logPr(yi|y<i,x)

≈
n∑
i=1

logPr(yi|y<i,x≤g(i)) (5.95)

This equation frames a sequence-to-sequence problem as a prefix-to-prefix problem, that is,
the prefix y≤i is only dependent on the prefix x≤g(i). Inference for this model is simple. For
each i, the search system waits until all g(i) source-side words are received, and then extends
the hypotheses as usual. This can be done by reusing the algorithms described in the previous
subsection. For example, we can modify the beam search algorithm and obtain the following
online search algorithm.

Algorithm: An Online Beam Search Algorithm
OnlineBeamSearch(x,g(·))
// Online search in which the search is operated once an adequate number of input
// words are received. In each search step, a number of the most promising candidates
// are considered.
1. Create a Heap with sizeheap elements
2. Z0 = {z0} where z0.tgt= y0
3. j = 0

4. i= 1

5. input= ϕ

6. While i≤ nmax do
7. If j < g(i), then // read a word from the input stream
8. input= input◦xj
9. Else // make a prediction at step i
10. // when g(i) input words are observed (stored in input)
11. Create a heap Beam with sizebeam elements
12. For each hypothesis zcur ∈ Zi−1

13. For each word vk ∈ Vy
14. znext = Extend(zcur,vk, input)

15. If input equals x and znext.tgt ends with ⟨EOS⟩, then
16. Add znext to Heap

17. Else
18. UpdateBeam(Beam,znext)

19. If Heap is full and/or other stopping criteria are met, then
20. Break all the loops
21. OutputPartial(Beam)

22. Zi =Beam.PopAll()
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23. i++
24. Return Heap.Pop()

OutputPartial(Beam)

// Output a partial result
1. Display the best hypothesis in Beam

An advantage of this system is that the output at step i is immediate once we have seen
x≤g(i). This results in an online sequence-to-sequence system in which input words arrive
in a continuous stream and predictions can be made just after a “sufficient” number of input
words are seen.

While the search problem here seems simple, much remains to be done to define g(i).
Clearly, g(i) is a monotonically non-decreasing function. As a simple example, we can define
g(i) =m for any i. This will make the above algorithm precisely the same as the standard beam
search algorithm that works with a complete input sequence. By contrast, in online sequence-
to-sequence tasks, we want g(i) to be as small as possible, and so we can start computation as
early as possible in inference. The simplest case of these is that the input and output sequences
are synchronous in some way. For example, an automatic speech recognition system assigns
each spectral frame a transcription unit. In this case, we have a simple correspondence between
inputs and outputs: m = n (i.e., |x| = |y|), and xi corresponds to yi. Then, we can simply
define g(i) = i, in other words, each time a new input arrives, we make a prediction.

A more complicated case is online sequence-to-sequence problems with reordering, such
as simultaneous translation, in which a target-side word may depend on source-side words
with long-range dependencies. A simple way to address this is to delay the predictions for
a number of steps. For example, the wait-k method forces each prediction to lag behind the
inputs by k words [Ma et al., 2019]. More formally, the wait-k version of the function g(i) is
defined to be

g(i) = min(m,k+ i−1) (5.96)

Here k is a hyper-parameter that controls how large a source-side context is considered in
predicting target-side words. When k =∞, it is the same as the standard search methods for
sequence-to-sequence inference. In simultaneous translation and related tasks, results are in
general satisfactory by using a small value of k. A comparison of different g(i) is shown in
Figure 5.12.

In some applications of online sequence-to-sequence problems, we may know when to
perform search and when to read inputs. For example, in interactive machine translation
[Casacuberta et al., 2009], the translation of a partial input sequence is triggered by some
behaviors of users (such as the action of pressing buttons). In this case, we do not need to
define g(i), but view it as an input variable of the model.

Note that while one can directly employ pre-trained sequence-level models for online
inference, developing such systems often requires additional training effort. A more principled
approach to online sequence-to-sequence modeling is to model the transformation from x to
y as a sequence of actions [Grissom II et al., 2014; Cho and Esipova, 2016; Gu et al., 2017;



5.4 Search 253

j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

i
=
1

i
=
2

i
=
3

i
=
4

i
=
5

i
=
6

Standard Seq2Seq

1-to-1 Monotonic
Transduction

Wait-k

g(i) =m

g(i) = i (m= n)

g(i) = min(m,k+ i−1)

(a) Visualization of g(i).
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(b) Action sequences.

Figure 5.12: Visualization (top) and action sequences (bottom) of different g(i) for a pair of
sequences (x= x1...x6,y = y1...y6). In an action sequence, a circled xj stands for the action
of reading a source-side word (xj), and a circled yi stands for the action of predicting the
probability of yi given x≤g(i) and y<i. Arrows here stand for dependencies between words.
Because y0 denotes the start symbol ⟨SOS⟩, it could be generated without dependencies on
any words.

Zheng et al., 2019]. For example, an action can be either a predict operation that performs
search at the current step, or a read operation that accepts a new input word. Then, we can
frame the task of designing the function g(i) as learning a policy to determine which action is
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taken given a source-side prefix x≤j and a target-side prefix y<i. And sequence-to-sequence
models can be trained on the states of these action sequences so that they can make better
predictions conditioned on part of the input. However, a discussion of training online sequence-
to-sequence models lies outside the scope of this section. We refer the reader to the above
papers for more details on these methods.

5.4.4 Exact Search
From a formal point of view, we would ideally like to develop a system with no search errors.
Although approximate search algorithms have been used successfully in many applications, it is
important to study model errors of these systems, and thus to focus on the problem in principle,
not just in practice. So developing exact search algorithms for sequence-to-sequence models
has long been an interesting topic in NLP research. However, the search problem for a simple
word-based machine translation system with n-gram language models has been found to be
an NP-hard problem [Knight, 1999]. Much of earlier research formulated the search problem
as classical combinatorial optimization problems, such as the linear programming problem
and the traveling salesman problem, and employed the corresponding solvers [Germann et al.,
2004; Zaslavskiy et al., 2009]. Additional research efforts explored exact search algorithms for
statistical machine translation systems by using the Lagrangian relaxation technique [Chang
and Collins, 2011; Rush and Collins, 2012] and finite-state automata [de Gispert et al., 2010;
Allauzen et al., 2014].

Unlike these methods, which are more or less dependent on the integration of n-gram
language models into sequence-to-sequence models, the models described in this chapter take
a simpler form. We begin with a basic model in which the scoring function score(x,y) is the
log probability logPr(y|x). Eq. (5.68) tells us that logPr(y|x) can be written as a sum of
word-level log probabilities, and logPr(y|x) becomes smaller as more target-side words are
generated (i.e., a larger n)11. In other words, logPr(y|x) is a monotonic decreasing function
with respect to the target-side length n: for any i, we have

logPr(y≤i|x) = logPr(y<i|x)+ logPr(yi|y<i,x)
≤ logPr(y<i|x) (5.97)

This is also called the monotonicity of the scoring function.
Then, by making use of the monotonic nature of model scores, we can develop a heuristic

to rule out hypotheses that would never be the best. Let zbestinall be the global best complete
hypothesis we have found. If a new hypothesis has a model score lower than zbestinall.score,
then we will not need to extend it. Thus we can explore a region that is significantly smaller
than the original search space, without loss of optimality. Note that zbestinall.score continues
to become larger in search. It will be more difficult to find a better hypothesis and more
hypotheses will be pruned away as the search process proceeds. See the pseudo-code below
for an exact search algorithm of the sequence-to-sequence model of Eq. (5.68).

11Consider logPr(y|x) =
∑n

i=1 logPr(yi|y<i,x). Since logPr(yi|y<i,x) has a non-positive value,
logPr(y|x) will be smaller or unchanged if n grows.
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Algorithm: An Exact Search Algorithm
ExactSearch(x)

// Search for the “best” hypothesis by making use of the monotonicity of the
// scoring function (score(x,y) = logPr(y|x)).
1. Create a priority queue (max-heap) Queue

2. Create a hypothesis zbest with zbest.score=−∞
3. While Queue is not empty do
4. zcur =Queue.Pop()

5. If |zcur.tgt|> nmax, then
6. skip zcur and continue the loop
7. For each word vk ∈ Vy
8. znext = Extend(zcur,vk,x)

9. bound= zbest.score // a lower bound on model scores
10. If bound < znext.score, then // admissible pruning
11. If znext.tgt ends with ⟨EOS⟩, then
12. zbest = znext
13. bound= znext.score

14. Else
15. Add znext to Queue

16. Return zbest

This is a general algorithm for exact search, and its search efficiency is greatly influenced
by the design of the priority queue [Meister et al., 2020]. For example, we can view score(x,y)

as the priority of each hypothesis in the priority queue, as in a max-heap12. Then, the resulting
algorithm performs a procedure of breadth-first-like search, since a hypothesis with a shorter
target-side sequence is more likely to have a higher model score and to be a top-ranked item
in the priority queue. For efficient search, however, we wish to find complete hypotheses as
early as possible, such that more unpromising hypotheses can be thrown away in the early
stage of search. To do this, we can bias the priority of a hypothesis towards a longer target-side
sequence. This provides a depth-first search algorithm which is more likely to find complete
hypotheses in a shorter time [Stahlberg and Byrne, 2019].

While the exact search algorithm becomes apparent by considering the monotonicity of
Pr(y|x), in practical systems, as discussed in Section 5.4.1, score(x,y) often has a more
complex form involving length reward or normalization, and so the monotonic property does
not hold. Fortunately, the assumption of monotonicity can be dropped at the expense of slightly
relaxing the lower bound on model scores for pruning. Here we define bound to be the lowest
model score that a hypothesis should have so that it can at best be extended to an equally
good hypothesis with zbest. For example, consider a simple word reward model described
in Eq. (5.69): Score(x,y) = logPr(y|x)+λ ·n. For a hypothesis znext, there are at most

12We can implement a priority queue using a max-heap.
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nmax−|znext.tgt| words we can predict to obtain a complete hypothesis. Suppose all these
nmax−|znext.tgt| words are predicted with a probability of 1. Then, the model score of the
resulting hypothesis (denoted by znew) will be given by

znew.score = znext.score+

nmax∑
i=|znext.tgt|+1

(log1+λ)

= znext.score+λ · (nmax−|znext.tgt|) (5.98)

Using this result, we can define bound as

bound = zbest.score−λ · (nmax−|znext.tgt|) (5.99)

An alternative way to derive the lower bound is to simply consider nmax times of word
reward, given by

bound = zbest.score−λ ·nmax (5.100)

This is a loose lower bound and leads to less pruning.

In the case of length normalization, we can do this in a similar way. For example, consider
the length normalization model Score(x,y) = logPr(y|x)

n , as in Eqs. (5.72-5.73). A lower
bound on admissible model scores is given by

bound =
Pr(znext.tgt|x)

nmax
(5.101)

In practice, such a lower bound can be defined in several different ways to guarantee the
optimality of search, depending on which model and search strategy are used in the sequence-
to-sequence systems [Huang et al., 2017b; Stahlberg and Byrne, 2019].

We can easily apply these lower bounds to the above exact search algorithm by replacing
line 9 with Eq. (5.99) or (5.101). As a side effect, the search will explore more hypotheses and
thus be much slower.

5.4.5 Differentiable Search

We have addressed the search problem through the introduction of heuristic search algorithms
in which we try to minimize the scoring function on a set of sequences of discrete variables.
An alternative possibility is to relax these discrete variables to continuous variables and to
formulate the problem using the framework of continuous optimization [Hoang et al., 2017;
Kumar et al., 2021]. While we try to use a consistent notation throughout this book, it is
convenient here to introduce some new notation that is slightly different from that adopted in
the previous chapters. We will use a vector yw

i ∈ {0,1}|Vy| to denote the one-hot representation
of yi. Suppose the output at step i is a distribution over Vy, denoted by Pr(·|y<i,x). Then, we
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can write the log probability of yi at step i as a dot product of two vectors, like this

logPr(yi|y<i,x) = yw
i · logPr(·|y<i,x)

= yw
i · logPr(·|yw

0 ...y
w
i−1,x) (5.102)

where y<i = y0...yi−1 is represented as a sequence of one-hot vectors yw
0 ...y

w
i−1. As discussed

in Chapter 3, the right-hand side of the above equation means the selection of the entry yi of
the vector logPr(·|y<i,x) (or logPr(·|yw

0 ...y
w
i−1,x)).

Using this notation, we can write logPr(y|x) as

logPr(y|x) =

n∑
i=1

logPr(yi|y<i,x)

=

n∑
i=1

yw
i · logPr(·|yw

0 ...y
w
i−1,x) (5.103)

Provided we use logPr(y|x) as the objective function (i.e., score(x,y) = logPr(y|x)),
the search problem can be formulated as

ŷw
0 ...ŷ

w
n = argmax

yw
1 ...y

w
n

n∑
i=1

yw
i · logPr(·|yw

0 ...y
w
i−1,x) (5.104)

This is equivalent to the standard form for inference of sequence-to-sequence models, given by

ŷ = ŷ0...ŷn

= argmax
y0...yn

Pr(y0...yn|x) (5.105)

Given Eq. (5.104), we can now relax each one-hot vector to a real-valued vector with a
constraint that the sum of all its entries is equal to 1, that is,

yw
i ∈ +R|Vy| (5.106)

s.t. ||yw
i ||1 = 1 (5.107)

In this way, yw
i can be informally treated as a |Vy|-dimensional embedding of yi, though

it has much more dimensions than the usual embeddings used in NLP. Now yw
i does not

correspond to a specific word in the vocabulary, but describes a distribution over the vocabulary.
In Hoang et al. [2017]’s work, yw

i · logPr(·|yw
0 ...y

w
i−1,x) is called the expected embedding

under the distribution logPr(·|yw
0 ...y

w
i−1,x). What is interesting about this formulation is that

Eq. (5.104) in fact defines a “new” task in which we try to maximize a sum of continuous
variables (i.e., a sum of n expected embeddings).

We can solve Eq. (5.104) by using the off-the-shelf toolkits in optimization. Since we
have a constraint that yw

i is a variable in a simplex13, it is straightforward to apply general

13Simplex is a term used in geometry. In a Euclidean space, a k-simplex is a k-dimensional polytope described
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constrained optimization algorithms to this problem. An alternative way is to use algorithms
that are designed to solve the optimization problem with simplex constraints. The details of
these algorithms can be found in many books on optimization.

A third choice of solving Eq. (5.104) is to formulate the constraints in the objective
function explicitly and to use gradient descent methods to optimize this function. For example,
Hoang et al. [2017] modify Eq. (5.104) and obtain a new form for optimization

ŷw
0 ...ŷ

w
n = argmax

yw
1 ...y

w
n

n∑
i=1

Softmax(yw
i ) · logPr(·|yw

0 ...y
w
i−1,x) (5.111)

Here we remove the simplex constraint from yw
i , and impose it on a new output that is produced

by a Softmax function.
Once we have obtained the optimal sequence ŷw

0 ...ŷ
w
n , we need to map each yw

i to a
unique word. A simple method is to take the word corresponding to the entry of yw

i with the
largest value. However, this may break the optimality of the solution because the condition
yw
0 ...y

w
i−1 is changed when these variables are discretized. A more practical method is to

perform optimization to predict the next word given a prefix, say, we fix yw
0 ...y

w
i−1 to the

one-hot representations of the optimal prefix, and maximize
∑n

k=iy
w
k · logPr(·|yw

0 ...y
w
k−1,x).

Then, we select the best word at position i and move on to the next position.
So far we have assumed that the search objective is derived from the log probability

logPr(y|x) and the length of the output is given in advance. To have a search over sequences
with different lengths, we can repeat the above optimization procedure for every n ∈ [1,nmax],
and select the sequence with the maximum score. This also makes it easy to introduce length
normalization and reward into search. We can ignore the length bias issue in each search
with a fixed n, and add the length models after optimization, that is, we leave the search
objective unchanged, but, in the final step, we select the best sequence in a set of candidates
with different n in terms of score(x,y).

5.4.6 Hypothesis Diversity
Multiple outputs are often required when one wants to rescore these outputs and/or interact
with the system. One of the most widely used methods is to use beam search to generate a
number of top-ranked hypotheses. For example, we can simply view the elements of Heap
as the k-best hypotheses in beam search (see Section 5.4.2). However, this approach suffers
from the problem that there is often little difference among the hypotheses in the beam, and

by a set of k+1 independent points {p0,p1, ...,pk}. This polytope is defined as a set of points

Pk-simplex = {a0 ·p0+a1 ·p1+ ...+ak ·pk} (5.108)

where

k∑
i=0

ai = 1 (5.109)

ai ≥ 0 for any i ∈ [0,k] (5.110)
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Rank Output

1 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for “The Price Is Right” when Bob Barker, 91, showed up to run his old show.

2 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker showed up to run his old show.

3 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker, 91, showed up to run the show.

4 Manuela Arbelaez accidentally revealed the correct answer to a guessing game for

a new Hyundai Sonata. Host Drew Carey couldn’t stop laughing. It’s been a busy week

for "The Price Is Right" when Bob Barker, 91, showed up to run his show.

Table 5.3: 4-best outputs of a text summarization system on a sample in the CNN/Daily Mail
dataset (beam size = 4). We see that these texts differ only by a few words.

it is difficult to figure out which one is better though more options are available to users.
Table 5.3 shows the 4-best outputs of a text summarization system. We see that these texts
are fairly similar to each other. One reason for this phenomenon is that diverse hypotheses,
though probably with high model scores when completed, will be pruned away if they are
low-ranked in some stages of beam search. From a modeling perspective, we can interpret this
as a problem with the locally normalized models that we use here: every prediction is made
on an intermediate step of search, and there is no way for the following steps to escape if the
prefix is fixed [Murray and Chiang, 2018].

One approach to improving the hypothesis diversity is to give penalties to cases where the
hypotheses in the beam are less diverse [Li and Jurafsky, 2016; Vijayakumar et al., 2018]. A
simple example of such objective functions is given by

scored(x,y) = score(x,y)−λ ·dp (5.112)

It combines the original model score score(x,y) and a diversity penalty dp. dp can be defined
in a few different ways. An idea is to penalize hypotheses that are close in the search tree. For
example, one can define dp as the rank of a hypothesis in the set of its siblings that are extended
from the same parent hypothesis, and so the beam can spread its members over a larger
region of the space of hypotheses [Li and Jurafsky, 2016]. Another way to introduce diversity
measures is to consider the differences between the target-side sequences of the hypotheses
in the beam. For example, we can define dp as the average string similarity between a given
hypothesis and other hypotheses in the beam [Xiao et al., 2013].

The above idea can also be expressed as constraints imposed on the search procedure.
For example, we can constrain the beam to include only the hypotheses that are rooted at
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different parents in the last step [Boulanger-Lewandowski et al., 2013]. More precisely, for
each hypothesis zcur ∈ Zi−1, we seek the best next-step hypothesis by

ẑnext = argmax
znext∈Extend(zcur,Vy)

Pr(znext.tgt|x) (5.113)

The hypothesis ẑnext is then added to Zi. Note that this is essentially a sub-space method that
divides a space of hypotheses into sub-spaces of hypotheses, and collects results over these
sub-spaces. An intuition behind this method is that different sub-spaces can describe different
aspects of the problem, and so we can have diverse solutions.

Another approach to addressing the diversity issue is to perturb beam search by introducing
randomly generated hypotheses into the beam [Holtzman et al., 2020a; Wiher et al., 2022].
One common way to do this is to choose some random words for extending a hypothesis, and
to add the extended hypotheses to the beam. In general, these words can be sampled from
the distribution Pr(·|y<i,x) over the entire vocabulary or its subset. Randomness can also
be added to the inputs of a system at test time. For example, one can express an input word
as a linear combination of its original embedding and the embedding of a word of a random
sequence drawn from the training data [Li et al., 2021b]. In problems having many local
minima, adding random “noise” to search procedures is generally helpful, as we can explore
more diverse hypotheses and prevent the systems from getting stuck in certain regions of the
search space.

Instead of performing search using a single system, we can use multiple systems to obtain
diverse hypotheses. These systems can be built on either different architectures or different
hidden structures/configurations [He et al., 2018; Shen et al., 2019; Wu et al., 2020a; Sun
et al., 2020a]. Although methods of this type do not fall under the search framework that we
have been discussing, combining the results from multiple systems is generally helpful. The
following section will present a discussion on this issue.

5.4.7 Combining Multiple Models

From a machine learning point of view, ensembling are methods for addressing modeling
issues, not search issues. In this subsection, we discuss these methods because their implemen-
tations typically require modifications to the search modules, and we can gain some insight
into the resulting system by viewing it from the search perspective.

In machine learning, ensemble methods aim to make better predictions by combining
predictions of a number of constituent systems or component systems. The problem of
combining multiple systems has been discussed extensively in times when statistical models
emerged in NLP, and is sometimes called system combination methods for emphasizing
its practical use. For sequence-to-sequence models discussed here, a widely used form of
system combination is an average of predictions [Sutskever et al., 2014]. Suppose we have K
sequence-to-sequence models that have been trained. The log probability of the target-side
word yi given its left context y<i and the source-side sequence x can be defined by using the



5.4 Search 261

geometric average

logPr(yi|y<i,x) =
1

K

K∑
k=1

logPrk(yi|y<i,x) (5.114)

or alternatively by using the arithmetic average

logPr(yi|y<i,x) = log
1

K

K∑
k=1

Prk(yi|y<i,x) (5.115)

where Prk(yi|y<i,x) is the output of the k-th component system. These forms are so simple
that one can implement them for any sequence-to-sequence models without significant modifi-
cations to existing systems, and they have been used as the basis of many successful systems
in various evaluation tasks [Barrault et al., 2020; Akhbardeh et al., 2021].

A problem with prediction averaging is that all the component systems are required to
follow the same basic form of modeling (see Eq. (5.68)) and we need to have access to the
probabilities {Prk(yi|y<i,x)}. When we have only a set of black-box systems in hand, we
need to perform sequence ensembling. A common idea is to vote from the ensemble of the
sequences produced by the component systems. For example, one of the simplest ways to do
this is hypothesis selection [Hildebrand and Vogel, 2008], in which we simply select the “best”
sequence from the ensemble using some criterion. An alternative way of sequence ensembling
is to regenerate a new sequence differing from any of the original sequences [Matusov et al.,
2006; Rosti et al., 2007]. This typically requires a model that represents the sequences into a
compact representation (such as a lattice), as well as an additional search pass by which we
can find the best output in this new representation of hypotheses (such as lattice search and
rescoring) [Deoras et al., 2011; Stahlberg et al., 2016; Khayrallah et al., 2017].

Note that the ensembling of sequence-to-sequence models is related to the diversity issue
discussed in the previous subsection. It is often thought that component systems need to be
diverse for a better ensembling result, and so we need to build these systems in some way
that we can make them different [Sutskever et al., 2014; Zhou et al., 2017]. One of the most
popular methods is checkpoint ensembling. It takes a number of copies of a model at different
checkpoints during training, and combines these model copies via prediction averaging. This
method can be useful for alleviating the overfitting problem in practice. Also, different models
can be created from a base model under different settings. For example, we can build models
with different numbers of parameters on the basis of a backbone model. A more general
approach is to take models based on different architectures, although this is at the expense of
more development effort.

Another way to view sequence ensembling is that it provides a two-pass search scheme.
In the first pass of search, multiple systems are used to perform inference individually. Each
of these systems has its own bias for modeling and search, and explores different regions of
the search space. A hypothesis explored by one system might not be seen and evaluated by
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another system. The result of this pass is a diverse ensemble of hypotheses that are “optimal”
from some perspectives. In the second pass of search, we use this ensemble to define a new
space of hypotheses, and use a fine-grained model to search for the final result.

5.4.8 More Search Objectives

In this subsection, we consider more objective functions that can be applied to the search
problem.

1. Search with Future Scores

Most of the algorithms described in this subsection can be viewed as some optimizations of
best-first search algorithms [Meister et al., 2020]. As another example of best-first search, A*
search is widely considered to be a good solution to the general search problem. Vanilla A*
search requires that all states of search are sorted in every search step, which is intractable in
our problems. We therefore still consider beam search and greedy search for our discussion,
but use an A* search-like objective function instead. Specifically, given a search state (x,y≤i),
the A* search-like objective function can be defined as

scoreA*(x,y≤i) = g(x,y≤i)+h(x,y≤i) (5.116)

Here g(x,y≤i) is the reward of the path from the start state to (x,y≤i), and h(x,y≤i) is the
estimated reward of the “optimal” path from (x,y≤i) to the final goal. Because g(x,y≤i) and
h(x,y≤i) can have arbitrary forms, this framework is very general. For example, if we define

g(x,y≤i) = score(x,y≤i) (5.117)

h(x,y≤i) = 0 (5.118)

then scoreA*(x,y) is exactly the same as the objective functions discussed previously.
To make full use of this formulation, it seems natural to seek a function of future reward

or future cost. Ideally, we would like h(x,y≤i) to be able to compute how much additional
reward we can obtain if we extend (x,y≤i) to the best complete hypothesis. This is, however,
intractable because we need to explore all the hypotheses extended from (x,y≤i) and find the
best one. It is common practice to use a computationally cheaper model analogous to the real
future reward model. Conventional approaches rely on heuristics to define h(x,y≤i) [Koehn
et al., 2007], such as estimating the weights of the words that could be further generated. These
heuristics can be generalized to the knowledge of the model design of sequence-to-sequence
systems [He et al., 2017; Zheng et al., 2018]. A more general approach is to use a value-based
treatment of the problem [Ren et al., 2017; Li et al., 2017a; Leblond et al., 2021]. We can
develop a policy that learns to predict the distribution of yi given x and y<i, and a value
function for this policy that learns to predict future rewards. Eq. (5.116) can therefore be
interpreted as a linear combination of the policy score of (x,y≤i) and the corresponding value.
Such a treatment of search objectives falls into the framework of value-based search, and has
been successfully employed in reinforcement learning [Silver et al., 2017].
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2. Search with Language Models
For a long time, language models played an important role in text generation tasks. For
example, statistical machine translation systems and automatic speech recognition systems
typically rely on large n-gram language models to produce fluent texts. While modern
sequence-to-sequence models are not required to have separate language models, applying
them to sequence-to-sequence search still makes intuitive sense for machine translation and
related problems.

Following the convention that a language model can be treated as a feature of a log-linear
(or linear) model [Och and Ney, 2002], the language model-augmented objective can be defined
as

scorelm(x,y) = logPr(y|x)+λ · logPr(y) (5.119)

This formulation does not involve length reward and normalization terms, but either of them
can be easily used as an additional feature of the model. In general, the language model
Pr(y) is trained solely on target-side sequences, enabling the use of large-scale monolingual
data in sequence-to-sequence models [Gulcehre et al., 2017]. Interestingly, it has been found
that current sequence-to-sequence models are strong language models themselves if they are
trained sufficiently, and a better way to make use of target-side data might be to use it to create
synthetic data, called data augmentation. An example of this is back translation in which we
use a backward translation system to translate target-side sentences to source-side sentences,
and then use this synthetic bilingual data as additional data for training a forward translation
system [Sennrich et al., 2016a; Edunov et al., 2018]. In many tasks, such a simple method can
achieve significant improvements in translation quality, but this result questions the necessity
of using additional language models in neural machine translation.

Note that the model of Eq. (5.119) depends on our choice for the coefficient λ. For machine
translation, we are usually interested in a positive value of λ so that our system can produce
more fluent texts. By contrast, a negative value of λ means that we want some output that
is less frequent. For example, if λ = −1, then Eq. (5.119) can be written as the point-wise
mutual information of x and y

scorelm(x,y) = logPr(y|x)− logPr(y)

= log
Pr(x,y)

Pr(x) ·Pr(y)
(5.120)

This scoring function has been shown to be useful for generating more diverse outputs for
neural conversation systems [Li et al., 2016].

3. Minimum Bayes Risk Search
So far, our discussion of search objectives has focused on the use of the decision rule of
choosing the highest score hypothesis, called maximum a posteriori (MAP) search14. An

14In statistics, MAP is a method for inference of the parameters of a statistical model. Suppose we have a model
that describes the distribution of a variable x and the model is parameterized by θ. MAP seeks the optimal value of
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assumption behind this method is that the posterior probability Pr(y|x) (or the model score
score(x,y)) correlates with the true quality of outputs. In practice, this assumption leads to
several useful properties, e.g., the search system is easy to implement, and the objective of
search is consistent with that of training. However, there are some shortcomings with MAP
search, which causes researchers to consider more powerful methods. One problem with MAP
search is that the objective does not reflect the way one evaluates the system. The metrics
used in end-to-end evaluation of a system may have very different forms from Pr(y|x). A
second problem is that MAP is just a special case of the Bayesian treatment of determining
posterior probabilities. It provides a point estimate of θ with no uncertainty measure, and
is sometimes overconfident. In some applications, sequence-to-sequence models spread too
much probability mass across many different hypotheses [Ott et al., 2018a], and MAP may not
describe the major portion of the distribution.

Here we consider minimum Bayes risk (MBR) search that provides ways to introduce
evaluation measures into search, as well as ways to make use of the distributions over hypothe-
ses. The MBR method assumes a risk function on a pair of sequences, denoted by R(y,yr). It
computes the cost of replacing yr with y in terms of some evaluation metric. For example,
we can define the risk score to be 1−BLEU for machine translation. Then, the risk for y on
a set of sequences Ω is given by the expectation of R(y,yr) with respect to the distribution
Pr(yr|x)

Risk(y) = Eyr∼Pr(yr|x)R(y,yr)

=
∑
yr∈Ω

R(y,yr) ·Pr(yr|x) (5.124)

However, the summation over all possible target-side sequences is computationally infeasi-
ble. We therefore define Ω to be the k-best outputs or sampled outputs of a system [Eikema
and Aziz, 2020], denoted by Ωsystem. Then, we take score(x,y) =−Risk(y) and obtain the

θ by maximizing the probability of θ given x, written as

θ̂MAP = argmax
θ

Pr(θ|x) (5.121)

θ̂MAP is also called the mode of the posterior distribution of θ. For the MAP search problem here, we simply
denote θ by y and seek the mode of Pr(y|x).

As a Bayesian method, we can re-express the above equation using the Bayes’ rule

θ̂MAP = argmax
θ

Pr(x|θ) ·Pr(θ)
Pr(x)

= argmax
θ

Pr(x|θ) ·Pr(θ) (5.122)

where θ is treated as a variable having a prior distribution Pr(θ).

By contrast, MLE directly maximizes the likelihood function Pr(x|θ)

θ̂MLE = argmax
θ

Pr(x|θ) (5.123)

Thus, the MAP result can be viewed as an estimation of θ that considers both MLE of x given θ and the prior of θ.
Note that MAP and MLE will be equivalent if Pr(θ) is a uniform distribution.
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following objective for MBR search

ŷ = argmax
y

−Risk(y)

= argmin
y

∑
yr∈Ωsystem

R(y,yr) ·Pr(yr|x) (5.125)

This model is very general and applies to a wide range of NLP problems in which one
needs to search for an optimal hypothesis in a large set of candidates [Goodman, 1996b; Goel
and Byrne, 2000; Kumar and Byrne, 2004b]. It allows for flexible forms of risk functions,
for instance having various factors considered in evaluating hypotheses. MBR search has
recently been of interest to NLP researchers as they are found to be effective in eliminating the
biases caused by MAP search [Müller and Sennrich, 2021; Freitag et al., 2022]. In addition to
providing a formulation of search objectives, MBR methods can be used for training sequence-
to-sequence models, and are thought to be solutions to the discrepancy issue between objectives
of training and evaluation [Shen et al., 2016].

5.5 Summary
In this chapter, we attempted to provide an overview of sequence-to-sequence modeling which
can serve as the basis for many NLP systems. Sequence-to-sequence modeling is a very
rich area of research, and has been widely discussed in different disciplines, even beyond
NLP. This chapter is not a review of all the literature on this subject (this would be a big
project), but focuses on some of the core methods and ideas. We started with an introduction
of sequence-to-sequence problems, as well as the encoder-decoder architecture which lays the
foundations for most of the state-of-the-art sequence-to-sequence systems. As an illustration of
the application of this architecture, we considered the problem of neural machine translation,
and built a simple neural machine translation model using the basic knowledge we have learned
so far.

We also presented the attention mechanism and a series of refinements. If we look back
to the past few years, we will find that exploring attention models is the next natural step
in developing sequence-to-sequence models. While these models are well known for their
application and impressive performance in machine translation, they have dominated the NLP
community. There is also great interest in attention models in some other sub-fields of AI, such
as computer vision [Borji and Itti, 2012; Xu et al., 2015; Jaderberg et al., 2015] and speech
processing [Chorowski et al., 2015; Chan et al., 2016; Bahdanau et al., 2016]. The result is
that the past few years were an exciting time for people in these areas.

Sequence-to-sequence models are so successful that we try to put everything in the same
pocket. Not only have we developed powerful sequence-to-sequence models to deal with very
general problems, but current research is forced to be unifying. An example is that Transformer,
a self-attention-based sequence-to-sequence model, has become one of the fundamental models
for many tasks ranging over different types of data, from textual to visual and acoustic data. It
can even be extended to deal with multimodal problems which are sometimes more challenging.
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This makes things more interesting and exciting: an improvement to one model can be used
to improve systems in a variety of tasks. And we are seeing a significant change in our
research paradigm in which the NLP and machine learning fields are marrying and results
in NLP research are becoming more influential. However, on the other side of the coin is
that we are making much room for some of the problems but leaving less room for the others.
In recent NLP conferences, we can see many, many papers talking about how to train big
sequence-to-sequence models and apply them to different text generation tasks, but there are a
relatively small number of papers on parsing. There have always been debates on this over the
past few decades, for example, what and how much prior knowledge do we need to build an
NLP system? [Church, 2011; See, 2018] Getting involved in such debates is simply beyond the
discussions in this chapter. Fortunately, NLP research promises to continue to be diverse and
active, and we can always hear and learn from both sides of the debates. For example, there
are interesting findings that the neural sequence models can learn some linguistic properties
from data, and linguistic structures can help system design. In Chapter 6, we will see a few
examples.

The “bias” of research focus also exists on the machine learning side of problem-solving.
For example, for sequence-to-sequence problems discussed here, recent years have witnessed
a drastic increase of interest in model design and training methods, but only a relatively small
group of people discuss the search problem. While search is a classical problem in AI and
plays an important role in practical systems [Russell and Norvig, 2010], it is even not discussed
in recent tutorials and surveys in NLP. This motivates us to write a section on this subject so
that we can have a more complete picture of the problem. However, our general discussion
does not cover all aspects of the search problem. A topic we left out is efficiency [Birch et al.,
2018; Heafield et al., 2021]. While this chapter includes some discussions on the efficiency
issue, such as stopping criteria of search algorithms, efficient methods are a wide-ranging topic
and are generally dependent on model architectures. A more detailed discussion of them can
be found in Chapter 6. Another topic that one may be interested in is constrained search
in which constraints are imposed on the search process [Hokamp and Liu, 2017; Anderson
et al., 2017]. In general, these constraints come from our prior knowledge or interactions with
users. For example, constrained search has been used to enforce term translation constraints
on machine translation [Hasler et al., 2018; Post and Vilar, 2018].

One last note on limitations of this chapter. The formulation of the general sequence-
to-sequence problem described here is based on the left-to-right factorization of Pr(y|x),
resulting in an autoregressive model. One limitation of this formulation is that each prediction
at some step depends only on the preceding words, and so the model cannot access the right
context. To make use of the right context of a word, a simple approach is to build another
model that performs right-to-left generation. The left-to-right and right-to-left models can then
be combined to generate a better output sequence [Liu et al., 2016a; Hoang et al., 2017; Zhang
et al., 2018b; 2020a]. An alternative approach is given by non-autoregressive generation or
non-autoregressive decoding in which the constraint of autoregressive generation is removed
and each word prediction is conditioned on the global context [Gu et al., 2018; Ghazvininejad
et al., 2019; Lee et al., 2020]. A nice property of non-autoregressive generation is the possibility
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of system speed-up, since all the words in a sequence can be generated in parallel and we can
do this efficiently using GPUs.
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Chapter 6

Transformers

So far we have discussed several basic models for solving sequence-to-sequence problems.
We now explore a new class of models which are based on a powerful architecture, called
Transformer. Transformers differ in several ways from the models given in Chapters 4 and
5. First, they do not depend on recurrent or convolutional neural networks for modeling
sequences of words, but use only attention mechanisms and feed-forward neural networks.
Second, the use of self-attention in Transformers makes it easier to deal with global contexts
and dependencies among words. Third, Transformers are very flexible architectures and can
be easily modified to accommodate different tasks. The past few years have seen the rise
of Transformers not only in NLP but also in several other fields. As Transformers and their
variants continue to mature, these models are playing an increasingly important role in the
research and application of artificial intelligence.

In this chapter, we will discuss the core ideas of Transformers. We will begin our discussion
by looking at the standard Transformer architecture. Then we will look at some notable
developments, such as improvements to the basic architecture and efficient methods. We will
also present several applications in which Transformer models have been extensively used.
However, the discussion of Transformer is a wide-ranging topic, and there have many, many
related papers. This chapter is not intended to provide a comprehensive survey of the literature
but a collection of selected topics that NLP people may be interested in.

6.1 The Basic Model
Here we consider the model presented in Vaswani et al. [2017]’s work. We start by considering
the Transformer architecture and discuss the details of the sub-models subsequently.

6.1.1 The Transformer Architecture
Figure 6.1 shows the standard Transformer model which follows the general encoder-decoder
framework. A Transformer encoder comprises a number of stacked encoding layers (or
encoding blocks). Each encoding layer has two different sub-layers (or sub-blocks), called
the self-attention sub-layer and the feed-forward neural network (FFN) sub-layer. Suppose

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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we have a source-side sequence x = x1...xm and a target-side sequence y = y1...yn. The
input of an encoding layer is a sequence of m vectors h1...hm, each having dmodel dimensions
(or d dimensions for simplicity). We follow the notation adopted in the previous chapters,
using H ∈ Rm×d to denote these input vectors1. The self-attention sub-layer first performs a
self-attention operation Attself(·) on H to generate an output C:

C = Attself(H) (6.1)

Here C is of the same size as H, and can thus be viewed as a new representation of the inputs.
Then, a residual connection and a layer normalization unit are added to the output so that the
resulting model is easier to optimize.

The original Transformer model employs the post-norm structure where a residual con-
nection is created before layer normalization is performed, like this

Hself = LNorm(C+H) (6.2)

where the addition of H denotes the residual connection, and LNorm(·) denotes the layer
normalization function. Substituting Eq. (6.1) into Eq. (6.2), we obtain the form of the
self-attention sub-layer

Layerself(H) = Hself

= LNorm(Attself(H)+H) (6.3)

The definitions of LNorm(·) and Attself(·) have been given in Chapters 2 and 5, and we will
also discuss them later in the section.

The FFN sub-layer takes Hself and outputs a new representation Hffn ∈ Rm×d. It has the
same form as the self-attention sub-layer, with the attention function replaced by the FFN
function, given by

Layerffn(Hself) = Hffn

= LNorm(FFN(Hself)+Hself) (6.4)

Here FFN(·) could be any feed-forward neural networks with non-linear activation func-
tions. The most common structure of FFN(·) is a two-layer network involving two linear
transformations and a ReLU activation function between them.

For deep models, we can stack the above neural networks. Let Hl be the output of layer
l. Then, we can express Hl as a function of Hl−1. We write this as a composition of two

1Provided hj ∈ Rd is a row vector, we have H=

h1

...
hm

.
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Self-Attention
Layerself(·)

Add & LayerNorm

Feed-Forward Network
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Layerffn(·)

Add & LayerNorm

Softmax(SLWo)
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Pr(·|y0...yn−1,x1...xm)

Pr(·|y0,x1...xm)
...

Figure 6.1: The Transformer architecture [Vaswani et al., 2017]. There are L stacked layers on
each of the encoder and decoder sides. An encoding layer comprises a self-attention sub-layer
and an FFN sub-layer. Both of these sub-layers share the same structure which involves a
core function (either Layerself(·) or Layerffn(·)), followed by a residual connection and a layer
normalization unit. Each decoding layer has a similar architecture with the encoding layers, but
with an additional encoder-decoder attention sub-layer sandwiched between the self-attention
and FFN sub-layers. As with most sequence-to-sequence models, Transformer takes x1...xm
and y0...yi−1 for predicting yi. The representation of an input word comprises a sum of a
word embedding and a positional embedding. The distributions {Pr(·|y0...yi−1,x1...xm)} are
generated in sequence by a Softmax layer, which operates on a linear transformation of the
output from the last decoding layer.

sub-layers

Hl = Layerffn(H
l
self) (6.5)

Hl
self = Layerself(H

l−1) (6.6)
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If there are L encoding layers, then HL will be the output of the encoder. In this case, HL can
be viewed as a representation of the input sequence that is learned by the Transformer encoder.
H0 denotes the input of the encoder. In recurrent and convolutional models, H0 can simply be
word embeddings of the input sequence. Transformer takes a different way of representing
the input words , and encodes the positional information explicitly. In Section 6.1.2 we will
discuss the embedding model used in Transformers.

The Transformer decoder has a similar structure as the Transformer encoder. It comprises
L stacked decoding layers (or decoding blocks). Let Sl be the output of the l-th decoding
layer. We can formulate a decoding layer by using the following equations

Sl = Layerffn(S
l
cross) (6.7)

Slcross = Layercross(H
L,Sl−1

self ) (6.8)

Slself = Layerself(S
l−1) (6.9)

Here there are three decoder sub-layers. The self-attention and FFN sub-layers are the same
as those used in the encoder. Layercross(·) denotes a cross attention sub-layer (or encoder-
decoder sub-layer) which models the transformation from the source-side to the target-side. In
Section 6.1.6 we will see that Layercross(·) can be implemented using the same function as
Layerself(·).

The Transformer decoder outputs a distribution over a vocabulary Vy at each target-side
position. This is achieved by using a softmax layer that normalizes a linear transformation of
SL to distributions of target-side words. To do this, we map SL to an n×|Vy| matrix O by

O = SL ·Wo (6.10)

where Wo ∈ Rd×|Vy| is the parameter matrix of the linear transformation.

Then, the output of the Transformer decoder is given in the form Pr(·|y0,x)
...

Pr(·|y0...yn−1,x)

 = Softmax(O)

=

Softmax(o1)
...

Softmax(on)

 (6.11)

where oi denotes the i-th row vector of O, and y0 denotes the start symbol ⟨SOS⟩. Under this
model, the probability of y given x can be defined as usual,

logPr(y|x) =

n∑
i=1

logPr(yi|y0...yi−1,x) (6.12)

This equation resembles the general form of language modeling: we predict the word at
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time i given all of the words up to time i−1. Therefore, the input of the Transformer decoder
is shifted one word left, that is, the input is y0...yn−1 and the output is y1...yn.

The Transformer architecture discussed above has several variants which have been suc-
cessfully used in different fields of NLP. For example, we can use a Transformer encoder
to represent texts (call it the encoder-only architecture), can use a Transformer decoder to
generate texts (call it the decoder-only architecture), and can use a standard encoder-decoder
Transformer model to transform an input sequence to an output sequence. In the rest of this
chapter, most of the discussion is independent of the particular choice of application, and will
be mostly focused on the encoder-decoder architecture. In Section 6.5, we will see applications
of the encoder-only and decoder-only architectures.

6.1.2 Positional Encoding
In their original form, both FFNs and attention models used in Transformer ignore an important
property of sequence modeling, which is that the order of the words plays a crucial role in
expressing the meaning of a sequence. This means that the encoder and decoder are insensitive
to the positional information of the input words. A simple approach to overcoming this problem
is to add positional encoding to the representation of each word of the sequence. More formally,
a word xj can be represented as a d-dimensional vector

xpj = xj+PE(j) (6.13)

Here xj ∈Rd is the embedding of the word which can be obtained by using the word embedding
models, as described Chapter 3. PE(j) ∈ Rd is the representation of the position j. Vanilla
Transformer employs the sinusoidal positional encoding models which we write in the form

PE(i,2k) = sin(i · 1

100002k/d
) (6.14)

PE(i,2k+1) = cos(i · 1

100002k/d
) (6.15)

where PE(i,k) denotes the k-th entry of PE(i). The idea of positional encoding is to distin-
guish different positions using continuous systems. Here we use the sine and cosine functions
with different frequencies. The interested reader can refer to Chapter 4 to see that such a
method can be interpreted as a carrying system. Because the encoding is based on individual
positions, it is also called absolute positional encoding. In Section 6.3.1 we will see an
improvement to this method.

Once we have the above embedding result, xp1...xpm is taken as the input to the Trans-
former encoder, that is,

H0 =

xp1
...

xpm

 (6.16)

Similarly, we can also define the input on the decoder side.
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(a) RNN (b) CNN (r = 3) (c) Self-attention

Figure 6.2: Information flows in recurrent, convolutional and self-attention models, shown as
arrow lines between positions.

6.1.3 Multi-head Self-attention

The use of self-attention is perhaps one of the most significant advances in sequence-to-
sequence models. It attempts to learn and make use of direct interactions between each pair
of inputs. From a representation learning perspective, self-attention models assume that the
learned representation at position i (denoted by ci) is a weighted sum of the inputs over the
sequence. The output ci is thus given by

ci =

m∑
j=1

αi,jhj (6.17)

where αi,j indicates how strong the input hi is correlated with the input hj . We thus can view
ci as a representation of the global context at position i. αi,j can be defined in different ways if
one considers different attention models. Here we use the scaled dot-product attention function
to compute αi,j , as follows

αi,j = Softmax(hih
T
j /β)

=
exp(hih

T
j /β)∑m

k=1 exp(hih
T
k /β)

(6.18)

where β is a scaling factor and is set to
√
d.

Compared with conventional recurrent and convolutional models, an advantage of self-
attention models is that they shorten the computational “distance” between two inputs. Figure
6.2 illustrates the information flow in these models. We see that, given the input at posi-
tion i, self-attention models can directly access any other input. By contrast, recurrent and
convolutional models might need two or more jumps to see the whole sequence.

We can have a more general view of self-attention by using the QKV attention model.

Suppose we have a sequence of κ queries Q=

q1
...
qκ

, and a sequence ofψ key-value pairs (K=

k1
...
kψ

 ,V =

v1
...
vψ

). The output of the model is a sequence of vectors, each corresponding to
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a query. The form of the QKV attention is given by

Attqkv(Q,K,V) = Softmax(
QKT

√
d

)V (6.19)

We can write the output of the QKV attention model as a sequence of row vectors

C =

c1...
cκ


= Attqkv(Q,K,V) (6.20)

To apply this equation to self-attention, we simply have

Hq = HWq (6.21)

Hk = HWk (6.22)

Hv = HWv (6.23)

where Wq,Wk,Wv ∈ Rd×d represents linear transformations of H.

By considering Eq. (6.1), we then obtain

C = Attself(H)

= Attqkv(H
q,Hk,Hv)

= Softmax(
Hq[Hk]T√

d
)Hv (6.24)

Here Softmax(H
q [Hk]T√
d

) is an m×m matrix in which each row represents a distribution over
{h1, ...,hm}, that is

row i =
[
αi,1 ... αi,m

]
(6.25)

We can improve the above self-attention model by using a technique called multi-head
attention. This method can be motivated from the perspective of learning from multiple
lower-dimensional feature sub-spaces, which projects a feature vector onto multiple sub-spaces
and learns feature mappings on individual sub-spaces. Specifically, we project the whole of
the input space into τ sub-spaces (call them heads), for example, we transform H ∈ Rm×d

into τ matrices of size m× d
τ , denoted by {Hhead

1 , ...,Hhead
τ }. The attention model is then run

τ times, each time on a head. Finally, the outputs of these model runs are concatenated, and
transformed by a linear projection. This procedure can be expressed by

C = Merge(Chead
1 , ...,Chead

τ )Wc (6.26)

(6.27)
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For each head h,

Chead
h = Softmax(

Hq
h[H

k
h]

T

√
d

)Hv
h (6.28)

Hq
h = HWq

h (6.29)

Hk
h = HWk

h (6.30)

Hv
h = HWv

h (6.31)

Here Merge(·) is the concatenation function, and AttQKV(·) is the attention function de-
scribed in Eq. (6.20). Wq

h,W
k
h,W

v
h ∈ Rd×

d
τ are the parameters of the projections from a

d-dimensional space to a d
τ -dimensional space for the queries, keys, and values. Thus, Hq

h, Hk
h,

Hv
h, and Chead

h are all m× d
τ matrices. Merge(Chead

1 , ...,Chead
τ ) produces an m×d matrix.

It is then transformed by a linear mapping Wc ∈ Rd×d, leading to the final result C ∈ Rd×d.

While the notation here seems somewhat tedious, it is convenient to implement multi-head
models using various deep learning toolkits. A common method in Transformer-based systems
is to store inputs from all the heads in data structures called tensors, so that we can make use
of parallel computing resources to have efficient systems. A more general discussion of the
QKV attention and multi-head attention models can be found in Chapter 5.

6.1.4 Layer Normalization

Layer normalization provides a simple and effective means to make the training of neural
networks more stable by standardizing the activations of the hidden layers in a layer-wise
manner. As introduced in Ba et al. [2016]’s work, given a layer’s output h ∈ Rd, the layer
normalization method computes a standardized output LNorm(h) ∈ Rd by

LNorm(h) = g⊙ h−µ
σ+ ϵ

+b (6.32)

Here µ ∈ Rd and σ ∈ Rd are the mean and standard derivation of the activations. Let hk be the
k-th dimension of h. µ and σ are given by

µ =
1

d
·
d∑

k=1

hk (6.33)

σ =

√√√√1

d
·
d∑

k=1

(hk−µ)2 (6.34)

Here g ∈ Rd and b ∈ Rd are the rescaling and bias terms. They can be treated as parameters
of layer normalization, whose values are to be learned together with other parameters of the
Transformer model. The addition of ϵ to σ is used for the purpose of numerical stability. In
general, ϵ is chosen to be a small number.

We illustrate the layer normalization method for the hidden states of an encoder in the
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following example (assume that m= 4, d= 3, g = 1, b= 0, and ϵ= 0.1).

h1

h2

h3

h4


1 1 2

0.9 0.9 0

0.7 0.8 0

3 1 7


µ= 1.3, σ = 0.5

µ= 0.6, σ = 0.4

µ= 0.5, σ = 0.4

µ= 3.7, σ = 2.5

=⇒


1−1.3
0.5+0.1

1−1.3
0.5+0.1

2−1.3
0.5+0.1

0.9−0.6
0.4+0.1

0.9−0.6
0.4+0.1

0−0.6
0.4+0.1

0.7−0.5
0.4+0.1

0.8−0.5
0.4+0.1

0−0.5
0.4+0.1

3−3.7
2.5+0.1

1−3.7
2.5+0.1

7−3.7
2.5+0.1


As discussed in Section 6.1.1, the layer normalization unit in each sub-layer is used to

standardize the output of a residual block. Here we describe a more general formulation for
this structure. Suppose that F (·) is a neural network we want to run. Then, the post-norm
structure of F (·) is given by

Hout = LNorm(F (Hin)+Hin) (6.35)

where Hin and Houtput are the input and output of this model. Clearly, Eq. (6.4) is an instance
of this equation.

An alternative approach to introducing layer normalization and residual connections into
modeling is to execute the LNorm(·) function right after the F (·) function, and to establish an
identity mapping from the input to the output of the entire sub-layer. This structure, known as
the pre-norm structure, can be expressed in the form

Hout = LNorm(F (Hin))+Hin (6.36)

Both post-norm and pre-norm Transformer models are widely used in NLP systems. See
Figure 6.3 for a comparison of these two structures. In general, residual connections are
considered an effective means to make the training of multi-layer neural networks easier. In
this sense, pre-norm Transformer seems promising because it follows the convention that a
residual connection is created to bypass the whole network and that the identity mapping from
the input to the output leads to easier optimization of deep models. However, by considering
the expressive power of a model, there may be modeling advantages in using post-norm
Transformer because it does not so much rely on residual connections and enforces more
sophisticated modeling for representation learning. In Section 6.3.2, we will see a discussion
on this issue.

6.1.5 Feed-forward Neural Networks

The use of FFNs in Transformer is inspired in part by the fact that complex outputs can be
formed by transforming the inputs through nonlinearities. While the self-attention model
itself has some nonlinearity (in Softmax(·)), a more common way to do this is to consider
additional layers with non-linear activation functions and linear transformations. Given an input
Hin ∈ Rm×d and an output Hout ∈ Rm×d, the Hout = FFN(Hin) function in Transformer
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Core Function
F (·)

Add & LayerNorm

...

...

Hin F (·) LNorm(·) Hout

Hin LNorm(·) F (·) Hout

(a) Post-norm

(b) Pre-norm

Figure 6.3: The post-norm and pre-norm structures. F (·) = core function, LNorm(·) = layer
normalization, and ⊕= residual connection.

has the following form

Hout = HhiddenWf +bf (6.37)

Hhidden = ReLU(HinWh+bh) (6.38)

where Hhidden ∈ Rm×dffn is the hidden states, and Wh ∈ Rd×dffn , bh ∈ Rdffn , Wf ∈ Rdffn×d

and bf ∈ Rd are the parameters. This is a two-layer FFN in which the first layer (or hidden
layer) introduces a nonlinearity through ReLU(·)2 and the second layer involves only a linear
transformation. It is common practice in Transformer to use a larger size of the hidden layer.
For example, a common choice is dffn = 4d, that is, the size of each hidden representation is 4
times as large as the input.

Note that using a wide FFN sub-layer has been proven to be of great practical value in
many state-of-the-art systems. However, a consequence of this is that the model is occupied
by the parameters of the FFN. Table 6.1 shows parameter numbers and time complexities for
different modules of a standard Transformer system. We see that FFNs dominate the model
size when dffn is large, though they are not the most time consuming components. In the case
of very big Transform models, we therefore wish to address this problem for building efficient
systems.

6.1.6 Attention Models on the Decoder Side

A decoder layer involves two attention sub-layers, the first of which is a self-attention sub-
layer, and the second is a cross-attention sub-layer. These sub-layers are based on either the
post-norm or the pre-norm structure, but differ by designs of the attention functions. Consider,
for example, the post-norm structure, described in Eq. (6.35). We can define the cross-attention

2ReLU(x) = max{0,x}.
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Sub-model # of Parameters Time Complexity ×

Encoder
Multi-head Self-attention 4d2 O(m2 ·d) L

Feed-forward Network 2d ·dffn+d+dffn O(m ·d ·dffn) L
Layer Normalization 2d O(d) 2L

Decoder

Multi-head Self-attention 4d2 O(n2 ·d) L
Multi-head Cross-attention 4d2 O(m ·n ·d) L

Feed-forward Network 2d ·dffn+d+dffn O(n ·d ·dffn) L
Layer Normalization 2d O(d) 3L

Table 6.1: Numbers of parameters and time complexities of different Transformer modules
under different setups. m= source-sequence length, n= target-sequence length, d= default
number of dimensions of a hidden layer, dffn = number of dimensions of the FFN hidden
layer, τ = number of heads in the attention models, and L= number of encoding or decoding
layers. The column × means the number of times a sub-model is applied on the encoder or
decoder side. The time complexities are estimated by counting the number of multiplication of
floating-point numbers.

and self-attention sub-layers for a decoding layer to be

Scross = Layercross(Henc,Sself)

= LNorm(Attcross(Henc,Sself)+Sself) (6.39)

Sself = Layerself(S)

= LNorm(Attself(S)+S) (6.40)

where S ∈ Rn×d is the input of the self-attention sub-layer, Scross ∈ Rn×d and Sself ∈ Rn×d

are the outputs of the sub-layers, and Henc ∈ Rm×d is the output of the encoder 3.

As with conventional attention models, cross-attention is primarily used to model the
correspondence between the source-side and target-side sequences. The Attcross(·) function
is based on the QKV attention model which generates the result of querying a collection of
key-value pairs. More specifically, we define the queries, keys and values as linear mappings
of Sself and Henc, as follows

Sqself = SselfW
q
cross (6.41)

Hk
enc = HencW

k
enc (6.42)

Hv
enc = HencW

v
enc (6.43)

where Wq
cross,Wk

enc,W
v
enc ∈ Rd×d are the parameters of the mappings. In other words, the

queries are defined based on Sself , and the keys and values are defined based on Henc.

3For an encoder having L encoder layers, Henc =HL.



280 Chapter 6. Transformers

i−3 i−2 i−1 i i+1

(a) Encoder-side Self-attention

i−3 i−2 i−1 i i+1

(b) Decoder-side Self-attention

Figure 6.4: Self-attention on the encoder and decoder sides. Each line connects an input and
an output of the self-attention model, indicating a dependency of an output state on an input
state. For encoder self-attention, the output at any position is computed by having access to the
entire sequence. By contrast, for decoder self-attention, the output at position i is computed by
seeing only inputs at positions up to i.

Attcross(·) is then defined as

Attcross(Henc,Sself) = Attqkv(S
q
self ,H

k
enc,H

v
enc)

= Softmax(
Sqself [H

k
enc]

T

√
d

)Hv
enc (6.44)

The Attself(·) function has a similar form as Attcross(·), with linear mappings of S taken
as the queries, keys, and values, like this

Attself(S) = Attqkv(S
q,Sk,Sv)

= Softmax(
Sq[Sk]T√

d
+M)Sv (6.45)

where Sq = SWq
dec, S

k = SWk
dec, and Sv = SWv

dec are linear mappings of S with parameters
Wq

dec,W
k
dec,W

v
dec ∈ Rd×d.

This form is similar to that of Eq. (6.20). A difference compared to self-attention on
the encoder side, however, is that the model here needs to follow the rule of left-to-right
generation (see Figure 6.4). That is, given a target-side word at the position i, we can see only
the target-side words in the left context y1...yi−1. To do this, we add a masking variable M

to the unnormalized weight matrix Sq [Sk]T√
d

+M. Both M and Sq [Sk]T√
d

+M are of size n×n,
and so a lower value of an entry of M means a larger bias towards lower alignment scores for
the corresponding entry of Sq [Sk]T√

d
+M. In order to avoid access to the right context given i,

M is defined to be

M(i,k) =

{
0 i≤ k
−∞ i > k

(6.46)

where M(i,k) indicates a bias term for the alignment score between positions i and k. Below
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we show an example of how the masking variable is applied (assume n= 4).

Softmax(
Sq[Sk]T√

d
+M)

= Softmax(


2 0.1 1 1

0 0.9 0.9 0.9

0.2 0.8 0.7 2

0.3 1 0.3 3

+

0 −∞ −∞ −∞
0 0 −∞ −∞
0 0 0 −∞
0 0 0 0

)

= Softmax(


2 −∞ −∞ −∞
0 0.9 −∞ −∞
0.2 0.8 0.7 −∞
0.3 1 0.3 3

)

=


1 0 0 0

0.3 0.7 0 0

0.2 0.4 0.4 0

0.05 0.1 0.05 0.8

 (6.47)

As noted in Section 6.1.3, it is easy to improve these models by using the multi-head
attention mechanism. Also, since decoders are typically the most time-consuming part of
practical systems, the bulk of the computational effort in running these systems is very much
concerned with the efficiency of the attention modules on the decoder side.

6.1.7 Training and Inference
Transformers can be trained and used in a regular way. For example, we can train a Transformer
model by performing gradient descent to minimize some loss function on the training data
(see Chapter 2), and test the trained model by performing beam search on the unseen data (see
Chapter 5). Below we present some of the techniques that are typically used in the training
and inference of Transformer models.

• Learning Rate Scheduling. As standard neural networks, Transformers can be directly
trained using back-propagation. The training process is generally iterated many times to
make the models fit the training data well. In each training step, we update the weights of
the neural networks by moving them a small step in the direction of negative gradients of
errors. There are many ways to design the update rule of training. A popular choice is to
use the Adam optimization method [Kingma and Ba, 2014]. To adjust the learning rate
during training, Vaswani et al. [2017] present a learning rate scheduling strategy which
increases the learning rate linearly for a number of steps and then decay it gradually.
They design a learning rate of the form

lr = lr0 ·min
{
n−0.5
step , nstep · (nwarmup)

−1.5
}

(6.48)

where lr0 denotes the initial learning rate, and nstep denotes the number of training
steps we have executed, and nwarmup denotes the number of warmup steps. In the first



282 Chapter 6. Transformers

nwarmup steps, the learning rate lr grows larger as training proceeds. It reaches the
highest value at the point of nstep = nwarmup, and then decreases as an inverse square
root function (i.e., lr0 ·n−0.5

step ).

• Batching and Padding. To make a trade-off between global optimization and training
convergency, it is common to update the weights each time on a relatively small collection
of samples, called a minibatch of samples. Therefore, we can consider a batch version
of forward and backward computation processes in which the whole minibatch is used
together to obtain the gradient information. One advantage of batching is that it allows
the system to make use of efficient tensor operations to deal with multiple sequences
in a single run. This requires that all the input sequences in a minibatch are stored in a
single memory block, so that they can be read in and processed together. To illustrate
this idea, consider a minimatch containing four samples whose source-sides are

A B C D E F
M N
R S T
W X Y Z

We can store these sequences in a 4×6 continuous block where each “row” represents a
sequence, like this

A B C D E F
M N □ □ □ □
R S T □ □ □
W X Y Z □ □

Here padding words □ are inserted between sequences, so that these sequences are
aligned in the memory. Typically, we do not want padding to affect the operation of
the system, and so we can simply define □ as a zero vector (call it zero padding). On
the other hand, in some cases we are interested in using padding to describe something
that is not covered by the input sequences. For example, we can replace padding words
with the words in the left (or right) context of a sequence, though this may require
modifications to the system to ensure that the newly added context words do not cause
additional content to appear in the output.

• Search and Caching. At test time, we need to search the space of candidate hypotheses
(or candidate target-side sequences) to identify the hypothesis (or target-side sequence)
with the highest score.

ŷ = argmax
y

score(x,y) (6.49)

where score(x,y) is the model score of the target-side sequence y given the source-side
sequence x. While there are many search algorithms to achieve this, most of them
share a similar structure: the search program operates by extending candidate target-side
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(b) decoding step 2
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(a) decoding step 1
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Cache
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(c) decoding step 3

Figure 6.5: Illustration of the caching mechanism in Transformer decoders. Rectangles indicate
the states of decoding layers or sub-layers. At step i, all the states at previous steps are stored
in a cache (see dotted boxes), and we only need to compute the states for this step (see blue
rectangles and arrows). Then, we add the newly generated states to the cache, and move on to
step i+1.

sequences in a pool at a time. In this way, the resulting algorithm can be viewed as a
left-to-right generation procedure. For a more detailed discussion of search algorithms
and model scores of general sequence-to-sequence models, see Chapter 5. Note that all
of the designs of score(x,y), no matter how complex, are based on computing Pr(y|x).
Because the attention models used in Transformer require computing the dot-product of
each pair of the input vectors of a layer, the time complexity of the search algorithm is a
quadratic function of the length of y. It is therefore not efficient to repeatedly compute
the outputs of the attention models for positions that have been dealt with. This problem
can be addressed by caching the states of each layer for words we have seen. Figure
6.5 illustrates the use of the caching mechanism in a search step. All the states for
positions < i are maintained and easily accessed in a cache. At position i, all we need is
to compute the states for the newly added word, and then to update the cache.

6.2 Syntax-aware Models
Although Transformer is simply a deep learning model that does not make use of any linguistic
structure or assumption, it may be necessary to incorporate our prior knowledge into such
systems. This is in part because NLP researchers have long believed that a higher level of
abstraction of data is needed to develop ideal NLP systems, and there have been many systems
that use structure as priors. However, structure is a wide-ranging topic and there are several
types of structure one may refer to See [2018]’s work. For example, the inductive biases used
in our model design can be thought of as some structural prior, while NLP models can also
learn the underlying structure of problems by themselves. In this subsection we will discuss
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some of these issues. We will focus on the methods of introducing linguistic structure into
Transformer models. As Transformer can be applied to many NLP tasks, which differ much in
their input and output formats, we will primarily discuss modifications to Transformer encoders
(call them syntax-aware Transformer encoders). Our discussion, however, is general, and
the methods can be easily extended to Transformer decoders.

6.2.1 Syntax-aware Input and Output

One of the simplest methods of incorporating structure into NLP systems is to modify the
input sequence, leaving the system unchanged. As a simple example, consider a sentence
where each word xj is assigned a set of κ syntactic labels {tag1j , ...,tagκj } (e.g., POS labels
and dependency labels). We can write these symbols together to define a new “word”

xj/tag
1
j/.../tag

κ
j

Then, the embedding of this word is given by

xpj = e(xj/tag
1
j/.../tag

κ
j )+PE(j) (6.50)

where e(xj/tag1j/.../tag
κ
j )∈Rd is the embedding of xj/tag1j/.../tag

κ
j . Since xj/tag1j/.../tag

κ
j

is a complex symbol, we decompose the learning problem of e(xj/tag1j/.../tag
κ
j ) into easier

problems. For example, we can develop κ embedding models, each producing an embedding
given a tag. Then, we write e(xj/tag1j/.../tag

κ
j ) as a sum of the word embedding and tag

embeddings

e(xj/tag
1
j/.../tag

κ
j ) = xj+e(tag

1
j )+ ...+e(tag

κ
j ) (6.51)

where {e(tag1j ), ...,e(tagκj )} are the embeddings of the tags. Alternatively, we can combine
these embeddings via a neural network in the form

e(xj/tag
1
j/.../tag

κ
j ) = FFNembed(xj ,e(tag

1
j ), ...,e(tag

κ
j )) (6.52)

where FFNembed(·) is a feed-forward neural network that has one layer or two.

We can do the same thing for sentences on the decoder side as well, and treat yi/tag1i /.../tag
κ
i

as a syntax-augmented word. However, this may lead to a much larger target-side vocabulary
and poses a computational challenge for training and inference.

Another form that is commonly used to represent a sentence is syntax tree. In linguistics, the
syntax of a sentence can be interpreted in many different ways, resulting in various grammars
and the corresponding tree (or graph)-based representations. While these representations
differ in their syntactic forms, a general approach to use them in sequence modeling is tree
linearization. Consider the following sentence annotated with a constituency-based parse tree
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S

.

!

VP

ADJP

JJ

interesting

VBZ

’s

NP

PRP

It

We can write this tree structure as a sequence of words, syntactic labels and brackets via a tree
traversal algorithm, as follows

(S (NP (PRP It )PRP )NP (VP (VBZ ’s )VBZ (ADJP (JJ

interesting )JJ )ADJP )VP (. ! ). )S

This sequence of syntactic tokens can be used as an input to the system, that is, each token
is represented by word and positional embeddings, and then the sum of these embeddings is
treated as a regular input of the encoder. An example of the use of linearized trees is tree-to-
string machine translation in which a syntax tree in one language is translated into a string in
another language [Li et al., 2017b; Currey and Heafield, 2018]. Linearized trees can also be
used for tree generation. For example, we can frame parsing tasks as sequence-to-sequence
problems to map an input text to a sequential representation of its corresponding syntax tree
[Vinyals et al., 2015; Choe and Charniak, 2016]. See Figure 6.6 for illustrations of these
models. It should be noted that the methods described here are not specific to Transformer but
could be applied to many models, such as RNN-based models.

6.2.2 Syntax-aware Attention Models
For Transformer models, it also makes sense to make use of syntax trees to guide the process
of learning sequence representations. In the previous section we saw how representations of a
sequence can be computed by relating different positions within that sequence. This allows us
to impose some structure on these relations which are represented by distributions of attention
weights over all the positions. To do this we use the encoder self-attention with an additive
mask

AttSynself(H) = Softmax(
Hq[Hk]T√

d
+M)Hv (6.53)

or alternatively with a multiplicative mask

AttSynself(H) = Softmax(
Hq[Hk]T√

d
⊙M)Hv (6.54)

where M∈Rm×m is a matrix of masking variables in which a larger value ofM(i, j) indicates
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Encoder Decoder

(ADJP (JJ Great )JJ (. ! ). )ADJP ⟨SOS⟩ 很 好

很 好 ！

(a) Tree-to-String Machine Translation

Encoder Decoder

Great ! ⟨SOS⟩ (ADJP (JJ Great )JJ (. ! ).

(ADJP (JJ Great )JJ (. ! ). )ADJP

(b) Constituency Parsing

Figure 6.6: Illustration of tree linearization on either the encoder or decoder side. For tree-
to-string machine translation, the encoder takes sequential representation of an input parse
tree, and the decoder outputs the corresponding translation. For parsing, the encoder takes a
sentence, and the decoder outputs the corresponding syntax tree.

a stronger syntactic correlation between positions i and j. In the following description we
choose Eq. (6.54) as the basic form.

One common way to design M is to project syntactic relations of the input tree structure
into constraints over the sequence. Here we consider constituency parse trees and dependency
parse trees for illustration. Generally, two types of masking methods are employed.

• 0-1 Masking. This method assigns M(i, j) a value of 1 if the words at positions i and j
are considered syntactically correlated and a value of 0 otherwise [Zhang et al., 2020c;
Bai et al., 2021]. To model the relation between two words in a syntax tree, we can
consider the distance between their corresponding nodes. One of the simplest forms is
given by

M(i, j) =

{
1 ω(i, j)≤ ωmax

0 otherwise
(6.55)

where ω(i, j) is the length of the shortest path between the nodes of the words at
positions i and j. For example, given a dependency parse tree, ω(i, j) is the number
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of dependency edges in the path between the two words. For a constituency parse
tree, all the words are leaf nodes, and so ω(i, j) gives a tree distance between the two
leaves in the same branch of the tree. ωmax is a parameter used to control the maximum
distance between two nodes that can be considered syntactically correlated. For example,
assuming that there is a dependency parse tree and ωmax = 1, Eq. (6.55) enforces a
constraint that the attention score between positions i and j is computed only if they
have a parent-dependent relation4.

• Soft Masking. Instead of treating M as a hard constraint, we can use it as a soft
constraint that scales the attention weight between positions i and j in terms of the
degree to which the corresponding words are correlated. An idea is to reduce the attention
weight as ω(i, j) becomes larger. A very simple method to do this is to transform ω(i, j)

in some way that M(i, j) holds a negative correlation relationship with ω(i, j) and its
value falls into the interval [0,1]

M(i, j) = DNorm(ω(i, j)) (6.56)

There are several alternative designs for DNorm(·). For example, one can compute
a standardized score of −ω(i, j) by subtracting its mean and dividing by its standard
deviation [Chen et al., 2018a], or can normalize 1/ω(i, j) over all possible j in the
sequence [Xu et al., 2021b]. In cases where parsers can output a score between positions i
and j, it is also possible to use this score to computeM(i, j). For example, a dependency
parser can produce the probability of the word at position i being the parent of the word
at position j [Strubell et al., 2018]. We can then write M(i, j) as

M(i, j) = Prparent(i|j) (6.57)

or alternatively

M(i, j) = max{Prparent(i|j),Prparent(j|i)} (6.58)

where Prparent(i|j) and Prparent(j|i) are the probabilities given by the parser. See
Figure 6.7 for an example of inducing a soft masking variable from a dependency parse
tree.

6.2.3 Multi-branch Models

Introducing syntax into NLP systems is not easy. This is partially because automatic parse
trees may have errors, and partially because the use of syntax may lead to strong assumption of
the underlying structure of a sentence. Rather than combining syntactic and word information

4For multiplicative masks, M(i, j) = 0 does not mean that the attention weight between j and i is zero
because the Softmax function does not give a zero output for a dimension whose corresponding input is of a zero
value. A method to “mask” an entry of Softmax(HHT

√
d

) is to use an additive mask and set M(i, j) = −∞ if
ω(i, j)> ωmax.
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The concert was wonderful !

(a) Dependency Parse Tree (b) Mask M (darker color means larger value)
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Figure 6.7: Priors induced from a dependency parse tree. The row i of the matrix M represents
a distribution that describes how much weight we can give to M(i, j) in terms of the syntactic
distance between i and j.

into one “big” model, it may be more flexible and effective to build one model to encode syntax
and a different one to encode word sequences. One way to achieve this is through the use of
multiple neural networks (called branches or paths), each dealing with one type of input. The
outputs of these branches are then combined to produce an output [Xie et al., 2017; Fan et al.,
2020; Lin et al., 2022b]. Various methods have therefore been used to combine different types
of input for neural models like Transformer.

One commonly-used approach is to build two separate encoders, in which one model is
trained to encode the syntactic input (denoted by t), and the other is trained to encode the usual
input (denoted by x). Figure 6.8 (a) illustrates this multi-encoder architecture. The syntactic
encoder Encodesyn(t) is based on models presented in Sections 6.2.1 and 6.2.2, and the text
encoder Encodetext(x) is a standard Transformer encoder. The representations generated by
these encoders are then fed into the combination model as input, and combined into a hybrid
representation, given by

Hhybrid = Combine(Hsyn,Htext)

= Combine(Encodesyn(t),Encodetext(x)) (6.59)

There are several designs for Combine(·), depending on what kind of problems we apply
the encoders to. For example, if we want to develop a text classifier, Combine(·) can be a
simple pooling network. For more complicated tasks, such as machine translation, Combine(·)
can be a Transformer encoder as well, and we can fuse information from different sources by
performing self-attention on [Hsyn,Htext].

While we restrict attention to syntactic models in this section, the general multi-encoder
architecture can be used in many problems where inputs from additional sources are required.
For example, one can use one encoder to represent a sentence, and use another encoder to
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Figure 6.8: Multi-branch architectures. There are two inputs: a sentence (denoted by x) and
the syntax tree of the sentence (denoted by t). In the multi-encoder architecture (see sub-figure
(a)), two encoders are constructed to encode x and t, respectively. A combination model
then takes the outputs of the encoders and produces a combined representation of x and t.
The idea of multi-branch networks can be used for designing sub-models of the encoder. A
simple example is that we create multiple paths in parallel for some layers of the encoder (see
sub-figure (b)). Another example is multi-head attention (see sub-figure (c)) where we use
different heads to learn different representations.

represent the previous sentence in the same document. We thus have a context-aware model by
combining the two encoders [Voita et al., 2018; Li et al., 2020a]. Furthermore, the architectures
of the encoders do not need to be restricted to Transformer, and we can choose different models
for different branches. For example, as a widely-used 2-branch encoding architecture, we can
use a CNN-based encoder to model local context, and a Transformer encoder to model global
context [Wu et al., 2020b].

Sub-models of a Transformer model can also be multi-branch neural networks. See Figure
6.8 (b) for an example involving two self-attention branches. One is the standard self-attention
network Attself(H). The other is the syntax-aware self-attention network AttSynself(H). The
output of the self-attention model is a linear combination of the outputs of these two branches
[Xu et al., 2021b], given by

Hself = α ·Attself(H)+(1−α) ·AttSynself(H) (6.60)

where α is a coefficient of combination. Hself can be used as usual by taking a layer normal-
ization function and adding a residual connection, and so the overall architecture is the same
as standard Transformer models.

Multi-head attention networks can also be viewed as forms of multi-branch models. There-
fore, we can provide guidance from syntax to only some of the heads while keeping the rest
unchanged [Strubell et al., 2018]. This approach is illustrated in Figure 6.8 (c) where only one
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head of the self-attention sub-layer makes use of syntax trees for computing attention weights.

6.2.4 Multi-scale Models
In linguistics, syntax studies how sentences are built up by smaller constituents. Different
levels of these constituents are in general organized in a hierarchical structure, called syntactic
hierarchy. It is therefore possible to use multiple levels of syntactic constituents to explain
the same sentence, for example, words explain how the sentence is constructed from small
meaningful units, and phrases explain how the sentence is constructed from larger linguistic
units.

Multi-scale Transformers leverage varying abstraction levels of data to represent a sentence
using diverse feature scales. A common approach is to write a sentence in multiple different
forms and then to combine them using a multi-branch network [Hao et al., 2019]. For example,
consider a sentence

The oldest beer-making facility was discovered in China.

We can tokenize it into a sequence of words, denoted by

xwords = The oldest beer-making facility was discovered in China .

Alternatively, we can write it as a sequence of phrases by using a parser, denoted by

xphrases = [The oldest beer-making facility]NP [was discovered in China]VP [.].

The simplest way to build a multi-scale model is to encode xwords and xphrases using two
separate Transformer encoders. Then, the outputs of these encoders are combined in some way.
This leads to the same form as Eq. (6.59), and we can view this model as an instance of the
general multi-encoder architecture.

Both xwords and xphrases can be viewed as sequences of tokens, for example, xwords has
nine word-based tokens, and xphrases has three phrase-based tokens5. However, involving
all possible phrases will result in a huge vocabulary. We therefore need some method to
represent each phrase as an embedding in a cheap way. By treating phrase embedding as a
sequence modeling problem, it is straightforward to learn sub-sequence representations simply
by considering the sequence models described in the previous chapters and this chapter. Now
we have a two-stage learning process. In the first stage, we learn the embeddings of input units
on different scales using separate models. In the second stage, we learn to encode sequences
on different scales using a multi-branch model.

More generally, we do not need to restrict ourselves to linguistically meaningful units in
multi-scale representation learning. For example, we can learn sub-word segmentations from
data and represent an input sentence as a sequence of sub-words. This results in a hierarchical

5xphrases comprises three tokens The oldest beer-making facility, was discovered in China, and ..
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representation of the sentence, for example, sub-words→ words→ phrases. While the learned
sub-words may not have linguistic meanings, they provide a new insight into modeling words
and phrases, as well as a new scale of features. Also, we do not need to develop multiple
encoders for multi-scale modeling. An alternative approach is to take representations on
different scales in the multi-head self-attention attention modules, which makes it easier to
model the interactions among different scales [Guo et al., 2020; Li et al., 2022b].

A problem with the approaches described above, however, is that the representations (or
attention weight matrices) learned on different scales are of different sizes. For example,
in the above examples, the representation learned from xwords is a 9× d matrix, and the
representation learned from xphrases is a 3× d matrix. A simple solution to this problem
is to perform upsampling on the phrase-based representation to expand it to a 9×d matrix.
Likewise, we can perform downsampling on the word-based representation to shrink it to a
3×d matrix. Then, the combination model Combine(·) can be the same as those described in
Section 6.2.3.

It is worth noting that multi-scale modeling is widely discussed in several fields. For
example, in computer vision, multi-scale modeling is often referred to as a process of learning
a series of feature maps on the input image [Fan et al., 2021; Li et al., 2022f]. Unlike the
multi-branch models presented here, the multi-scale vision Transformer models make use of
the hierarchical nature of features in representing images. Systems of this kind are often based
on a stack of layers in which each layer learns the features on a larger scale (e.g., a higher
channel capacity) from the features produced by the previous layer.

6.2.5 Transformers as Syntax Learners
So far we have discussed syntax trees as being constraints or priors on the encoding process so
that we can make use of linguistic representations in learning neural networks. It is natural to
wonder whether these neural models can learn some knowledge of linguistic structure from
data without human design linguistic annotations. This reflects one of the goals of developing
NLP systems: linguistic knowledge can be learned from data and encoded in models.

In order to explore the linguistic properties learned by NLP systems, a simple method is to
examine the syntactic behaviors of the outputs of the systems. For example, we can examine
whether the outputs of language generation systems have grammatical errors. Another example
is to ask these systems to accomplish tasks that make sense for linguistics, though they are
not trained to do so [Brown et al., 2020]. However, examining and explaining how model
predictions exhibit syntactic abilities is not sufficient to answer the question. It is also the case
that the neural networks have learned some knowledge about language, but it is not used in
prediction [Clark et al., 2019a]. Therefore, we need to see what is modeled and learned inside
these neural networks.

One approach to examining the latent linguistic structure in Transformer models is to
develop probes to see whether and to what extent these models capture notions of linguistics,
such as dependency relations and parts-of-speech. A general approach to probing is to
extract the internal representations of the models and probe them for linguistic phenomena.
For Transformer, it is usually achieved by examining the attention map and/or output of an
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Figure 6.9: An overview of probing for Transformer-based models. Given a Transformer
model (e.g., a Transformer-based language model), we first optimize the model parameters on
some unlabeled data. Then, we develop a predictor which takes the states of a hidden layer
of the Transformer model and generates outputs for a probing task (see sub-figure (a)). The
predictor can be trained as usual in which only the parameters of the predictor are optimized
and the parameters of the Transformer model are fixed (see sub-figure (b)). The Transformer
model and the predictor are used together to make predictions on new data for probing (see
sub-figure (c)).

attention layer. Then, we construct a probing predictor (or probing classifier) that takes
these internal representations as input and produces linguistic notions as output [Belinkov,
2022]. The probing predictor can be based on either simple heuristics or parameterized models
optimized on the probing task. Recent work shows that large-scale Transformer-based language
models exhibit good behaviors, called emergent abilities, in various probing tasks. However,
we will not discuss details of these language modeling systems in this chapter, but leave them
in the following chapters. Nevertheless, we assume here that we have a Transformer encoder
that has been well trained on unlabeled data and can be used for probing. Figure 6.9 illustrates
the process of probing.

Many probing methods have been used in recent work on analyzing and understanding
what is learned in neural encoders. Here we describe some of the popular ones.

• Trees. Given a trained Transformer encoder, it is easy to know how “likely” two words of
a sentence have some linguistic relationship by computing the attention weight between
them. We can use this quantity to define a metric measuring the syntactic distance
between the two words at positions i and j

ds(i, j) = 1−α(i, j) (6.61)

By using this metric it is straightforward to construct the minimum-spanning tree for
the sentence, that is, we connect all the words to form a tree structure with the minimum
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total distance. The tree structure can be seen as a latent tree representation of the sentence
that is induced from the neural network. While this dependency-tree-like structure can
be used as a source of learned syntactic information in downstream tasks, it says nothing
about our knowledge of syntax. An approach to aligning the representations in the
encoder with linguistic structure is to learn to produce syntax trees that are consistent
with human annotations. To do this, we need to develop a probing predictor that can be
trained on tree-annotated data. Suppose that there is a human annotated dependency tree
of a given sentence. For each pair of words, we can obtain a distance ω(i, j) by counting
the number of edges between them. Then, we can learn a distance metric based on the
internal representations of the encoder to approximate ω(i, j). A simple form of such a
metric is defined to be the Euclidean distance [Manning et al., 2020]. Let A ∈ Rd×ks be
a parameter matrix. The form of the Euclidean distance is given by

ds(i, j) =
√
||(hi−hj)A||22 (6.62)

where hi and hj are the representations produced by an encoding layer at positions i
and j6. Given a set of tree-annotated sentences S, we can optimize the model by

Â = argmax
A

∑
s∈S

1

|s|2
∑

i∈s,j∈s
|ω(i, j)−d2s(i, j)| (6.63)

where |s| is length of the sentence s, and (i, j) indicates a pair of words in s. The
optimized model is then used to parse test sentences via the minimum-spanning tree
algorithm, and we can compare the parse trees against the human-annotated trees. To
obtain directed trees, which are standard forms of dependency syntax, one can update
the above model by considering the relative distance of a word to the root. More details
can be found in Manning et al. [2020]’s work. Here the probing predictor functions
similarly to a neural parser, trained to predict a syntax tree based on a representation of
the input sentence. This idea can be extended to other forms of syntactic structure, such
as phrase structure trees [Shi et al., 2016].

• Syntactic and Semantic Labels. Many syntactic and semantic parsing tasks can be
framed as problems of predicting linguistic labels given a sentence or its segments. A
simple example is part-of-speech tagging in which each word of a sentence is labeled
with a word class. A probe for part-of-speech tagging can be a classifier that takes a
representation hj each time and outputs the corresponding word class. One general
probing approach to these problems is edge probing [Tenney et al., 2019b;a]. Given a
sentence, a labeled edge is defined as a tuple

(span1,span2, label)

where span1 is a span [i1, j1], and span2 is another span [i2, j2] (optionally), and label

6In general, hi and hj are the outputs of the last layer of the encoder. Alternatively, they can be weighted sums
of the outputs of all the layers.
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is the corresponding label. Our goal is to learn a probe to predict label given span1
and span2. For example, for part-of-speech tagging, span1 is a unit span [j,j] for each
position j, span2 is an empty span, and label is the part-of-speech tag corresponding
to the j-th word of the sentence; for dependency parsing and coreference resolution,
span1 and span2 are two words or entities, and label is the relationship between them;
for constituency parsing, span1 is a span of words, span2 is an empty span, and label

is the syntactic category of the tree node yielding span1. In simple cases, the probing
model can be a multi-layer feed-forward neural network with a Softmax output layer.
As usual, this model is trained on labeled data, and then tested on new data.

• Surface Forms of Words and Sentences. Probing tasks can also be designed to examine
whether the representations embed the surface information of sentences or words [Adi
et al., 2016; Conneau et al., 2018]. A simple sentence-level probing task is sentence
length prediction. To do this, we first represent the sentence as a single vector h7,
and then build a classifier to categorize h into the corresponding length bin. Similarly,
probes can be built to predict whether two words at positions i and j are reordered in the
sentence given hi and hj . Also, we can develop probes to address conventional problems
in morphology. For example, we reconstruct the word at position j or predict its sense
with the representation hj . In addition, probing tasks can be focused on particular
linguistic problems, for example, numeracy [Wallace et al., 2019] and function words
[Kim et al., 2019].

• Cloze. Of course, we can probe neural models for problems beyond syntax and morphol-
ogy. One perspective on large-scale pre-trained Transformer models is to view them as
knowledge bases containing facts about the world. It is therefore tempting to see if we
can apply them to test factual knowledge. A simple method is to ask a probe to recover
the missing item of a sentence [Petroni et al., 2019]. For example, if we have a cloze test

Shiji was written by .

we wish the probe to give an answer Sima Qian because there is a subject-object-relation
fact (Shiji, Sima Qian, written-by). This probe can simply be a masked language model
that is widely used in self-supervised learning of Transformer encoders.

In NLP, probing is closely related to pre-training of large language models (see Chapters
7 and 8). In general, we can see probing tasks as applications of these pre-trained language
models, though probing is ordinarily used to give a quick test of the models. Ideally we would
like to develop a probe that makes best use of the representations to deal with the problems.
However, when a probe is complex and sufficiently well-trained, it might be difficult to say
if the problem is solved by using the representations or the probe itself. A common way to
emphasize the contribution of probes in problem-solving is to compare them with reasonable
baselines or conduct the comparison on control tasks [Hewitt and Liang, 2019; Belinkov,
2022].

7h can be computed by performing a pooling operation on {h1, ...,hm}
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6.3 Improved Architectures
In this section we present several improvements to the vanilla Transformer model. Unlike
the previous section, most of the improvements are from the perspective of machine learning,
rather than linguistics.

6.3.1 Locally Attentive Models

Methods of self-attention, as discussed in Section 6.1.3, can also be viewed as learning
representations of the entire input sequence. The use of this global attention mechanism
can lead to a better ability to deal with long-distance dependencies, but this model has a
shortcoming: local information is not explicitly captured. Here we consider a few techniques
that attempt to model the localness of representations.

1. Priors of Local Modeling

One of the simplest ways of introducing local models into Transformers is to add a penalty
term to the attention function in order to discourage large attention weights between distant
positions. On the encoder-side, this leads to a form that we have already encountered several
times in this chapter.

AttLocalself(H) = Softmax(
Hq[Hk]T√

d
−γ ·G)Hv (6.64)

where γ is the weight (or temperature) of the penalty term, and G ∈ Rm×m is the matrix of
penalties. Each entry G(i, j) indicates how much we penalize the model given positions i and
j. A simple form of G(i, j) is a distance metric between i and j, for example

G(i, j) = |i− j| (6.65)

Or G(i, j) can be defined as a Gaussian penalty function [Yang et al., 2018a]

G(i, j) =
(i− j)2

2σ2i
(6.66)

where σi is the standard deviation of the Gaussian distribution. For different j, both of the
above penalty terms increase, linearly or exponentially, away from the maximum at i with
distance |i− j|.

This method can be extended to the cross-attention model, like this

AttLocalcross(H,S) = Softmax(
Sq[Hk]T√

d
−γ ·G)Hv (6.67)

where G is an n×m matrix. Each entry of G can be defined as

G(i, j) =
(µi− j)2

2σ2i
(6.68)
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where µi is the mean of the Gaussian distribution over the source-side positions. Both µi
and σi can be determined using heuristics. Alternatively, we can develop additional neural
networks to model them and learn corresponding parameters together with other parameters of
the Transformer model. For example, we can use a feed-forward neural network to predict µi
given si.

One alternative to Eq. (6.64) (or Eq. (6.67)) treats the penalty term as a separate model and
combines it with the original attention model. For example, we can define the self-attention
model as

AttLocalself(H) =

(
(1−β) ·Softmax(

Hq[Hk]T√
d

)+β ·Softmax(−γ ·G)

)
Hv (6.69)

where β ∈ [0,1] is the coefficient of the linear combination. Note that, to avoid empirical
choices of the values of α and β, we can use gating functions to predict α and β and train these
functions as usual.

Another alternative is to use a multiplicative mask to incorporate the prior into modeling,
as in Eq. (6.54). This is given by

AttLocalself(H) = Softmax(
Hq[Hk]T√

d
⊙G′)Hv (6.70)

Here G′ ∈ [0,1]m×m is a matrix of scalars. The scalar G′(i, j) gives a value of 1 when i= j,
and a smaller value as j moves away from i. G′(i, j) can be obtained by normalizing −G(i, j)
over all j or using alternative functions.

2. Local Attention

The term local attention has been used broadly to cover a wide range of problems and to
refer to many different models in the NLP literature. The methods discussed above are
those that impose soft constraints on attention models. In fact, local attention has its origins
in attempts to restrict the scope of attention models for considerations of modeling and
computational problems [Luong et al., 2015]. Research in this area often looks into introducing
hard constraints, so that the resulting models can focus on parts of the input and ignore the
rest. For example, we can predict a span of source-side positions for performing the attention
function given a target-side position [Sperber et al., 2018; Yang et al., 2018a; Sukhbaatar
et al., 2019]. Also, attention spans can be induced from syntax trees, for example, knowing
sub-tree structures of a sentence may help winnow the field that the model concentrates on
in learning the representation. Thus, many of the syntax-constrained models are instances of
local attention-based models (see Section 6.2.4) . In addition, the concept of local attention
can be extended to develop a rich set of models, such as sparse attention models, although
these models are often discussed in the context of efficient machine learning methods. We will
see a few examples of them in Section 6.4.

In deep learning, one of the most widely used models for learning features from a restricted
region of the input is CNNs. It is thus interesting to consider methods of combining CNNs
and Transformer models to obtain the benefits of both approaches, for example, CNNs deal
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with short-term dependencies, and self-attention models deal with long-term dependencies.
One approach is to build a two-branch sequence model where one branch is based on CNNs
and the other is based on self-attention models [Wu et al., 2020b]. Another approach is to
incorporate CNN layers into Transformer blocks in some way that we can learn both local and
global representations through a deep model [Wu et al., 2019; Gulati et al., 2020].

3. Relative Positional Embedding

Relative positional embedding, also known as relative positional representation (RPR), is
an improvement to the absolute positional embedding method used in standard Transformer
systems [Shaw et al., 2018; Huang et al., 2018]. The idea of RPR is that we model the distance
between two positions of a sequence rather than giving each position a fixed representation.
As a result, we have a pair-wise representation PE(i, j) for any two positions i and j. One
simple way to define PE(i, j) is to consider it as a lookup table for all pairs of i and j. More
specifically, let uπ be a d-dimensional representation for a given distance π. The form of
PE(i, j) in the vanilla RPR method is given by

PE(i, j) = uclip(j−i,krpr) (6.71)

where clip(x,krpr) is a function that clips x in the interval [−krpr,krpr]

clip(x,krpr) = max{−krpr,min{x,krpr}} (6.72)

Thus, we have a model with parameters

Urpr =



u−krpr
...
u0
...

ukrpr


(6.73)

While this matrix notation is used in a relatively informal way, we can view Urpr as a matrix
∈ R(2krpr+1)×d, and select a row corresponding to clip(j− i,krpr) when RPR is required for
given i and j.

Using the above method, we can define three RPR models PEq(i, j), PEk(i, j) and
PEv(i, j) for queries, keys, and values, respectively. Then, following the form of Eq. (6.17),
the output of the self-attention model at position i can be written as

ci =
m∑
j=1

αi,j
[
hvj +PEv(i, j)

]
=

m∑
j=1

αi,jh
v
j +

m∑
j=1

αi,jPE
v(i, j) (6.74)
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Figure 6.10: Transformer encoders without and with relative positional representation (RPR).
In RPR, each pair of positions is represented as a vector PE(i, j) using a model parameterized
by Urpr. PE(i, j) is fed into each self-attention sub-layer so that we can make use of the
positional information in intermediate steps of learning representations.

where hvj is the j-th row vector of Hv. This representation comprises two components:∑m
j=1αi,jh

v
j is the basic representation, and

∑m
j=1αi,jPE

v(i, j) is the positional representa-
tion.

The attention weight αi,j is computed in a regular way, but with additional terms PEq(i, j)
and PEk(i, j) added to each query and key.

αi,j = Softmax(
[hqi +PEq(i, j)][hkj +PEk(i, j)]T

√
d

) (6.75)

Figure 6.10 shows the Transformer encoder architectures with and without RPR. When
RPR is adopted, PEq(i, j), PEk(i, j), PEv(i, j) are directly fed to each self-attention sub-layer,
and so we can make better use of positional information for sequence modeling. Note that,
the use of the clipping function (see Eq. (6.72)) makes the modeling simple because we
do not need to distinguish the relative distances for the cases |j− i| ≥ krpr. This clipped
distance-based model can lead, in turn, to better modeling in local context windows.

Eqs. (6.74) and (6.75) provide a general approach to position-sensitive sequence modeling.
There are many variants of this model. In Shaw et al. [2018]’s early work on RPR, the



6.3 Improved Architectures 299

positional representations for queries are removed, and the model works only with PEk(i, j)

and PEv(i, j), like this

αi,j = Softmax(
hqi [h

k
j +PEk(i, j)]T
√
d

) (6.76)

By contrast, there are examples that attempt to improve the RPR model in computing
attention weights but ignore PEv(i, j) in learning values [Dai et al., 2019; He et al., 2021].
Instead of treating RPR as an additive term to each representation, researchers also explore
other ways of introducing RPR into Transformer [Huang et al., 2020b; Raffel et al., 2020]. We
refer the interested readers to these papers for more details.

6.3.2 Deep Models

Many state-of-the-art NLP systems are based on deep Transformer models. For example,
recent large language models generally comprise tens of Transformer layers (or more precisely,
hundreds of layers of neurons), demonstrating strong performance on many tasks [Ouyang
et al., 2022; Touvron et al., 2023a]. By stacking Transformer layers, it is straightforward to
obtain a deep model. However, as is often the case, training very deep neural networks is
challenging. A difficulty arises from the fact that the error surfaces of deep neural networks are
highly non-convex and have many local optima that make the training process likely to get stuck
in them. While there are optimization algorithms that can help alleviate this problem, most
of the practical efforts explore the use of gradient-based methods for optimizing deep neural
networks. As a result, training a model with many Transformer layers becomes challenging
due to vanishing and exploding gradients during back-propagation. Here we consider several
techniques for training deep Transformer models.

1. Re-thinking the Pre-Norm and Post-Norm Architectures

As introduced previously, a Transformer sub-layer is a residual network where a shortcut is
created to add the input of the network directly to the output of this sub-layer. This allows
gradients to flow more directly from the output back to the input, mitigating the vanishing
gradient problem. In general, a residual connection in Transformer is used together with a layer
normalization unit to form a sub-layer. This leads to two types of architecture, called post-norm
and pre-norm. To be specific, recall from Section 6.1.4 that the post-norm architecture can be
expressed as

zl = LNorm(F l(zl−1)+zl−1) (6.77)

where zl and zl−1 are the output and input of the sub-layer l, and F l(·) is the core function
of this sub-layer. The pre-norm architecture takes the identity mapping zl outside the layer
normalization function, given in the form

zl = LNorm(F l(zl−1))+zl−1 (6.78)
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Consider the difference between the information flow in these two architectures:

• The post-norm architecture prevents the identity mapping of the input from adding to the
output of the sub-layer. This is not a true residual network, because all the information
is passed on through a non-linear function (i.e., the layer normalization unit). Thus, the
post-norm architecture is not very “efficient” for back-propagation. Wang et al. [2019a]
show that the gradient of the loss of an L sub-layer Transformer network with respect to
zl is given by

∂E

∂zl
=

∂E

∂zL
·
L−1∏
k=l

∂LNorm(vk)

∂vk
·
L−1∏
k=l

(
1+

∂F k(zk)

∂zk

)
(6.79)

where zL is the output of the last layer, vk is a short for F k(zk−1), and E is the error
measured by some loss function. ∂LNorm(vk)

∂vk and ∂Fk(zk)
∂zk

are the gradients of the layer
normalization function and the core function, respectively. Although the equation here
appears a bit complex, we see that

∏L−1
k=l

∂LNorm(vk)
∂vk is simply a product of L− l factors.

This means that the error gradient will be rescaled more times if L becomes larger, and
there is a higher risk of vanishing and exploding gradients for a deeper model.

• The pre-norm architecture describes a standard residual neural network where the input
of a whole network is added to its output. We can write the gradient of the error at zl as

∂E

∂zl
=

∂E

∂zL
·

(
1+

L−1∏
k=l

∂F k(LNorm(zk))

∂zk

)

=
∂E

∂zL
+
∂E

∂zL
·
L−1∏
k=l

∂F k(LNorm(zk))

∂zk
(6.80)

It is easy to see that ∂E
∂zl

receives direct feedback regarding the errors made by the model,
because the first term of the summation on the right-hand side (i.e., ∂E

∂zL
) is the gradient

of the model output which is independent of the network depth.

The use of the pre-norm architecture also helps optimization during early gradient descent
steps. For example, it has been found that pre-norm Transformer models can be trained by
using a larger learning rate in the early stage of training instead of gradually increasing the
learning rate from a small value [Xiong et al., 2020].

While the pre-norm architecture leads to easier optimization of deep Transformer models,
we would not simply say that it is a better choice compared to the post-norm architecture.
In fact, both post-norm and pre-norm Transformer models have been successfully used in
many applications. For example, the post-norm architecture is widely used in BERT-like
models, while the pre-norm architecture is a more popular choice in recent generative large
language models. Broadly, these two architectures provide different ways to design a deep
Transformer model, as well as different advantages and disadvantages in doing so. The post-
norm architecture forces the representation to be learned through more non-linear functions,



6.3 Improved Architectures 301

but in turn results in a complicated model that is relatively hard to train. By contrast, the
pre-norm architecture can make the training of Transformer models easier, but would be less
expressive than the post-norm counterpart if the learned models are overly dependent on the
shortcut paths.

An improvement to these architectures is to control the extent to which we want to “skip”
a sub-layer. A simple way to do this is to weight different paths rather than treating them
equally. For example, a scalar factor of a residual connection can be introduced to determine
how heavily we weight this residual connection relative to the path of the core function [He
et al., 2016b; Liu et al., 2020a;b]. A more general form of this model is given by

zl = LNorm(F l(zl−1)+β ·zl−1)+γ ·zl−1 (6.81)

where β is the weight of the identity mapping inside the layer normalization function, and γ
is the weight of the identity mapping outside the layer normalization function. Clearly, both
the post-norm and pre-norm architectures can be seen as special cases of this equation. That
is, if β = 1 and γ = 0, then it will become Eq. (6.77); if β = 0 and γ = 1, it will become
Eq. (6.78). This model provides a multi-branch view of building residual blocks. The input
to this block can be computed through multiple paths with different modeling complexities.
When β and γ are small, the representation is forced to be learned through a “deep” model
with multiple layers of cascaded non-linear units. In contrast, when β and γ are large, the
representation is more likely to be learned using a “shallow” model with fewer layers. To
determine the optimal choices of β and γ, one can give them fixed values by considering
some theoretical properties or system performance on validation sets, or compute these values
by using additional functions that can be trained to do so [Srivastava et al., 2015]. It should
be emphasized that many other types of architecture can be considered in the design of a
Transformer sub-layer. It is possible, for instance, to introduce more layer normalization units
into a sub-layer [Ding et al., 2021; Wang et al., 2022b], or, on the contrary, to simply remove
them from a sub-layer [Bachlechner et al., 2021].

2. Parameter Initialization

As with other deep neural networks, there is interest in developing parameter initialization
methods for deep Transformer models in order to perform optimization on some region around
a better local optimum. However, initialization is a wide-ranging topic for optimization of
machine learning models, and the discussion of this general topic lies beyond the scope
of this section. Here we will discuss some of the parameter initialization methods used in
Transformer-based systems rather than the general optimization problems.

While the parameters of a neural network can be set in various different ways, most
practical systems adopt simple techniques to give appropriate initial values of model parameters.
Consider, for example, the Xavier initialization for a parameter matrix W ∈ Rdin×dout [Glorot
and Bengio, 2010]. We define a variable η by

η = gain ·
√

6

din+dout
(6.82)
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where gain is a hyper-parameter which equals 1 by default. Then, each entry of W can be
initialized by using a uniform distribution

W ∼ U (−η,η) (6.83)

or, alternatively, using a Gaussian distribution

W ∼ Gaussian
(
0,η2

)
(6.84)

This method can be easily adapted to initialize Transformer models having a large number
of layers. One common way is to find a more suitable value of gain by taking into account the
fact that the initial states of optimization might be different for neural networks of different
depths. For example, one can increase the value of gain as the depth of the model grows. Then,
gain can be defined as a function of the network depth in the form

gain = a ·Lb (6.85)

where a is the scalar, and Lb is the network depth raised to the power of b. Typically, a and
b can be positive numbers, which means that it is preferred to have larger initial values for
the parameters for deeper models. For example, Wang et al. [2022a] show that, by choosing
appropriate values for a and b, a very deep Transformer model can be successfully trained.

Eq. (6.85) assigns gain the same value for all of the sub-layers. However, it is found that
the norm of gradients becomes smaller when a sub-layer moves away from the output layer.
This consistent application of gain across the entire model could result in under-training of the
lower layers due to the gradient vanishing problem. For this reason, one can develop methods
that are sensitive to the position of a sub-layer in the neural network. The general form of such
methods is given by

gain =
a

lb
(6.86)

Here l denotes the depth of a sub-layer. If l is larger (i.e., the sub-layer is closer to the output),
gain will be smaller and the corresponding parameters will be set to smaller values. An
example of this method can be found in Zhang et al. [2019a]’s work.

It is also, of course, straightforward to apply general methods of initializing deep multi-
layer neural networks to Transformer models. An example is to consider the Lipschitz
constant in parameter initialization, which has been shown to help improve the stability of
training deep models [Szegedy et al., 2014b; Xu et al., 2020]. Another approach is to use
second-order methods to estimate the proper values of the parameters. For example, one can
compute the Hessian of each parameter matrix to model its curvature [Skorski et al., 2021].

For models with a large number of layers, it is also possible to pre-train some of the layers
via smaller models and use their trained parameters to initialize bigger models [Chen et al.,
2015]. That is, we first obtain a rough estimation of the parameters in a cheap way, and then
continue the training process on the whole model as usual. These methods fall into a class of
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training methods, called model growth or depth growth.

As a simple example, consider a Transformer model (e.g., a Transformer encoder) of 2L
sub-layers. We can train this model by using the shallow-to-deep training method [Li et al.,
2020b]. First, we train an L-sub-layer model (call it the shallow model) in a regular way. Then,
we create a 2L-sub-layer model (call it the deep model) by stacking the shallow model twice,
and further train this deep model. To construct deeper models, this procedure can be repeated
multiple times, say, we start with a model of L sub-layers, and obtain a model of L2I after
I iterations. Note that many of the pre-training models are used in the same manner. For
example, for BERT-like methods, a transformer encoder is trained on large-scale data, and the
optimized parameters are then used to initialize downstream systems.

3. Layer Fusion

Another problem with training a deep Transformer model is that the prediction is only condi-
tioned on the last layer of the neural network. While the use of residual connections enables
the direct access to lower-level layers from a higher-level layer, there is still a “long” path of
passing information from the bottom to the top. One simple way to address this is to create
residual connections that skip more layers. For example, consider a group of L Transformer
sub-layers. For the sub-layer at depth l, we can build l− 1 residual connections, each con-
necting this sub-layer with a previous sub-layer. In this way, we develop a densely connected
network where each sub-layer takes the outputs of all previous sub-layers [Huang et al., 2017a].
The output of the last sub-layer can be seen as some combination of the outputs at different
levels of representation of the input.

Following the notation used in the previous subsections, we denote the output of the
sub-layer at depth l by zl, and denote the function of the sub-layer by Layerl(·). Then, zl can
be expressed as

zl = Layerl(z1, ...,zl−1) (6.87)

We can simply view Layerl(·) as a function that fuses the information from {z1, ...,zl−1}.
There are many possible choices for Layerl(·). For example, a simple form of Layerl(·) is
given by

Layerl(z1, ...,zl−1) = LNorm(F l(Zl)) (6.88)

Zl = ϕ(z1, ...,zl−1) (6.89)

Here ϕ(·) takes the layer outputs {z1, ...,zl−1} and fuses them into a single representation Zl.
A simple instance of ϕ(·) is average pooling which computes the sum of {z1, ...,zl−1} divided
by l−1. See Table 6.2 for more examples of ϕ(·).

Taking a similar architecture of a Transformer sub-layer, we can also consider a post-norm



304 Chapter 6. Transformers

Entry Function

Average Pooling ϕ(z1, ...,zl−1) = 1
l−1

∑l−1
k=1 z

k

Weighted Sum ϕ(z1, ...,zl−1) =
∑l−1

k=1weightk ·zk

Feedforward Network ϕ(z1, ...,zl−1) = FFN([z1, ...,zl−1])

Self Attention ϕ(z1, ...,zl−1) = FFN([Attself(z
1, ...,zl−1)])

Table 6.2: Fusion functions. FFN(·) = feedforward neural network, [·] = concatenating the
input vectors, and Attself(·) = self-attention function. All of the fusion functions can be
followed by a layer normalization function, for example, we can write the weighted sum of
{z1, ...,zl−1} as ϕ(z1, ...,zl−1) = LNorm(

∑l−1
k=1weightk ·zk).

form

Layerl(z1, ...,zl−1) = LNorm(Zl) (6.90)

Zl = ϕ(F l(zl−1),z1, ...,zl−1) (6.91)

or a pre-norm form

Layerl(z1, ...,zl−1) = Zl (6.92)

Zl = ϕ(LNorm(F l(zl−1)),z1, ...,zl−1) (6.93)

These models are very general. For example, a standard post-norm encoder sub-layer can
be recovered as a special case of Eqs. (6.90-6.91), if we remove the dependencies of sub-layers
from 1 to l−2, and define ϕ(·) to be

ϕ(F l(zl−1),z1, ...,zl−1) = F l(zl−1)+zl−1 (6.94)

Densely connected network makes the information easier to flow through direct connections
between sub-layers, but the resulting models are a bit more complex, especially when we use
parameterized fusion functions. In practice, we typically add dense connections only to some
of the sub-layers, and so the overall networks are not very dense. For example, we only add
connections from bottom sub-layers to the last few sub-layers. Thus, the prediction can be
made by having direct access to different levels of representation [Wang et al., 2018a].

4. Regularization
In machine learning, regularization is used to avoid overfitting in training deep neural networks.
It is therefore straightforward to apply regularization techniques to Transformer models. Since
the regularization issue has been discussed in Chapter 2, here we consider some of the methods
that have not been covered yet in this book but could be used for training deep Transformer
models.

One approach to regularizing a deep Transformer model is to randomly skip sub-layers
or layers during training [Huang et al., 2016; Pham et al., 2019]. In each run of the model,
such as running the backpropgation algorithm on a batch of samples, we select each of the
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sub-layers with a probability ρ, and stack the selected sub-layers to form a “new” model. Thus,
we essentially train different neural networks with shared architectures and parameters on
the same dataset. In this way, a sub-layer learns to operate somewhat independently, and so
overfitting is reduced by preventing the co-adaption of sub-layers. In fact, dropping out sub-
layers (or layers) and dropping out neurons are two different methods on a theme. Sometimes,
the method described here is called sub-layer dropout or layer dropout.

At test time, we need to combine all the possible networks to make predictions of some
output. A simple method to achieve this is to rescale the outputs of the stochastic components
of the model [Li et al., 2021a]. As an example, suppose each sub-layer has a pre-norm
architecture. Then, the output of the sub-layer at depth l is given by

zl = ρ ·LNorm(F l(zl−1))+zl−1 (6.95)

Another idea is to force the parameters to be shared across sub-layers. One of the simplest
methods is to use the same parameters for all the corresponding sub-layers [Dehghani et al.,
2018], for example, all the FFN sub-layers are based on the same feedforward network. This
method has a similar effect as the methods that add norms of parameter matrices to the loss
function for penalizing complex models. For practical systems, there can be significant benefit
in adopting a shared architecture because we can reuse the same sub-model to build a multi-
layer neural network and reduce the memory footprint. We will see more discussions on the
efficiency issue in Section 6.4.4.

6.3.3 Numerical Method-Inspired Models

A residual network computes its output through the sum of the identity mapping and some
transformation of the input. Such a model can be interpreted as an Euler discretization of
ordinary differential equations (ODEs) [Ee, 2017; Haber and Ruthotto, 2017]. To illustrate
this idea, we consider a general form of residual networks

zl = f l
(
zl−1

)
+zl−1 (6.96)

where f l(zl−1) denotes a function takes an input variable zl−1 and produces an output variable
in the same space. Clearly, a Transformer sub-layer is a special case of this equation. For
example, for pre-norm Transformer, we have f l(·) = LNorm(F l(·)).

For notational simplicity, we rewrite the above equation in an equivalent form

z(l) = f
(
z(l−1), l

)
+z(l−1) (6.97)

We use the notations z(l) and f(z(·, l)) to emphasize that z(·) and f(·) are functions of l. Here
we assume that l is a discrete variable. If we relax l to a continuous variable and z(l) to a
continuous function of l, then we can express Eq. (6.97) as

z(l) = △l ·f
(
z(l−△l), l

)
+z(l−△l) (6.98)
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This can be further written as

z(l)−z(l−△l)
△l

= f
(
z(l−△l), l

)
(6.99)

Taking the limit△l→ 0, we have an ODE

dz(l)

dl
= f

(
z(l), l

)
(6.100)

We say that a pre-norm Transformer sub-layer (i.e., Eqs. (6.97) and (6.96)) is an Euler
discretization of solutions to the above ODE. This is an interesting result! A sub-layer is
actually a solver of the ODE.

Eqs. (6.97) and (6.96) are standard forms of the Euler method. It computes a new
estimation of the solution by moving from an old estimation one step forward along l. In
general, two dimensions can be considered in design of numerical methods for ODEs.

• Linear Multi-step Methods. A linear multi-step method computes the current estima-
tion of the solutions by taking the estimations and derivative information from multiple
previous steps. A general formulation of p-step methods can be expressed as

z(l) =

p∑
i=1

ai ·z(l− i)+h
p+1∑
i=1

bi ·f
(
z(l− i), l− i+1

)
(6.101)

where h is the size of the step we move each time8, that is, △l in Eqs. (6.98) and
(6.99). {ai} and {bi} are coefficients of the solution points and derivatives in the linear
combination. Given this definition, we can think of the Euler method as a single-step,
low-order method of solving ODEs9.

• (Higher-order) Runge-Kutta Methods. Runge-Kutta (RK) methods and their variants
provide ways to compute the next step solution by taking intermediate results in solving
an ODE. As a result, we obtain higher-order methods but still follow the form of single-
step methods, that is, the estimated solution is dependent only on z(l−1) rather than on
the outputs at multiple previous steps.

In fact, linear multi-step methods, though not explicitly mentioned, have been used in layer
fusion discussed in Section 6.3.2. For example, taking Eqs. (6.92) and (6.93) and a linear
fusion function, a pre-norm sub-layer with dense connections to all previous sub-layers can be
expressed as

Layerl(z1, ...,zl−1) = a1 ·zl−1+ ...+al−1 ·z1+ b1 ·LNorm(F l(zl−1)) (6.102)

8Let {t0, ..., ti} denote the values of the variable l at steps {0, ..., i}. In linear multi-step methods, it is assumed
that ti = t0+ ih.

9In numerical analysis, the local truncation error of a method of solving ODEs at a step is defined to be the
difference between the approximated solution computed by the method and the true solution. The method is called
order p if it has a local truncation error O(hp+1).
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This equation is an instance of Eq. (6.101) where we set h= 1 and remove some of the terms
on the right-hand side.

It is also straightforward to apply Runge-Kutta methods to Transformer [Li et al., 2022a].
Given an ODE as described in Eq. (6.100), an explicit p-order Runge-Kutta solution is given
by

z(l) = z(l−1)+

p∑
i=1

γi ·gi (6.103)

gi = h ·f
(
z(l−1)+

i−1∑
j=1

βi,j ·gj , l−1+λi ·h
)

(6.104)

Here gi represents an intermediate step which is present only during the above process. {γi},
{βi,j} and {λi} are coefficients that are determined by using the Taylor series of z(l). To
simplify the model, we assume that the same function f is used for all {gi}. Then, we remove
the dependency of the term l−1+λi ·h in f , and rewrite Eq. (6.104) as

gi = h ·f
(
z(l−1)+

i−1∑
j=1

βi,j ·gj
)

(6.105)

where f(·) is a function independent of i.
As an example, consider the 4th-order Runge-Kutta (RK4) solution

z(l) = z(l−1)+
1

6
(g1+2g2+2g3+g4) (6.106)

g1 = h ·f(z(l−1)) (6.107)

g2 = h ·f(z(l−1)+
1

2
g1) (6.108)

g3 = h ·f(z(l−1)+
1

2
g2) (6.109)

g4 = h ·f(z(l−1)+g3) (6.110)

These equations define a new architecture of sub-layer. For example, by setting h = 1 and
f(·) = LNorm(F l(·)), we obtain an RK4 Transformer sub-layer, as shown in Figure 6.11. This
method leads to a deep model because each sub-layer involves four runs of f(·) in sequence.
On the other hand, the resulting model is parameter efficient because we reuse the same
function f(·) within the sub-layer, without introducing new parameters.

So far in this subsection our discussion has focused on applying dynamic systems to
Transformer models by designing architectures of Transformer sub-layers. While the basic
ODE model is continuous with respect to the depth l, these methods still follow the general
framework of neural networks in which l is a discrete variable and the representational power
of the models is largely determined by this hyper-parameter. An alternative approach is to use
neural ODE models to relax the “depth” to a truly continuous variable. In this way, we can
have a model with continuous depth for computing the solution of ODEs. However, as the
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Figure 6.11: Pre-norm (a) and Runge-Kutta (b and c) sub-layer architectures. z(l−1) denotes
the input of a sub-layer at depth l, z(l) denotes the output of the sub-layer, and f (in blue
boxes) denotes the function f(·) = LNorm(F l(·))

discussion of neural ODE lies beyond the scope of this chapter, we refer the reader to related
papers for more details [Chen et al., 2018c; Kidger, 2022].

6.3.4 Wide Models
Most of the methods that we have studied so far in this section are examples of learning and
using deep models. Another design choice we generally face is to determine the width for a
neural network. Typically, the width of a Transformer model can be defined as the number of
dimensions of a representation at some position of the input sequence, that is, the parameter
d. Increasing this width is a common method to obtain a more complex and more powerful
model. For example, in Vaswani et al. [2017]’s work, a wide model (called Transformer big)
leads to significant improvements in translation quality for machine translation systems. More
recently, wider models have been proposed to boost systems on large-scale tasks [Lepikhin
et al., 2021; Fedus et al., 2022b].

However, developing very wide Transformer models is difficult. One difficulty is that
training such systems is computationally expensive. While the number of the model parameters
(or model size) grows linearly with d, the time complexity of the models grows quadratic
with d (see Table 6.1). In some NLP tasks, it is found empirically that the training effort that
we need to obtain satisfactory performance is even an exponential function of the model size
[Kaplan et al., 2020]. These results suggest ways to improve the efficiency of training when
we enlarge d.

One simple method is to incrementally grow the model along the dimension of d, rather
than training the model from scratch. Suppose we have an initial model involving a d1×d1
parameter matrix W1, for example, the linear transformation of each query or key in some
layer. We can train this model to obtain optimized W1 in a regular way. Then, we want to
extend this model to a wider model where W1 is replaced by a d2×d2 parameter matrix W2.
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Let us assume for simplicity that d2 = kd1. There are several ways to expand a d1×d1 matrix
to a kd1×kd1 matrix. The simplest of these may be to use W1 to fill W2. We can write W2

in the form

W2 =

k times
W1
ρ · · · W1

ρ
...

...
W1
ρ · · · W1

ρ



k
tim

es (6.111)

where ρ is a hyper-parameter that is used to control the norm of W2. For example, if ρ= k,
W2 will have the same l1 norm as W1. The above equation provides a good starting point
for training the wide model, and we can train W2 as usual after initialization. The procedure
can be repeated a number of times for constructing a model with arbitrary width. Both this
method and the depth growth method described in Section 6.3.2 are instances of the general
method of model growth. In other words, we can obtain a larger model by extending a small
model either vertically or horizontally, or both. Alternative methods for transforming W2 to
W1 involve those considering other mathematical properties of the transformation [Chen et al.,
2015]. These models can fall under the reusable neural networks where we are concerned with
models and algorithms for transferring parameters from small models to (significantly) larger
models [Wang et al., 2023b].

A second difficulty in building a wide Transformer model is the large memory requirement.
Since the feedforward network generally has a larger hidden layer than other parts of the model,
it demands relatively more memory as the model becomes wider. Consider the feedforward
network described in Section 6.1.5

Hout = FFN(Hin)

= ReLU(Hin ·Wh+bh) ·Wf +bf (6.112)

where Wh ∈ Rd×dffn and Wf ∈ Rdffn×d are the parameters of the linear transformations. dffn
is typically several times larger than d. Therefore, Wh and Wf will occupy the model if d
and dffn have very large values.

In some cases, the size of the feedforward network may exceed the memory capacity of a
single device. This problem can be addressed by using the mixture-of-experts (MoE) models
[Shazeer et al., 2017]. An MoE model consists of M expert models {e1(·), ...,eM (·)}. Given
an input hin ∈ Rd, each expert model produces an output ek(hin). The output of the MoE
model is a linear combination of {e1(hin), ...,eM (hin)}, given by

hout =
M∑
i=1

gi(hin) ·ei(hin) (6.113)

where g(·) is a gating model (also called routing model). Its output is a vector g(hin) =[
g1(hin) ... gM (hin)

]
in which each entry gi(hin) indicates the weight of the corresponding
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expert model. In many applications, it is assumed that g(hin) is a sparse vector. This means
that only a small number of expert models are involved in computing the output. A widely-used
form of g(hin) is given by using the Softmax layer

g(hin) = Softmax(hin ·Wg) (6.114)

where Wg ∈Rd×M is the parameter matrix of the layer. To enforce sparsity on g(hin), we can
simply select the top-k entries of g(hin), that is, we set non-top-k entries to 0. An alternative
method is to first perform top-k selection on hin ·Wg and then normalize the top-k entries
using the Softmax function.

Let π be the set of the indices of the top-k expert models. The MoE model with top-k
routing has the following form

hout =
∑
i∈π

gi(hin) ·ei(hin) (6.115)

An advantage of this approach is that we can distribute different expert models to different
processors, making it possible to execute these models on parallel computing machines. In
each run of the MoE model, either during training or inference, we only need to activate and
use k expert models rather than all of the expert models. In this way, the MoE approach is
automatically learning a sparse model by limiting the number of active expert models each
time in training and inference. The sparsity is determined by the hyperparameter k, say, a
small value of k leads to a sparse model, and a large value of k leads to a dense model.

Let us return to the discussion of Eq. (6.112). It is straightforward to apply the MoE
approach to feedforward neural networks. To simplify the discussion, consider the linear
transformation of the first layer as shown in Eq. (6.112), that is, Hin ·Wh. We can approximate
Hin ·Wh in an MoE form

Hin ·Wh ≈
∑
i∈π

gi(Hin) ·ei(Hin)

=
∑
i∈π

gi(Hin) · [Hin ·Wi
h] (6.116)

Here Wh is divided into M slides (or sub-matrices) {W1
h, ...,W

M
h }, written as

Wh =
[
W1

h ... WM
h

]
(6.117)

Hence each expert model ei(Hin) = Hin ·Wi
h solves a sub-problem of the original linear

mapping, and Eq. (6.116) can be thought of as a divide-and-conquer solution to the matrix
multiplication problem.

We can, of course, treat any feedforward neural network as an expert model, resulting in
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Figure 6.12: An illustration of the MoE model applied to an FFN sub-layer. There are M FFNs
(call them expert models) and a gating model. Each FFN is weighted by the gating model.
The output of the model is the sum of the weighted outputs of the top-k FFNs (denoted by π).
Because these FFNs work independently and can be placed on different computing devices,
the model can be easily scaled up as M is larger.

the following model

Hout =
∑
i∈π

gi(Hin) ·FFNi(Hin) (6.118)

where FFNi(·) is a “small” feedforward neural network that has the same form as Eq. (6.112).
This model is illustrated with an example in Figure 6.12. In practical implementations, all
these expert models can be run in parallel on different devices, and so the resulting system is
efficient.

Note that, from a perspective of machine learning, MoE is a general approach to combining
different neural networks, each of which is developed to address a different aspect of the
problem [Yuksel et al., 2012; Masoudnia and Ebrahimpour, 2014]. The application here is
just a special instance of the general framework of MoE. The approach is also often used to
improve the overall performance of predictors, which can be discussed in the field of ensemble
learning [Zhou, 2012a].

Another difficulty in developing large Transformer models is the training instability prob-
lem. As with many other large neural networks, straightforward optimization of a Transformer
model with a large number of parameters may lead to getting trapped in local minimums, and,
occasionally, large spikes in the loss during training [Lepikhin et al., 2021; Fedus et al., 2022b;
Chowdhery et al., 2022]. Even with careful choices about hyperparameters, training strategies,
and initial model parameters, we still encounter the situation that we have to restart the training
at some point in order to jump out of the tough regions in optimization. One of the reasons for
this training difficulty is that the usual implementations of the linear algebra operations, such
as matrix multiplication, will be numerically unstable if they operates on very large vectors
and matrices. It is therefore possible to improve the training by considering numerically stable
methods instead.
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6.4 Efficient Models

Efficiency is an important consideration for many practical applications of Transformer models.
For example, we may wish to run and/or train a Transformer model given memory and time
constraints. Efficiency is not a single problem, but covers a wide range of problems. While
these problems can be categorized in several different ways, there are two fundamental aspects
one may consider in an efficiency problem.

• Time and Space Efficiencies. For a given problem, we wish the model to be small and
fast, and meanwhile to be as accurate as possible in solving the problem. For example,
in some machine translation applications, we may learn a model with a small number of
parameters to fit the model to limited memory, and may develop a fast search algorithm
to achieve low-latency translation. A practical difficulty here is that improving efficiency
often leads to worse predictions. In many cases, we need to seek a trade-off between
efficiency and accuracy.

• Scalability. When the problem is scaled up, we wish that the additional effort we made
for solving this problem is as small as possible. For example, the training of a neural
network is called efficient if it takes a reasonably short time to optimize it as more
training samples are involved. Another example of efficiency is that used to measure
the amount of resources consumed in processing more inputs. For example, a machine
translation system is inefficient in translating long sentences if the memory footprint and
latency grow exponentially with the number of input words.

In this section, we will not discuss all the issues related to efficiency, which is a very
broad topic. We instead consider the widely-used efficient approaches to Transformer-based
sequence modeling and generation, some of which are refinements of model architectures, and
some of which are model-free approaches and could be used in other systems as well. Most of
the discussions here are focused on developing lightweight and fast Transformer models that
are relatively robust to long input and output sequences.

In general, the same optimization method can be applied to different modules of a Trans-
former system. To simplify the discussion, we will mostly consider self-attention sub-layers
and FFN sub-layers in this section. Our discussion, however, is general and the methods pre-
sented here can be applied to other parts of a Transformer system, for example, cross-attention
sub-layers.

6.4.1 Sparse Attention

In practice, the attention approaches used in Transformer are time consuming, especially when
the input sequences are long. To illustrate, consider a Transformer decoder that predicts a
distribution of words at a time given the previous words. Suppose the sequence generated
by the decoder is of size n and the input of a self-attention sub-layer is an n× d matrix S.
First, S is linearly transformed to obtain the queries Sq ∈ Rn×d, keys Sk ∈ Rn×d, and values
Sv ∈ Rn×d. To simplify the notation in this subsection, we use Q, K and V to represent Sq,
Sk, and Sv, respectively.
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The output of the self-attention sub-layer can then be computed using

Attself(S) = AV (6.119)

where A is an n×n attention matrix or attention map

A = Softmax(
QKT

√
d

+M) (6.120)

M is a masking matrix that is used to prevent the model from seeing the right context words
at each position, that is, for a position i, M(i, j) = 0 for j ≤ i, and M(i, j) =−∞ otherwise.
Both the time and space complexities of the self-attention sub-layer are quadratic functions of
n10. Therefore, if n is large, the model would be computationally expensive.

The usual implementation of the above model depends on dense matrix computation, for
example, the dense matrix multiplications in Eqs. (6.119-6.120). One approach to reducing
the amount of memory and the number of floating-point calculations in a dense computation
system is to sparsify the problem. To do this, we assume that A is a sparse matrix, for example,
only ϱ ·n2 entries of M have non-zero values, where ϱ indicates how sparse the matrix is,
also called sparsity ratio. Since we only need to store these non-zero entries, the memory
requirement of A can be reduced by using sparse matrix representations. Another advantage
of using a sparse attention matrix is that the models of QKT

√
d

and AV can be simplified, as we
consider only a “small” number of related positions when learning a representation.

Given a position i, we define the attention field πi to be the set of positions that are
considered in computing the representation at this position. We therefore only need to compute
the dot-product attention between the given position i and each position j ∈ πi. This results in
a sparse attention matrix A′ where

A′(i, j) =

{
some weight j ∈ πi and j ≤ i
0 otherwise

(6.121)

A simple implementation of this model involves a slight modification to M, leading to a new
masking variable M′

M ′(i, j) =

{
0 j ∈ πi and j ≤ i
−∞ otherwise

(6.122)

In practical implementation, a more efficient approach is to employ sparse operations for QKT

and A′V by considering M′ and A′, respectively. That is, we save on computation for pairs
of positions whose attention weights are non-zero, and skip the rest.

There are several approaches that we can take to the sparse modeling of self-attention. We
describe briefly some of them as follows

10More precisely, the amount of memory used by the self-attention function is n2 +n · d, and so it will be
dominated by the quadratic term n2 if n >> d.
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• Span-based Attention/Local Attention. As discussed in Section 6.3.1, the use of
context in sequence modeling is local in many cases. The basic idea of local attention is
to span the attention weights to a restricted region of the input sequence. We can then
write πi as

πi = [ali,a
r
i ] (6.123)

where ali and ari and the left and right ends of πi. ari −ali+1 determines how small the
region is, and so we can use it to control the sparsity of the attention model, for example,
if ari −ali+1<<n, the model would be very sparse. ali and ari can be obtained by using
either heuristics or machine learning methods. The reader may refer to related papers
for more details [Luong et al., 2015; Sperber et al., 2018; Yang et al., 2018a; Sukhbaatar
et al., 2019]. See Figure 6.13 (b) for an illustration of local attention.

• Chunked Attention. When a problem is too difficult to solve, one can transform it into
easier problems and solve each of them separately, as is often the case in practice. This
motivates the chunked attention approach in which we segment a sequence into chunks
and run the attention model on each of them [Parmar et al., 2018; Qiu et al., 2020a].
Given a sequence {1, ...,n}, we define {chunk1, ...,chunkq} to be a segmentation of the
sequence. A chunk can be expressed as a span

chunkk = [clk, c
r
k] (6.124)

In the attention step, we treat each chunk as a sequence and perform self-attention on it
as usual. In other words, the representation at position i is computed by using only the
context in the chunk that i belongs to. In this sense, this model can be thought of as some
sort of local attention model. Figure 6.13 (c) shows an illustration of this model. There
remains the issue of how to segment the sequence. There are several ways to do this.
For example, as discussed in Section 6.2.4, we can do segmentation from a linguistic
perspective, and segment the sequence into linguistically motivated units. In practical
systems, it is sometimes more convenient to segment the sequence into chunks that are
of equal length. Thus, the sparsity of the model is controlled by the size of these chunks,
for example, the use of smaller chunks would lead to a more sparse attention model.

• Strided Attention. Since the chunked attention approach enforces a hard segmentation
on the input sequence, it may lose the ability to learn representations from inputs in
different chunks. An alternative way to achieve chunk-wise attention is to allow overlap
between chunks [Child et al., 2019; Beltagy et al., 2020; Ainslie et al., 2020]. This
approach is analogous to the family of approaches that are commonly used to apply a
local model to 1D or 2D data to generate outputs of the same shape. Like CNNs, we
use a context window to represent the field of input of the attention model. The context
window slides along the sequence, each time moving forward a step of size stride. As a
special case, if stride equals the size of the context window, this model is the same as
the chunked attention model mentioned above. If stride chooses a value smaller than
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the size of the context window, the attention model will become denser. Figure 6.13
(d) shows the case of strdie= 1 where the chunk overlapping is maximized. A way to
achieve relatively sparser attention is to use a dilated context window. Figure 6.13 (e)
shows an example of the dilated strided attention model, where the context window is
discontinuous, with gaps of size 1.

• Learning Attention Fields. Because the attention field πi can be any sub-set of
{1, ...,n}, we can develop more general sparse attention models by considering attention
maps beyond chunk-based patterns. The only question is how to determine which
positions the model attends to for a given position. One simple approach is to use a
computationally cheaper model to estimate the “importance” of each position. Then,
attention weights are computed only for some of the positions which are thought to
be most important [Zhou et al., 2021]. A second approach is grouping: positions are
grouped, and then the attention weights are computed only for positions in the same
group. It is often relatively easy to achieve this by running clustering algorithms on
keys and queries. For example, we can cluster keys and queries via k-means clustering.
The centroids of the clusters can be treated as additional parameters of the attention
model, and so can be learned during optimization [Roy et al., 2021]. One benefit of
learning attention fields is that the model can spread its attention broader over the
sequence. This is a useful property for many NLP problems because word dependencies
are sometimes long-range, not restricted to a local context window. See Figure 6.13 (f)
for an example of the attention map learned through this model. Alternative approaches
to learning to attend are to use sorting or hashing functions to group similar key and
query vectors [Kitaev et al., 2020; Tay et al., 2020a]. These functions can be either
heuristically designed functions or neural networks with learnable parameters. By using
these functions, we can reorder the sequence so that the inputs in the same group are
adjacent in the reordered sequence. In this way, the resulting attention map follows a
chunk-wise pattern, and the model is computationally efficient through the use of the
chunked attention approach.

• Hybrid Methods. Above, we have discussed a range of different sparse attention models.
It is natural to explore methods that combine multiple models together to make use
of their benefits in some way. A simple way to do this is to combine the attention
fields of different models. For example, in Zaheer et al. [2020]’s system, the attention
map is generated by considering three different sparse models, including local attention
(chunked attention), global attention, and random attention11. The resulting model
is still a sparse model, but is somewhat more robust as it involves multiple patterns
from different perspectives of attention modeling. Another way of combining multiple
attention models is to use different models for different heads in multi-head attention
[Child et al., 2019; Beltagy et al., 2020]. For example, one can use one head as a local
attention model, and use another head as a global attention model (see Figure 6.13 (g-h)).

11Here the global attention model attends each word only to a special word which accounts for the entire
sequence and is often placed at the beginning of the sequence. The random attention model attends each word to a
random set of the words of the sequence.
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(a) Standard Attention (b) Span-based Attention

(c) Chunked Attention (d) Strided Attention

(e) Dilated Strided Attention (f) Learning Attention Fields

(g) Global Attention (h) Hybrid Methods

Figure 6.13: Illustration of the attention maps of different models (self-attention on the decoder
side). Dark cells mean A′(i, j) ̸= 0 (i.e., i attends to j), and light cells mean A′(i, j) = 0 (i.e.,
i does not attend to j). In all these attention maps, we assume that every position attends to
itself by default (see diagonals).
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One disadvantage of sparse models compared to dense models is that they are not com-
putationally efficient on GPUs or CPUs. While sparse models can ideally reduce both the
memory and computation requirements, the actual rate at which work can be done by sparse
models is much slower than by dense models. In practice, it is difficult for sparse models
to approach the peak FLOPS of a GPU or CPU12. Therefore, they are often used for the
purpose of high memory efficiency, not really for the purpose of efficient computation. On
the other hand, sparse models are still of great use to NLP practitioners in the context of
memory-efficient Transformer, especially when Transformer systems are used to deal with
extremely long sequences.

6.4.2 Recurrent and Memory Models
For sequence generation problems, Transformer can also be thought of as a memory sys-
tem. Consider again the general setting, in which we are given the states of previous i− 1

positions, and we wish to predict the next state. In self-attention, this is done by using
the query at position i (i.e., qi) to access the key-value pairs of the previous positions (i.e.,
{(k1,v1), ...,(ki−1,vi−1)}). Then, we move to position i+1, and add (ki,vi) to the collec-
tion of key-value pairs. This procedure can be interpreted in terms of the memory mechanism
(see Chapter 4). The Transformer model maintains a memory that retains the information of
the past. When moving along the sequence, we repeat the same operation, each time generating
some output by reading the memory, and then updating the memory so that new information
could be stored in some way. This is illustrated in Figure 6.14.

1. Cache-based Memory
The memory here can be viewed as a datastore of vectors. From a machine learning perspective,
this is a non-parametric model, and the cost of accessing the model grows as a longer sub-
sequence is observed. Clearly, such a variable-length memory will generally be infeasible if
the model deals with a very, very long sequence. For the modeling problem of arbitrary length
sequences, it is common to use a fix-length memory instead. As in many NLP problems, one of
the simplest ways to do this is to consider a cache saving recent information, that is, we restrict
the modeling to a context window. Let nc be the size of the context window. The model keeps
track of the nc− 1 latest states to the current position, so that its closest successors can be
considered at each step. This means that, for each position, a self-attention sub-layer attends to
nc−1 positions ahead, like this

Input

Output

ii−1i−2i−3i−4i−5

If we stack multiple self-attention sub-layers, a larger context window would be considered.

12FLOPS = floating point operations per second.



318 Chapter 6. Transformers

1 2 3 ... i−2 i−1 i i+1

Memory ({1, ..., i−1}) State

Read (self-attention)

Update

Position i

1 2 3 ... i−2 i−1 i i+1

Memory ({1, ..., i−1, i}) State

Read (self-attention)

Update

Position i+1

Figure 6.14: Transformer as a memory system. At position i, the collection of the key-value
pairs of positions {1, ..., i−1} is used as a memory of the past information. The Transformer
model accesses this memory to generate some output, and then adds the key-value pair of
position i to the memory. Moving to the next position, we repeat the same procedure of
memory access and update.

For example, a model involving two self-attention sub-layers has a context window of size
2nc−1, as follows

Layer 1

Layer 2

Output

ii−1i−2i−3i−4i−5

Therefore, we can take a sufficiently large context by using a multi-layer Transformer
model. Note that the context window model here is essentially the same as the strided attention
model presented in the preceding section. Systems of this type are often easy to implement:
we slide a window along the sequence, and, in each move, we make predictions at the last
position of the window (for inference), or back-propagate errors (for training).

An alternative way to train this context window model is by chunked attention. We divide
the sequence into chunks (or sub-sequences) which are of the same length nc. Then, we
treat these chunks as individual training samples, and run the training program on each of
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them as usual. This approach, however, completely ignores the relationship between inputs in
different chunks. One way to address this issue is to introduce dependence between chunks.
For example, the Transformer-XL model allows every chunk to access one or more preceding
chunks [Dai et al., 2019]. In the simplest case, consider an example in which chunkk can see
its successor chunkk−1. Each position in chunkk can attend to all its preceding positions in
both chunkk and chunkk−1.

In Transformer-XL, this approach is implemented in a simplified form. First, each position
is constrained to attend to nc−1 previous positions so that the size of the attention field of a
position is the same in the training and inference stages. Such a method turns the problem back
to strided attention, making the implementation of the attention model straightforward. On the
other hand, the difference between the standard strided attention model and the Transformer-XL
model is that in Transformer-XL, we perform training in a chunk-wise manner. Once we finish
the training on a chunk, we directly move to the next chunk, rather than sliding the context
window a small step forward. Second, while this approach allows for connections between
chunks, the parameters of the sub-network on chunkk−1 are fixed, and we only update the
parameters of the sub-network on chunkk in the k-th step. See Figure 6.15 for an illustration.

The above model is similar in spirit to recurrent models because all of them require the
computation in one step to depend on the states of the preceding steps. However, it is not in
the standard form of a recurrent model, in which the output of a recurrent unit in one step is
the input in the next step. Instead, the “recurrence” is expressed by involving connections
between two different layers, that is, the output of one layer in chunkk−1 is used as the input
of a higher-level layer in chunkk.

2. Encoding Long-term Memory

Another idea for representing the states of a sequence is to frame the task as an encoding
problem. Instead of storing all the key-value vectors during left-to-right generation, we
construct the memory of the entire “history” as a fixed number of encoded key-value vectors.
These encoded key-value vectors can be either a small sub-set of {(k1,v1), ...,(ki−1,vi−1)}
or a small set of newly-generated vectors that encodes {(k1,v1), ...,(ki−1,vi−1)}.

One way to do the encoding is to apply a pooling operation to {(k1,v1), ...,(ki−1,vi−1)}
[Rae et al., 2019a]. For example, by using average pooling, the memory contains only one
key-value pair (k̄, v̄)

k̄ =
1

i−1

i−1∑
j=1

kj (6.125)

v̄ =
1

i−1

i−1∑
j=1

vj (6.126)

This leads to a very efficient model, and we only need to update the vectors (k̄, v̄) at a time
[Zhang et al., 2018a]. Let (k̄[i], v̄[i]) be the state of the memory at position i. A more general
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Layer 1

Layer 2

Output

i+3i+2i+1ii−1i−2i−3i−4i−5

(a) Step k of chunk-wise training

chunkk+1chunkkchunkk−1

Layer 1

Layer 2

Output

i+3i+2i+1ii−1i−2i−3i−4i−5

(b) Step k+1 of chunk-wise training

chunkk+1chunkkchunkk−1

Figure 6.15: Illustration of chunk-wise training [Dai et al., 2019]. The input sequence is
divided into chunks of the same length nc. Training is performed on these chunks, each time
dealing with a chunk. In chunkk, the attention field for every position in this chunk is a left
context window of size nc. Hence this model allows for attention across chunks, for example,
position i−2 in chunkk can attend to positions i−3 and i−4 in chunkk−1 (see sub-figure
(a)). For training, errors are back-propagated only in the sub-network for chunkk, leaving
other parts of the model unchanged. Here we use dashed lines to denote information flow that
we consider in the forward pass but not in the backward pass. Once we finish the training on
chunkk, we move to the next chunk, and repeat the same training procedure.

definition of (k̄[i], v̄[i]) is given in a recursive form

k̄[i] = KMem(k̄[i−1],ki−1) (6.127)

v̄[i] = VMem(v̄[i−1],vi−1) (6.128)

where KMem(·) and VMem(·) are functions that update the memory by taking both the states
of the memory at the previous position (i.e., k̄[i−1] and v̄[i−1]) and the new states (i.e., ki−1

and vi−1). There are many forms of the functions like KMem(·) and VMem(·) in common
use. For example, if KMem(·) and VMem(·) are weighted sum functions, we can derive the
same forms as Eqs. (6.125) and (6.126). If KMem(·) and VMem(·) are recurrent cells in
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RNNs or LSTM, we obtain a recurrent model of memory.
Extension of the above model to memories having more than one key-value pair is

straightforward. One approach is to use the memory to represent sub-sequences. Let
{(k̄1, v̄1), ...,(k̄κ, v̄κ)} be a memory of size κ. Each (k̄j , v̄j) is a snapshot of a chunk of
length nc. Thus, this memory can encode a sequence with maximum length κ ·nc. Then, we
can compute (k̄j , v̄j) on the corresponding chunk using Eqs. (6.127) and (6.128). A second
approach is to organize {(k̄1, v̄1), ...,(k̄κ, v̄κ)} into a priority queue. We design some function
to assign a score to any given key-value pair. The key-value pair can be inserted into the
priority queue through the push operation. Ideally, we wish to develop a scoring function to
estimate the value of a key-value pair, for example, we use another neural network to evaluate
the key-value pair. In this way, the memory is a collection of the most valuable key-value pairs
over the input sequence.

Although representing the memory as a set of vectors is an obvious choice for the model
design in Transformer, the memory is discrete and its capacity is determined by the number
of the vectors. An alternative form of memory is continuous memory. This type of model
typically builds on the idea of function approximation, in which {k1, ...,ki−1} or {v1, ...,vi−1}
is viewed as a series of data points, and a continuous function is developed to fit these data
points. Then, we no longer need to store {k1, ...,ki−1} and {v1, ...,vi−1}. Instead, the
memory is represented by the functions fitting these vectors. A simple method is to combine
simple functions to fit complex curves of data points. For example, we can develop a set of
basis functions and use a linear combination of them to approximate the key or value vectors
[Martins et al., 2022]. The resulting model is parameterized by these basis functions and the
corresponding weights in the combination.

It is also straightforward to use a short-term memory and a long-term memory simultane-
ously so that we can combine the merits of both. For example, we use a cache-based memory
to capture local context, and use an efficient long-term memory that encodes the entire history
to model long-range dependency. This idea is also similar to that used in combining different
sparse attention models as discussed in the previous subsection.

3. Retrieval-based Methods

So far in this subsection, we have discussed approaches based on fixed-length models. It is
also possible to develop efficient memory models by improving the efficiency of accessing the
memories, instead of just reducing the memory capacities. One way to achieve this is to store
the past key-value pairs in a database (call it a vector database), and to find the most similar
ones when querying the database. To be more precise, given a query q, we use the database to
find a set of top-p relevant key-value pairs (denoted by Ωp) by performing similarity search
based on the dot-product similarity measure between query and key vectors. Then, we attend
q to Ωp as in standard self-attention models. The idea behind this method is to consider only a
small number of elements that contribute most to the attention result. Therefore, the model is
essentially a sparse attention model which is computationally efficient. Another advantage of
this method is that it allows for fast similarity search over a very large set of vectors because of
the highly optimized implementation of vector databases. Building a memory as a retrieval
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system can fall under the general framework called the retrieval-augmented approach. It
provides a simple way to incorporate external memories into neural models like Transformer
[Guu et al., 2020; Lewis et al., 2020b; Wu et al., 2021].

6.4.3 Low-dimensional Models

In many practical applications, Transformer models are “high-dimensional” models. This is
not only because the input and/or output data is in high-dimensional spaces, but also because
some of the intermediate representations of the data in the model are high-dimensional. As
discussed in Section 6.4.1, this high dimensionality arises in part from the steps of computing
the attention matrix as in Eq. (6.119) (for ease of presentation, we repeat the equation here)

Attself(S) = AV (6.129)

and the weighted sum of value vectors as in Eq. (6.120)

A = Softmax(
QKT

√
d

+M) (6.130)

which involves large matrix multiplications QKT and AV when the length n and the hidden
dimensionality d have large values.

The AV and QKT operations have a time complexity of O(n2 ·d) and a space complexity
of O(n2+n ·d). Several previously described approaches have reduced this complexity by
using sparse models. In this subsection, we focus on methods that approximate these operations
via dense computation. One simple idea is to transform Q, K, and V into smaller matrices,
and thus to reduce the computational burden of matrix multiplication. Since Q, K, and V are
all in Rn×d, we can achieve this by reducing either the n dimension or the d dimension, or
both.

1. Reducing n

Note that the output Attself(S) is required to be an n×d matrix, and so we cannot reduce the
number of queries. We instead consider reducing the number of keys and values. Suppose n′

is a number less than n, and K and V can be transformed into n′×d matrices K′ and V
′

in
some way. We can obtain a “smaller” model simply by replacing K and V with K′ and V

′
,

giving

Attself(S) = AV
′

(6.131)

A = Softmax(
Q[K′]T√

d
+M) (6.132)

This model is in the standard form of self-attention, but has lower time and space complexities,
that is, O(n′ ·n ·d)<O(n2 ·d) and O(n′ ·n+n′ ·d)<O(n2+n ·d). If n′ <<n, the resulting
model will be linear with n.

The key problem here is how to obtain K′ and V
′

in a way that retains much of the
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information in K and V. There are several ways to do so. One simple method is to select the
keys and values that are thought to be important. The importance of a key (or value) can be
computed in terms of some computationally cheap measure. For example, we can sample a
small number of query-key dot-products and estimate the importance of a key by collecting
these dot-product results.

The above method is straightforward but still requires sparse operations, such as sampling
and collection. As an alternative, we can use dense computation to transform K and V to
K′ and V

′
. A typical choice is to use CNNs [Liu et al., 2018]. Let Conv(·) be a function

describing a set of filters that slide along the n dimension. K′ is then given by

K′ = Conv(K,Wc,sizer,stride) (6.133)

where Wc is the parameter matrix of the filters, sizer is the size of the receptive field, and
stride is the number of units the filters are translated at a time. In general, we can achieve
a high compression rate by choosing large values for sizer and stride. Likewise, we can
compute V

′
using another convolutional function. It is worth noting that, if the parameter n′

is fixed for all samples, compression of K and V along the length dimension is essentially
the same as the fixed-length memory model as described in the preceding subsection. The
methods presented here are more general and could be applied to variable-length memories.

We might also be tempted to model the attention function by considering the attention
matrix A as a high-dimensional representation of data and then applying conventional dimen-
sionality reduction methods. For many problems, it is found that A (or more precisely QKT)
is a low-rank matrix. In this case, we can compress A while retaining as much information
as possible. There are many ways to do so. For example, we might use a product of smaller
matrices as an approximation to A via the SVD technique (see Chapter 3). However, this
introduces computational overhead in using SVD compared with the standard attention model.
A simpler idea to directly transform K and V into smaller-sized matrices via linear mappings,
given by

K′ = UkK (6.134)

V
′

= UvV (6.135)

where Uk ∈ Rn′×n and Uv ∈ Rn′×n are parameter matrices. Clearly, this leads to a model
which is equivalent to that described in Eqs. (6.131) and (6.132). While such a method is
intuitive and simple, it is proven to obtain a sufficiently small approximation error ϵ if n′ is a
linear function of d/ϵ2 [Wang et al., 2020b].

2. Reducing d

Another approach to working in a low-dimensional space is to reduce the d dimension. One of
the simplest methods is to project all queries and keys onto a d′-dimensional space (d′ < d),
and to compute the dot-product of any key-value pair in the new space. For modeling, we only
need to replace Q ∈Rn×d and K ∈Rn×d by new representations Q′ ∈Rn×d′ and K′ ∈Rn×d′ .
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We can easily modify Eq. (6.130) to use Q′ and K′ in computing the attention matrix

A = Softmax(
Q′[K′]T√

d
+M) (6.136)

Q′ and K′ are given by

Q′ = QUq (6.137)

K′ = KUk (6.138)

where Uq ∈ Rd×d′ and Uk ∈ Rd×d′ are parameter matrices of linear transformations.
It is also possible to exploit kernel methods to obtain an efficient dot-product attention

model. The basic idea is to map all data points (represented as vectors) from one space to
another space, so that the problem, which might be difficult to solve in the original space, is
easier to solve in the new space. The “trick” of kernel methods is that we actually do not need
to know the mapping function, but only need to know how to compute the inner product of
vectors in the new space in one operation13. This operation of the inner product is usually
called the kernel and denoted by K(·, ·).

It is interesting to approximate A in a fashion analogous to K(·, ·) in kernel methods. To
illustrate, note in Eq. (6.130) A is a fraction denoting the normalized attention weights. The
numerator can be written in the form

Ã = Mask(exp(
QKT

√
d

)) (6.140)

(6.141)

Here Mask(·) is a function which has the same effect as using the additive masking variable
M. Then, A can be expressed as

A = D−1Ã (6.142)

where D is an n×n diagonal matrix. Each entry of the main diagonal is the sum of the entries
of the corresponding row in Ã, denoting the normalization factor of Softmax. Substituting this
equation into Eq. (6.130), we have

Attself(S) = D−1ÃV (6.143)

13In mathematical analysis, the inner product is a generalized notion of the dot-product. It is typically denoted
by ⟨·, ·⟩. A formal definition of the inner product requires that ⟨·, ·⟩ satisfies several properties in a vector space.
Although the inner product has different forms in different contexts, in the Euclidean space Rd, it is the same thing
as the dot-product, that is, given two vectors a ∈ Rd and b ∈ Rd, we have

⟨a,b⟩ = a ·b

=
d∑

i=1

ai · bi (6.139)
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In this model, Ã(i, j) can be viewed as a similarity function over all query-key pairs in a
d-dimensional space. Here we assume that this function, which is in the form of the dot-product
of vectors, can be approximated by a kernel function

Ã(i, j) = K(qi,kj)

= ⟨ϕ(qi),ϕ(kj)⟩

ϕ(·) is a mapping from Rd to Rd′ . We can represent the queries and keys in the following form

Q′ = ϕ(Q)

=

ϕ(q1)
...

ϕ(qn)

 (6.144)

K′ = ϕ(K)

=

ϕ(k1)
...

ϕ(kn)

 (6.145)

Then, we develop a kernelized attention model by approximating the attention weight αi,j
in the form

αi,j ≈
ϕ(qi)ϕ(kj)

T∑n
j′=1ϕ(qi)ϕ(kj′)

T
(6.146)

The key idea behind this kernelized attention model is that we can remove the Softmax
function if the queries and keys are mapped to a new space. Using this approximation, the i-th
output vector of the attention model (i.e., the i-th row vector of Attself(S)) is given by

ci =
n∑
j=1

αi,j ·vj

≈
n∑
j=1

( ϕ(qi)ϕ(kj)
T∑n

j′=1ϕ(qi)ϕ(kj′)
T
·vj
)

=

∑n
j=1ϕ(qi)ϕ(kj)

Tvj∑n
j′=1ϕ(qi)ϕ(kj′)

T

=
ϕ(qi)(

∑n
j=1ϕ(kj)

Tvj)

ϕ(qi)(
∑n

j′=1ϕ(kj′)
T)

(6.147)

Although the equation appears a bit complicated, the idea is simple: instead of attending the
query to all keys to obtain the attention weight αi,j , we can compute the sum of the multiplica-
tions

∑n
j=1ϕ(kj)

Tvj ∈Rd
′×d and then multiply it with the kernelized query ϕ(qi). Returning

to the notation used in Eq. (6.143), we define the i-th entry of D to be ϕ(qi)
∑n

j′=1ϕ(kj′)
T.
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Then, the attention model can be re-expressed in the form

Attself(S) = D−1ϕ(Q)ϕ(K)TV

= D−1Q′K′TV

= D−1
(
Q′(K′TV)

)
(6.148)

Here we change the order of computation from left-to-right to right-to-left using parentheses.
Given that Q′ ∈ Rn×d′ and K′ ∈ Rn×d′ , this model has time and space complexities of
O(n · d · d′) and O(n · d+n · d′ + d · d′), respectively. Therefore, the model is linear with
respect to the sequence length n, and is sometimes called the linear attention model. One
computational advantage of this model is that we need only compute the multiplication K′TV

(i.e.,
∑n

j=1ϕ(kj)
Tvj) and the corresponding normalization factor (i.e.,

∑n
j′=1ϕ(kj′)

T) once.
The results can then be used for any query [Katharopoulos et al., 2020]. The memory needs
to maintain

∑n
j=1ϕ(kj)

Tvj and
∑n

j′=1ϕ(kj′)
T and update them when new key and value

vectors come.

Still, there are several problems regarding this kernelized model, for example, how to
develop the feature map ϕ(·) to obtain a good approximation to the standard attention model.
Interested readers may refer to Choromanski et al. [2020]’s work for more details.

A second idea for reducing d is to take sub-space models, in which a problem in a d-
dimensional space is transformed into sub-problems in lower-dimensional spaces, and the
solution to the original problem is approximated by some combination of the solutions to these
sub-problems. In a general sub-space model, a d-dimensional key vector k can be mapped
into a set of d′-dimensional vectors {K′

1, ...,K
′
η}. To simplify modeling, we can do this by

vector segmentation, that is, we segment k into η sub-vectors, each having d′ = d
η dimensions.

We can transform all query and value vectors in the same way. Then, the attention model is
applied in each of these sub-spaces.

This method, however, does not reduce the total amount of computation. As presented in
Lample et al. [2019]’s work, we can instead approximate the dot-product attention over a set
of key-value pairs by considering top-p candidates in each sub-space. More precisely, we find
p-best key-value pairs in each sub-space, which is computationally cheaper. The Cartesian
product of these p-best key sets consists of pη product keys. Likewise, we obtain pη product
values. The remaining work is simple: the d-dimensional queries attend to these d-dimensional
product keys and values. An interesting difference between this sub-space model and the
d-dimensional space model is that the generated product keys and values may be different from
any of the original key-values {(k1,v1), ...,(ki−1,vi−1)}. This provides a way for learning
new representations of the past information.

So far we have discussed approaches to dimensionality reduction along either the n or d
dimension. It is straightforward to combine them to develop a “lower-dimensional” model. As
an example, suppose that we have the n→ n′ reduction for keys and values, and the d→ d′
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reduction for queries and keys. The model takes the form

Attself(S) = AV
′

A = Softmax(
Q′K′T
√
d′

+M) (6.149)

where Q′ ∈ Rn×d′ , K′ ∈ Rn′×d′ , and V
′ ∈ Rn′×d′ are low-dimensional representations for

queries, keys and values. As usual, we can easily obtain these representations through the linear
mappings of Q, K and V. The time and space complexities of this model are O(n′ ·n ·d′) and
O(n′ ·n+n′ ·d′).

6.4.4 Parameter and Activation Sharing
Redundancy is common to most large-scale neural networks. As a result, many of these
models are over-parameterized, making the training and inference less efficient. One common
approach to redundancy reduction is to simplify the modeling by removing useless components
of the models, for example, we can either prune a complex model or share sub-models among
different components of it to obtain a reasonably small model. In this subsection, we discuss
methods of parameter and intermediate state sharing in Transformer models. We leave the
discussion of model transfer and pruning to Section 6.4.7.

Shared-parameter architectures are widely used in neural network-based systems. Well-
known examples include CNNs and RNNs, where the same set of parameters (or layers) is
applied across different regions of the input. This produces a “big” neural network, parts of
which have the same architecture and the same shared parameters. For Transformers as well as
other sequence models, the sharing mechanism can be applied to different levels of modeling.
A simple example, which might be not related to architecture design, is shared embedding. In
machine translation, a typical strategy for dealing with words in two languages is to develop
two separate embedding models. Alternatively, one can use a single embedding model for
both languages. The parameters of the model are then learned during the training of both the
source-side and target-side networks. Such a strategy is also often adopted in multi-lingual
sequence models, such as language models that are able to deal with texts in many different
languages.

For multi-layer neural networks, a popular method is layer-wise sharing. Suppose there is
a stack of layers, all of which have the same form

Sl = Layer(Sl−1;θl) (6.150)

We can tie the parameters for some or all of these layers. For example, given a set of layers
{l1, l2, ..., ln}, we enforce the constraint θl1 = θl2 = ...= θln , so that we can obtain a smaller
model and the optimization of the model can be easier. In practice, this shared-layer model is
highly advantageous if many layers are involved, because we can repeat the same process many
times to construct a very deep neural network [Dehghani et al., 2018]. For example, sharing a
single FFN sub-layer across the Transformer encoder is found to be effective in reducing the
redundancy in machine translation systems [Pires et al., 2023].



328 Chapter 6. Transformers

For Transformers, sharing can also be performed in multi-head attention. An example of
this is multi-query attention [Shazeer, 2019]. Recall from Section 6.1.3 that the output of a
head h in standard multi-head self-attention can be written as

Chead
h = Attqkv(S

q
h,S

k
h,S

v
h)

= Attqkv(SW
q
h,SW

k
h,SW

v
h) (6.151)

Here Sqh = SWq
h, Skh = SWk

h, and Svh = SWv
v are the query, key, and value, which are

obtained by linearly transforming the input S with distinct parameter matrices Wq
h, Wk

h, and
Wv

h. In multi-query attention, we share the same key and value across all the heads, but use
different queries for different heads. The form of this model is given by

Chead
h = Attqkv(SW

q
h,SW

k
0 ,SW

v
0) (6.152)

Here the key SWk
0 and value SWv

0 are irrelevant to h. Hence we need only compute them
once rather than computing them several times. As a result, we can make a significant saving
in computational cost, especially if the number of heads is large. Multi-query attention has
been successfully incorporated into recent large language models, such as Llama 2 [Touvron
et al., 2023b] and Falcon14.

By extending the idea of sharing to more general situations, any intermediate states can be
shared across a neural network. For example, reusing neuron activations allows a sub-model to
be applied multiple times. For Transformers, sharing can be considered inside the process of
self-attention. It is found that the attention maps of different layers are similar in some NLP
tasks [Xiao et al., 2019]. Therefore, it is reasonable to compute the attention map only once
and then use it in the following layers.

If we make a further generalization of the sharing mechanism, we can view it as a process
by which we use the result produced previously rather than computing it on the fly. It is
thus possible to reuse the information across different runs of a neural network. A related
example is reversible residual networks, in which activations of one layer can be recovered
from the activations of the following layer [Gomez et al., 2017]. Hence we only keep the
output of the latest layer in the forward pass. Then, in the backward pass of training, we
reconstruct the output of each layer from its successor. One advantage of this reversible
treatment is that the information produced in the forward pass is shared implicitly, and the
model is memory-efficient [Kitaev et al., 2020].

6.4.5 Alternatives to Self-Attention
We have seen that the use of self-attention is a primary source of the large computation and
memory requirements for Transformer systems. It is natural to wonder if there are efficient
alternatives to self-attention models. Here we present briefly some of the Transformer variants
in which self-attention sub-layers are not required and we instead replace them with other
types of neural networks.

14https://falconllm.tii.ae/index.html
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1. CNN as A Replacement of Self-Attention

CNNs are simple and widely used neural networks, and are considered as potential alternatives
to self-attention models. To apply CNNs to Transformers, all we need is to construct a
convolutional sub-layer to replace the self-attention sub-layer in a Transformer block. While
a filter of CNNs has a restricted receptive field and thus takes inputs from a “local” context
window, large contexts can be easily modeled by stacking multiple convolutional sub-layers.
One key advantage of CNNs is that the number of elementary operations required to run
CNNs is a linear function of the sequence length n, compared with the quadratic function
for self-attention networks. In practical systems, there have been many highly-optimized
implementations for CNNs, making it easier to apply them to sequence modeling. For further
improvements to memory efficiency, we can use lightweight CNN variants, for example,
depth-wise CNNs [Wu et al., 2018a] 15.

2. Linear Attention

As with many practical approaches to sequence modeling, there is also considerable interest in
developing linear models in order to speed up the processing of long sequences. While there
are many ways to define a linear model, one general form that is commonly used in sequence
models is

zi = f(a ·zi−1+ b · si) (6.154)

Here si represents some intermediate states of the model at step i, and zi represents the
summary of the history states up to step i. It is easy to see that this is a recurrent model: the
output at step i depends only on the input at the current step and the output at the previous
step. As with the popular design choices in neural network-based systems, the linear part is
followed by a transformation f(·) which can be either an activation function or a feedforward
neural network. Note that, Eq. (6.154) defines a standard linear model only if f(·) is a linear
function. The use of f(·) gives greater flexibility in modeling the problem, although the term
linear model may not be applied if f(·) chooses a non-linear form.

The above formula describes a linearly structured model which can be seen as an instance
of a general family of mathematical models. Typically, it can be represented as a chain structure,

15Recall from Chapter 2 that in CNNs a filter (or a set of filters) combines the input variables in the receptive
field into an output variable (or a set of output variables) via linear mapping. Suppose that the input and output
of a problem are represented as sequences of feature vectors. Given a filter having a d×k receptive field, we
slide it along the sequence. At each step, the filter takes d×k input features and produces an output feature. This
procedure is typically expressed by

y = ReduceSum(x⊙W) (6.153)

where x ∈Rk×d is the vector representation of the input, y ∈R is the output feature, and W ∈Rk×d is the weight
matrix. The function ReduceSum(·) computes the sum of all element-wise products between x and W. If we
want the input and output to have the same number of features, we can design d filters and the number of parameters
will be d2 ·k.

In depth-wise CNNs, we tie the weights across different feature dimensions. More precisely, all the column
vectors of W are the same. Thus, the number of the unique parameters of the model is reduced to d ·k (each W
corresponding to a filter having k unique parameters).
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or an ordered set of nodes. The model repeats the same computation process from the first
node to the last, each time taking the information from the current and previous steps and
producing an output vector that is used in the following time steps. As a result, the space and
time cost of the model scales linearly with the length of the chain.

We can extend Eq. (6.154) to a standard RNN model by simply making a linear transfor-
mation of the current input and the previous state, that is, zi = f(zi−1 ·Wz+ si ·Ws). It is
thus straightforward to apply RNN and its variants to Transformer to obtain a hybrid model.
For example, we can use LSTM and GRUs in building some of the Transformer layers to
combine the merits of both recurrent models and self-attentive models [Chen et al., 2018b].
As the conventional recurrent models have been discussed at length in Chapter 2, we skip the
discussion of them here.

In fact, we may be more interested in developing linear attention models, so that we
can obtain an efficient system, while still retaining the benefit of globally attentive sequence
modeling. Part of the difficulty in doing this is that the form of self-attention is not linear. Let
us take a moment to see how this difficulty arises. Recall that the result of self-attention can be
written in the following form

Attself = A ·V
= ψ(Q ·KT) ·V (6.155)

Here ψ(·) is a function that is composed by taking the scaling, exponentiating, masking
and normalization operations (i.e., ψ(a) = Normalize(Mask(exp( a√

d
)))). Because ψ(·) is a

complex non-linear function, there is no obvious equivalent that simplifies the computation,
and we have to calculate the two matrix multiplications separately (one inside ψ(·) and one
outside ψ(·)). As a consequence, we need to store all the key-value pairs explicitly, and visit
each of them given a query. Not surprisingly, this leads to a model whose computational cost
grows quadratically with the sequence length n.

Although in self-attention keys and values are coupled, they are used in separate steps.
An elegant form of this model might be that allows for a direct interaction between the keys
and queries, so that we can encode the context information in a way that is irrelevant to the
queries. A trick here is that we can remove the non-linearity from ψ(·) by using a feature
space mapping ϕ(·) on the queries and keys, and reformulate ψ(Q ·KT) (i.e., A) in a form of
matrix products. For example, recall from Section 6.4.3 that we can transform Q and K to
Q′ = ϕ(Q) ∈ Rn×d′ and K′ = ϕ(K) ∈ Rn×d′ through the mapping ϕ(·). Then, we define the
form of the attention model to be

Attself ≡ ψ′(Q′ ·K′T) ·V

=
Q′ ·K′T

D
·V

=
Q′ ·

(
K′T ·V

)
D

(6.156)

where ψ′(a) = a
D . From this definition, we see that, in the case of transformed queries and keys,
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the query-key product needs not be normalized via Softmax, but needs only be normalized via a
simple factor D. Hence the model has a very simple form involving only matrix multiplication
and division, allowing us to change the order of the operations using the associativity of matrix
multiplication.

This leads to an interesting procedure: keys and values are first encoded via K′T ·V, and
then each query attends to this encoding result. Given that K′T ·V =

∑n
j=1k

′T
j ·vj , we can

write K′T ·V in the form of Eq. (6.154), as follows

µj = µj−1+k′T
j ·vj (6.157)

Here µj ∈ Rd′×d is a variable that adds k′T
j ·vj at a time. Likewise, we can define another

variable νj ∈ Rd′

νj = νj−1+k′T
j (6.158)

Then, the output of self-attention for the j-th query can be written as (see also Eq. (6.147))

Attself,j =
q′
j ·µn

q′
j ·νn

(6.159)

Clearly, this is a linear model, because µn and νn are linear with respect to n. In simple
implementations of this model, only µj and νj are kept. Each time a new query is encountered,

we update µj and νj using Eqs. (6.157) and (6.158), and then compute Attself,j =
q′j ·µj
q′j ·νj

16.

One straightforward extension to the linear attention model is to allow Eqs. (6.157) and
(6.158) to combine different terms with different weights. For example, we can redefine µj
and νj as

µj = a ·µj−1+(1−a) ·k′T
j ·vj (6.160)

νj = a ·νj−1+(1−a) ·k′T
j (6.161)

and train the parameter a as usual. Also, we can treat a as a gate and use another neural
network to compute a [Peng et al., 2021]. Another model design is to add more terms to Eqs.
(6.157) and (6.158) in order to give a more powerful treatment of the linear attention approach
[Bello, 2020; Schlag et al., 2021].

We have seen a general idea of designing linear models for the attention mechanism. The
key design choice of such models is to remove the Softmax-based normalization, thereby
taking linear forms of representations based on various intermediate states of the models. This
motivates several recently developed alternatives to self-attention in which efficient inference
systems are developed on the basis of recurrent models of sequence modeling [Peng et al., 2023;
Sun et al., 2023]. While these systems have different architectures, the underlying models have
a similar form, as described in Eq. (6.154). Note that, by using the general formulation of

16In autoregressive generation, we generate a sequence from left to right. In this case, we need not consider the
keys and values for positions > j.
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recurrent models, we need not restrict the modeling to the standard QKV attention. Instead we
may give new meanings and forms to the queries, keys, and values.

The discussion here is also related to the memory models discussed in Section 6.4.2.
From the memory viewpoint, the keys and values can be treated as encodings of the context.
Therefore, in the linear attention model above we have a memory system in which two simple
variables µj and νj are used to represent all the context information up to position j. This
results in a fixed-length memory which is very useful in practice. There are also other linear
approaches to encoding long sequences. For example, we can view the moving average model
as an instance of Eq. (6.154), and average a series of state vectors of a Transformer system,
either weighted or unweighted.

3. State-Space Models

In control systems, state-space models (SSMs) are representations of a system whose input
and output are related by some state variables (or states for short), and whose dynamics
is described by first-order differential equations of these states. As a simple example, we
consider a continuous time-invariant linear system which is given in the form of the state-space
representation

dz(t)

dt
= z(t) ·A+ s(t) ·B (6.162)

o(t) = z(t) ·C+ s(t) ·D (6.163)

Here s(t), o(t), and z(t) are the values of the input variable, output variable and state variable
at time t17. In a general setting, s(t), o(t), and z(t) may have different numbers of dimensions.
To simplify the discussion here, we assume that s(t),o(t) ∈ Rd and z(t) ∈ Rdz 18. Eq. (6.162)
is called the state equation, where A ∈ Rdz×dz is the state matrix and B ∈ Rd×dz is the input
matrix. Eq. (6.163) is called the output equation, where C ∈ Rdz×d is the output matrix and
D ∈ Rd×d is the feedforward matrix.

These equations describe a continuous mapping from the variable s(t) to the variable
o(t) over time. They are, therefore, often used to deal with continuous time series data. To
apply this model to the sequence modeling problem discussed in this chapter, we need to
modify the above equations to give a discrete form of the state-space representation. Suppose
that {s0,s1, ...,sn} is a sequence of input data points sampled from s(t) with time step ∆t.
Similarly, we define {z0,z1, ...,zn} and {o0,o1, ...,on} as sequences of the state and output
vectors. Given this notation, we now have a discretized version of the SSM, written as

zt = zt−1 ·A+ st ·B (6.164)

ot = zt ·C+ st ·D (6.165)

17We use boldface letters to emphasize that the variables are vectors.
18In a general state-space model, all these variables are represented as vectors of complex numbers. Because the

models defined on the field of complex numbers is applicable to case of real number-based state-spaces, we restrict
our discussion to variables in the multi-dimensional real number field.
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This formulation of the SSM defines an RNN with a residual connection. To be more precise,
Eq. (6.164) describes a recurrent unit that reads the input at step t and the state at step t−1,
without using any activation function. Eq. (6.165) describes an output layer that sums both the
linear transformations of the state zt and the identity mapping st.

The parameters A, B, C, and D can be induced from A, B, C and D in several different
ways, depending on how Eq. (6.162) is approximated by Eq. (6.164)19. One approach to time
discretization, called bilinear transform or Tustin’s method, gives a model in which the
parameters take the form

A = (I−∆t

2
·A) · (I−∆t

2
·A)−1 (6.172)

B = ∆t ·B · (I−∆t

2
·A)−1 (6.173)

C = C (6.174)

D = D (6.175)

An alternative approach is to use the Zero-Order-Hold (ZOH) discretization which has the
form

A = exp(∆t ·A) (6.176)

B = ∆t ·B · (exp(∆t ·A)− I) · (∆t ·A)−1 (6.177)

C = C (6.178)

D = D (6.179)

A detailed discussion of these approaches lies beyond the scope of this book, and we refer
the interested reader to standard textbooks on control theory for further details [Åström and

19The discretization process can be interpreted as a numerical method of solving the differential equation. Note
that Eq. (6.162) is an ODE

dz(t)

dt
= g(z(t), t) (6.166)

where

g(z(t), t) = z(t) ·A+s(t) ·B (6.167)

There are many numerical approximations to the solutions to the ODE. For example, the Euler method of solving
the ODE can be expressed in the form (see in Section 6.3.3)

zt = zt−1+∆t ·g(zt−1, t) (6.168)

Substituting Eq. (6.167) into Eq. (6.168) yields

zt = zt−1+∆t(zt−1 ·A+ st ·B)

= zt−1 · (I+∆t ·A)+ st · (∆t ·B) (6.169)

This gives one of the simplest forms of the discretized state equations [Gu et al., 2022b], that is,

A = I+∆t ·A (6.170)

B = ∆t ·B (6.171)
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Wittenmark, 2013].
The recurrent form of Eq. (6.164) makes it easy to compute the states and outputs over a

sequence of discrete time steps. We can unroll zt and ot in a feedforward fashion

z0 = s0 ·B o0 = s0 ·B ·C+ s0 ·D
z1 = s0 ·B ·A+ s1 ·B o1 = s0 ·B ·A ·C+ s1 ·B ·C+ s1 ·D
z2 = s0 ·B ·A

2
+ s1 ·B ·A+ s2 ·B o2 = s0 ·B ·A

2 ·C+ s1 ·B ·A ·C+

s2 ·B ·C+ s2 ·D
...... ......

It is easy to write

zt =

t∑
i=0

si ·B ·A
t−i (6.180)

ot =
t∑
i=0

si ·B ·A
t−i ·C+ st ·D (6.181)

Clearly, the right-hand side of Eq. (6.181) can be interpreted as a merged output of a convolu-
tional layer and a linear layer. Given that

t∑
i=0

si ·B ·A
t−i ·C =

[
s0 s1 ... st

]
·[

B ·At ·C B ·At−1 ·C ... B ·C
]

(6.182)

we define a filter having the parameters

Wssm =
[
B ·Anmax ·C B ·Anmax−1 ·C ... B ·C

]
(6.183)

where nmax is the maximum length of the sequence20. Then, the output of the state-space

model for a sequence S=

s0...
sn

 can be expressed as

O = Conv(S,Wssm)+Linear(S,D) (6.184)

where Conv(·) is the convolution operation, and Linear(·) is the linear transformation opera-
tion. Such a treatment of the state-space model enables the system to be efficiently implemented
using fast parallel convolution algorithms.

Unfortunately, the above model performs poorly in many cases. As with many deep neural
networks, careful initialization of the model parameters plays an important role in such models.

20Here Wssm can be represented as an nmax×d×d tensor.
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For example, restricting the state matrix to particular types of matrices is found to be useful for
learning and generalizing on long sequences [Gu et al., 2022a].

Another problem with the basic state-space model is that it involves multiplication of
multiple matrices. If the sequence is long (i.e., n is a large number), computing A

n will be
computationally expensive and numerically unstable. One of the most popular approaches to
developing practical state-space models for sequence modeling is diagonalization. The basic
idea is that we can transform a state-space model into a new state-space where A (or A) is
diagonalized. Given a state-space model parameterized by (A,B,C,D), we can define a new
state-space model (UAU−1,BU−1,UC,D) by introducing an invertible matrix U. It is easy
to prove that the two models are equivalent under the state-space transformation U21. By using
this state-space transformation, and by noting that A (or A) can be written as a canonical
form P−1ΛP22, we can enforce the constraint that A (or A) is a diagonal matrix, giving rise
to diagonal state-space models. To illustrate, consider the filter used in the convolutional
representation of the state-space model (see Eq. (6.182)). Assuming that A=P−1ΛP, we
can write B ·At ·C as

B ·At ·C = B · (P−1ΛP)t ·C
= B · (P−1ΛP) · (P−1ΛP) · · ·(P−1ΛP) ·C
= (B ·P−1) ·Λt · (P ·C) (6.186)

Since Λ is a diagonal matrix, we can efficiently compute Λt by simply raising all the entries
of Λ to the t-th power. We then have a computationally cheaper model, in which

A
′

= Λ (6.187)

B
′

= B ·P−1 (6.188)

C
′

= P ·C (6.189)

D
′

= D (6.190)

More detailed discussions of diagonal state-space models in sequence modeling can be found
in Gu et al. [2021]’s work.

The application of state-space models to Transformer is simple. Each self-attention sub-
layer is replaced in this case by an SSM sub-layer as described in Eqs. (6.164) and (6.165).
As we have seen there is a close relationship between state-space models and both CNNs and
RNNs. For sequence modeling, we can deal with a sequence of tokens either sequentially
as in RNNs, or in parallel as in CNNs. This leads to a new paradigm that takes both the
sequential view and the parallel view of the sequence modeling problem — for training, the

21A state space transformation can be seen as a process of mapping all states from the old space to the new space,
by

s′(t) = s(t) ·U (6.185)

22Λ denotes a diagonal matrix.
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system operates like CNNs to make use of fast parallel training algorithms; for prediction,
the problem is re-cast as a sequential update problem which can be efficiently solved by
using RNN-like models. It should be noted, however, that state-space models are found to
underperform Transformer models for NLP problems, such as language modeling, although
they have achieved promising results in several other fields. Further refinements are often
needed to make them competitive with other widely used sequence models [Fu et al., 2022].

While the formalism of state-space models is different from those we discussed in this
chapter, it provides a general framework of sequence modeling in which the problem can be
viewed from either of two different perspectives and we choose different ones for different
purposes. Several recent sequence models were motivated by this idea, leading to systems
exhibiting properties of both parallel training and RNN-style inference [Orvieto et al., 2023;
Sun et al., 2023].

6.4.6 Conditional Computation
So far in our discussion of efficient Transformer models, we have assumed that the model
architecture is given before beginning the training of a model and is then fixed throughout. We
now turn to the case of learning efficient model architectures. Without loss of generality, we
can write a model in the form

y = Model(x,g(x)) (6.191)

where x and y are the input and output of the model. g(x) is a model function that returns
the model architecture and corresponding parameters for the given input x. In general, we
adopt the convention prevalent in learning problems of using a fixed model architecture and
learning only the parameters, say, g(x) = θ. In this case, the goal of learning is to find the
optimal values of the parameters given the model architecture and training data. On test data,
we make predictions using the same model architecture along with the optimized parameters.

A natural extension of this approach is to consider the learning of both the model archi-
tecture and parameters. In architecture learning, we would like to find a model function ĝ(x)
that produces the optimal model architecture and parameter values given the input x. However,
searching a hypothesis space of all possible combinations of architectures and parameter
choices is extremely difficult, and so we need practical methods to achieve the goal. Two
classes of methods can be applied.

• Neural Architecture Search (NAS). In automated machine learning (AutoML),
neural architecture search is the process of exploring a space of neural networks to find
one that best fits some criterions [Zoph and Le, 2016; Elsken et al., 2019b]. Once the
optimal neural network is determined, its parameters will be trained as usual, and then be
applied to new data. In order to make search tractable, several additional techniques, such
as search space pruning and fast search algorithms, are typically used. Applying neural
architecture search to the development of efficient neural networks is straightforward
[Howard et al., 2019; Tan and Le, 2019]. We need only incorporate efficiency measures
into the performance estimation of neural networks, for example, the search can be
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guided by a criterion that penalizes neural networks with high latency or excessive
memory requirements.

• Dynamic Neural Networks. The key idea of dynamic neural networks is to adapt a
neural network dynamically to various inputs [Gupta et al., 2004; Han et al., 2021b].
Ideally, we would like to learn ĝ(·), and then, for any input xnew, we apply the model
Model(xnew, ĝ(xnew)). As a result, at test time we may have different model structures
and/or different parameters for different inputs. However, it is infeasible to develop
a function ĝ(·) that can model arbitrary neural networks. In practice, ĝ(·) is often
considered to represent a family of sub-networks of a super-network. The problem is
therefore reframed as a simpler problem to learn to choose which sub-network is used
for a given input.

From a machine learning perspective, the approaches to neural architecture search are
general and can be applied to any neural network. On the other hand, from a practical
perspective, it is still difficult to find an efficient neural network that is sufficiently powerful
and generalizes well. While neural architecture search provides interesting ideas for developing
efficient Transformer models, we make no attempt to discuss it here. Instead, the reader can
refer to the above papers to have a general idea of it, and refer to So et al. [2019], Wang et al.
[2020a], and Hu et al. [2021]’s work for its application to Transformers.

In this subsection, we focus on a particular family of approaches to dynamic neural
networks, called conditional computation. This concept was originally motivated by the
dynamic selection of neurons of a neural network [Bengio et al., 2013; 2015]. More recently, it
has often been used to refer to as a process of dynamically selecting parts of a neural network.
A narrow view of conditional computation is to see g(·) as an adaptive neural network which
dynamically reduces or grows the number of computation units (such as neurons and layers).
As a result, computation can adapt to changing conditions, and we can seek a good accuracy-
latency trade-off by this adaptation mechanism.

A common way to achieve this is to learn how to skip some computation steps so that
we can work with a necessary sub-set of the network [Xu and Mcauley, 2023]. One of the
simplest methods, sometimes called early stopping, is to stop the computation at some point
during reading or generating a sequence. This technique is often used in practical sequence
generation applications where a low latency is required. Suppose y1...ynmax is the longest
sequence that the system can generate, and s1...snmax is the corresponding sequence of the
states of the top-most Transformer layer. Then we develop a model fstop(·) that takes one
hidden state si at a time and produces a distribution of a binary variable c ∈ {stop,nonstop}

Pr(c|si) = fstop(si) (6.192)

The generation process terminates if Pr(stop|si) is sufficiently large, for example

Pr(stop|si) ≥ Pr(nonstop|si)+θstop (6.193)
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where θstop denotes the minimal margin for distinguishing the two actions23. This formulation
is also related to the stopping criterion problem that is frequently discussed in search algorithms
for sequence generation (see Chapter 5). fstop(·) can be designed in several different ways. For
example, in many practical applications, the stopping criterion is based on simple heuristics.
Alternatively, we can define the function fstop(·) as a neural network and train it using labeled
data.

The above approach can be easily extended to handle situations in which some of the
tokens are skipped. This learning-to-skip approach is typically used in the encoding stage in
which all input tokens are given in advance. Let h1...hm be low-level representations of a
sequence x1...xm. Like Eq. (6.192), we can develop a model Pr(c|si) (c ∈ {skip,nonskip})
to determine whether the token xi can be skipped. Figure 6.16 (a) and (b) show illustrations
of early stopping and skipping. Note that the learning-to-skip method has overlap with other
lines of research on training neural networks. For example, erasing some of the input tokens in
training is found to be useful for achieving higher generalization of Transformer models [Shen
et al., 2020a; Kim and Cho, 2021]. This method is also related to the downsampling methods
which will be discussed in Section 6.4.8.

A second approach to conditional computation is to resort to sparse expert models, or
its popular instance — MoE [Yuksel et al., 2012]. In deep learning, a model of this kind is
typically built from a number of experts which are neural networks having the same structure
but with different parameters. In this way, we can construct a big model by simply increasing
the number of experts. When running this model, during either training or prediction, we
activate only a small number of the experts by some routing algorithms (see Figure 6.16 (c)).
An MoE model is an adaptive network since each time we have a new input, the model routes
it to different experts. In Section 6.3.4, we presented the basic form of MoE, and showed how
Transformer models can be scaled up by this sparse method. For a comprehensive review of
the recent advances in MoE, we refer the interested reader to Fedus et al. [2022a]’s work.

A third approach that can be used to adapt a Transformer model to changing input is to
dynamically shrink the number of layers. Several methods have been proposed to do this in
an attempt to improve inference efficiency. The simplest of these is to exit at some hidden
layers by which we can still make accurate predictions for the sample (see Figure 6.16 (d) and
(e)). To do this, we can either determine the appropriate depth for the entire sequence (call
it a sentence-level depth-adaptive model), or use an adaptive depth for each token (call it a
token-level depth-adaptive model). Here we consider token-level depth-adaptive models but
the methods can be easily extended to sequence-level depth-adaptive models.

Suppose there are L stacked layers at position i24. We would ideally like to find a layer
in the stack, which can be used as the last hidden layer for making predictions, and whose
depth is as low as possible. However, we cannot simply use the L-th layer of the stack as the
oracle for this problem, because we never know in advance what the last layer generates during
inference. Instead, we need to determine whether the network should stop growing at depth i,
considering the layers generated so far.

23An equivalent form of Eq. (6.193) is Pr(stop|si)≥
1+θstop

2 .
24A layer is a standard Transformer block consisting of a few sub-layers.
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y0 y1 y2 − −

y1 y2 y3 stop

(a) Early Stopping
(Decoder)

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

... ... ... ... ...

(b) Token Skipping
(Encoder)

x1 x2 x3 x4 x5

... ... ... ... ...

expert1 expert2 expert3 expert4

(c) MoE
(Encoder)

y0 y1 y2 y3 y4

y1 y2 y3 y4 y5

(d) Sentence-level Depth Adaptation
(Decoder)

y0 y1 y2 y3 y4

y1 y2 y3 y4 y5

(e) Token-level Depth Adaptation
(Decoder)

y0 y1 y2 y3 y4

y1 y2 y3 y4 y5

(f) Layer Skipping
(Decoder)

Figure 6.16: Methods of conditional computation, including early stopping, token skipping,
MoE, sentence-level depth adaptation, token-level depth adaptation, and layer skipping. While
these methods are illustrated using either the encoding or decoding process, most of them can
be applied to both Transformer encoders and decoders.
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Now suppose we have a Transformer decoder which produces a distribution over a vocabu-
lary V at each step. As usual, we denote the output of the l-th layer at step i by sli. For each sli,
we create an output layer that produces a distribution pli over the vocabulary (call it an early
exit classifier), given by

pli = Softmax(sli ·Wl
o) (6.194)

where Wl
o ∈ Rd×|V | is the parameter matrix. Hence we have L−1 additional output layers,

each corresponding to a hidden layer from depth 1 to L−1. At training time, we consider the
cross-entropy losses of {p1

i , ...,p
L−1
i }, and train these layers together with the Transformer

model. At test time, the depth of the network grows as usual, and we use {p1
i , ...,p

l
i} and/or

{s1i , ...,sli} to determine whether we should exit at the l-th layer. There are several exit criteria,
for example,

• Common criteria are based on measures of the confidence of predictions. A simple
method is to compute the entropy of pli, and exit if this entropy is above a pre-defined
value.

• Alternatively, one can view the maximum probability of the entries of pli as the confi-
dence of the prediction.

• Instead of considering the output of a single layer, we can also examine the change in
the outputs or hidden states over a number of layers. For example, we can measure the
similarity between pl−1

i and pli or between sl−1
i and sli. If the similarity is above a given

threshold, then we say that the output of the neural tends to converge and the number of
layers can stop growing.

• The above methods can be extended to examine the change in the predictions made by
the classifiers associated with the layers. For example, the model can choose to exit if
the predictions made by the classifiers remain unchanged for a number of layers.

Discussions of these criteria can be found in the related papers [Xin et al., 2020; Zhou
et al., 2020; Schuster et al., 2022]. There are a variety of ways to improve these early exit
methods. One is to explore other forms of the prediction for each layer. For example, we can
develop a model that directly predicts how many layers we need to model the input [Elbayad
et al., 2020]. Another line of research on early exit focuses on better training for these models,
for example, we can consider various loss functions for training the classifiers [Schwartz et al.,
2020; Schuster et al., 2022]. In addition, there is also interest in learning the combination
of the outputs of multiple layers so that we can make predictions by using multiple levels of
representation [Zhou et al., 2020; Liao et al., 2021].

A problem with token-level adaptive-depth models is that the representations at certain
depths may be absent in the previous steps. In this case, standard self-attention is not directly
applicable, because we may not attend to the previous tokens in the same level of representation.
For training, this can be addressed by using all the L layers of the full model. For inference,
we can either duplicate the layer from which we exit to fill up the layer stack, or modify
the self-attention model to enable it to attend to the representations of the previous tokens at
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different depths.
It is also possible to select any sub-set of the layers for constructing a shallow network.

The adaptive models therefore can be generalized to skipping models (see Figure 6.16 (f)).
As with the early exit problem, the skipping problem can be framed as a learning task, in
which a classifier is trained to decide whether a layer should be dropped. The learning-to-skip
problem has been studied in the field of computer vision [Wang et al., 2018b; Wu et al., 2018b].
However, learning a skipping model for large-scale, deep neural networks is difficult. For
practical systems, it still seems reasonable to use heuristics or cheap models to obtain a neural
network having skipped layers, which has been discussed in recent pre-trained NLP models
[Wang et al., 2022c; Del Corro et al., 2023].

6.4.7 Model Transfer and Pruning
Many large Transformer models have been successfully developed to address NLP problems.
A common question is: can we transform a large, well-trained model into a smaller one that
allows for more efficient inference? At a high level, this can be thought of as a transfer
learning problem in which the knowledge is transferred from one model to another. But we
will not discuss this general topic, which spans a broad range of issues and models, many
outside the scope of this chapter. Instead, we narrow our discussion to two kinds of approaches
that are widely used in learning small neural networks from large neural networks.

1. Knowledge Distillation
Knowledge distillation is a process of compressing the knowledge in a large neural network (or
an ensemble of neural networks) into a small neural network [Hinton et al., 2015]. In supervised
learning of neural networks, the objective functions are generally designed to represent some
loss of replacing the true answer with the predicted answer. Hence we can minimize this loss
so that the models are trained to output the true answer. While models are typically optimized
on the training data in this manner, what we really want is to generalize them to new data.
This is, however, difficult because we have no information about generalization in training
with the ground-truth. In knowledge distillation, instead of forcing a model to stay close to
the ground-truth output, we train this model to generalize. To do this, we directly transfer the
knowledge (i.e., the generalization ability) of a pre-trained model to the model that we want to
train.

A frequently used approach to knowledge distillation is teacher-student training. A
teacher model is typically a relatively large neural network that has already been trained and can
generalize well. A student model is a relatively small neural network, such as a neural network
with fewer layers, to which we transfer the knowledge. A simple way to distill the knowledge
from the teacher model into the student model is to use the output of the teacher model as the
“correct” answer for training the student model. Suppose we have a teacher Transformer model
that can generate a sequence of distributions {Pr(·|y0,x), ...,Pr(·|y0...yn−1,x)} for the input
x. To keep the notation simple, we denote the distribution Pr(·|y0...yi−1,x) as p̃i. Similarly,
we denote the output of the student Transformer model for the same input as pi. As usual, we
consider a loss function Loss(p̃i,pi) (such as the cross-entropy function) for computing some
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distance between p̃i and pi. Then, we can define the loss over the entire sequence as

L(x,θ) =
1

n

n∑
i=1

Loss(p̃i,pi) (6.195)

where θ denotes the parameters of the student model25. Using this loss, we can optimize θ,
for any given set of source sequences {x1, ...,xK}, in such a way as to minimize the quality∑N

k=1L(xk,θ).
Several different extensions to this basic method have been developed to model the problem

of knowledge transfer between two models. A simple way is to use the hidden states instead
of the output probabilities as the training targets [Romero et al., 2014]. In this case, the
objective is to minimize the difference between some hidden states of the teacher model and
the corresponding states of the student model. Rather than using the outputs of various layers as
the targets for training the student model, another technique is to model the relations between
samples and train the student model by minimizing some differences between the relation
encodings of the teacher and student models [Park et al., 2019; Peng et al., 2019]. For example,
we can develop a relation encoding model based on the Transformer architecture. The goal is
then to optimize the student model so that its corresponding relation encoding of a group of
samples is as close as possible to that of the teacher model.

For sequence generation problems, a special case of knowledge distillation, which can be
viewed as a means of data augmentation, is often used for developing lightweight models
[Kim and Rush, 2016]. For example, consider the problem of transferring the translation ability
of a well-developed machine translation model (i.e., the teacher model) to a new model (i.e.,
the student model). Given a set of source-side sentences {x1, ...,xK}, we can use the teacher
model to translate each xk to a target-side sentence ỹk. Then, by treating xk and ỹk as paired
sentences, we obtain a bilingual dataset consisting of {(x1, ỹ1), ...,(xK , ỹK)}. We can use
this bilingual dataset as the labeled dataset to train the student model as usual. One advantage
of this data argumentation method is that it is architecture free, and we do not even need to
understand the internal architectures of the teacher and student models. Hence we can apply
this method if we have a black-box teacher model. More detailed discussions of knowledge
distillation can be found in Gou et al. [2021] and Wang and Yoon [2021]’s surveys.

2. Structured Pruning
Pruning is among the most popular of the model compression methods and has been applied
to a broad range of systems. One common approach to pruning is unstructured pruning,
by which we activate only some of the connections between neurons. However, as with
most sparse models, models pruned in this way typically require special implementations and
hardware support, which in turn reduces their efficiency in some applications. A simple but
more aggressive way to do pruning is to use structured pruning. In deep learning, structured
pruning is a technique that removes a group of neurons or connections together. For example,
we can remove an entire layer of neuron from a neural network to obtain a shallower model.

25We omit the parameters of the teacher model because they are fixed throughout the training process.
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As multi-layer, multi-head neural networks, Transformers are naturally suited to structured
pruning, and we can prune a Transformer network in several different ways. For example, we
can prune some of the heads in multi-head attention [Voita et al., 2019; Michel et al., 2019], or
some of the layers in the layer stack [Hou et al., 2020; Kim and Awadalla, 2020].

Formally, we can represent a neural network as a set of parameter groups {θ1, ...,θR},
each corresponding to a component or sub-model of the model. Our goal is to find a sub-set
of {θ1, ...,θR} by which we can build a model that yields good performance, while having a
lower model complexity. However, a simple search of such a model is infeasible because there
are a combinatorially large number of possible model candidates and evaluating all of these
models is computationally expensive.

One approach to structured pruning is to randomly prune components of a model. One
can run the random pruning process a number of times to generate a pool of model candidates
and select the best one from the pool. Another approach is to use heuristics to decide which
components are not important and can be removed. Common measures of the importance of a
parameter group θr include various qualities based on norms of the weights or gradients of θr
[Santacroce et al., 2023]. We can prune θr if the values of these measures are below (or above)
given thresholds. A third approach is to frame the pruning problem as an optimization task by
introducing trainable gates indicating the presence of different components [McCarley et al.,
2019; Wang et al., 2020d; Lagunas et al., 2021]. The pruned model can be induced by using
the trained gates. Note that, in many cases, pruning is not a post-processing step for a given
trained model, but part of the training.

6.4.8 Sequence Compression
In sequence modeling and generation problems, the time and space complexities are strongly
influenced by the length of the input or output sequence, and we prefer the sequence to be short.
This is particularly important for Transformer models, as their time and space complexities are
quadratic with the sequence length, and the memory footprint and latency can be heavy burdens
if the sequence is very long. In the previous subsections, we have discussed modifications
to the Transformer architecture for dealing with long sequences. Here we instead consider
methods for compressing the sequences into ones with acceptable lengths.

One simple approach is to map the input sequence to a fixed-size representation. For
example, using the recurrent models discussed in Section 6.4.2, we can encode a sequence
of vectors into a single vector. This method can be easily extended to generate a “larger”
representation so that this representation can retain more information of the original input.
For example, we can select a fixed number of the hidden states over the sequence to form a
new sequence of fixed-length. Another way to represent a variable-length sequence as a fixed-
length sequence is to attend the input vectors to some hidden states, usually a fixed number of
learnable hidden representations. In Jaegle et al. [2021]’s work, this is done by introducing r
hidden representations {u1, ...,ur}, and then attending the input vectors {x1, ...,xm} to these
hidden representations. The attention model can be a standard QKV attention model in which
we view {u1, ...,ur} as queries and {x1, ...,xm} as keys and values. The output of this model
is a sequence of r vectors, which can be used as fixed-length input to downstream systems.
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A second approach is to use downsampling to compress the sequence into a shorter one.
A typical method of downsampling is strided convolution, which has been widely used in
computer vision and speech processing. For example, suppose there is a sequence of m vectors
∈ Rd. We can develop a filter with a width of 2 and a stride of 2. By taking the sequence as
input, the filter produces a sequence of m2 new vectors ∈ Rd, and so we have a reduction rate
of 2. Also, we can stack multiple convolutional layers or pooling layers to achieve a desired
level of length reduction, called progressive downsampling. However, it seems inevitable
that downsampling will lead to information loss [Han et al., 2020; Burchi and Vielzeuf, 2021].
We need to consider a trade-off between the compressed sequence length and the performance
of downstream systems [Xu et al., 2023b].

In NLP, the problem of sequence compression is also closely related to the problem of
tokenizing input strings. Therefore, tokenization is a practical approach that can be taken to
address the length issue. Segmenting a string into small tokens (such as characters) generally
reduces the sparsity of the data, which makes it easier to learn the embeddings of these
tokens, but such approaches often lead to a long sequence. By contrast, we will have a shorter
sequence if we segment the input string into larger units, but this will suffer from sparse data.
In deterministic tokenization methods, which produce tokenization results using statistics
collected from the entire dataset, the sequence length can be somehow controlled by adjusting
some hyper-parameter, for example, in byte pair encoding [Sennrich et al., 2016b], increasing
the size of the vocabulary generally reduces the number of the resulting tokens. Another way
to obtain an appropriate sequence of tokens is to use a model for choosing among tokenization
candidates [Kudo, 2018; Provilkov et al., 2020]. As with many probabilistic models for text
generation, in this case, we can add priors to the criterion for tokenization selection so that we
can express a preference for shorter sequences over longer sequences.

A fourth approach to sequence compression is to drop some of the tokens in the sequence.
For example, in many practical applications, we chop the sequence when its length exceeds a
threshold. We can relate this to the early stopping and skipping approaches in conditional com-
putation. Thus the methods discussed in Section 6.4.6 are directly applied. The token dropping
methods can also be viewed as pruning methods, called token pruning. By discarding tokens
that are less important for representing the entire sequence, token pruning can significantly
reduce the sequence length while maintaining the performance of NLP systems on downstream
tasks [Kim et al., 2023].

6.4.9 High Performance Computing Methods
So far in this section, we have discussed efficient Transformer models from the perspectives
of deep learning and NLP. However, we have not considered their efficiency on hardware.
As modern hardware provides a variety of modes for running a program, the practical time
and memory footprint savings generally depend on the specifications of hardware systems.
One line of research on efficient use of computing resources explores methods of parallel
computing. There have been many attempts to develop large-scale Transformer models by
using a cluster of machines. Typically, scaling Transformers to models with billions or even
tens of billions of parameters requires a careful design of parallelism strategies for sharding
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the big networks. More efficient implementations of such systems also need considerations of
networking and communication in the cluster, as well as the utilization of sparse models that
activate only a small sub-set of the parameters for each sample, enabling the use of very large
models. Most of these methods have been studied in an extensive literature on how to scale
up the training of deep neural networks like Transformers efficiently [Lepikhin et al., 2021;
Barham et al., 2022; Fedus et al., 2022b]. The results of these studies were foundational to
many follow-on works on investigating the scaling laws for large language models [Brown
et al., 2020; Chowdhery et al., 2022]. Since large-scale distributed models are generic and not
specialized to the case of Transformers, we skip the discussion of them here. The interested
readers can refer to the above papers for more detailed discussions.

In this subsection, we consider hardware-aware methods to seek greater computational
efficiency for Transformer models. We first consider a simple but widely used method that aims
to store and execute neural networks using lower or mixed-precision number representations
[Gholami et al., 2022]. Conventional neural networks are typically based on single-precision
and/or double-precision floating-point representations of data. While single-precision floating-
point data types provide a sufficiently precise way to represent parameters and intermediate
states in most cases, in some applications, they are not essential. As an alternative, one can use
half-precision (or even lower-precision) formats in storing floating-point numbers for neural
networks. The size of the resulting model is thus half the size of the original model. One
advantage of using half-precision floating-point representations is that, although processing
such data types requires new APIs of linear algebra operations and hardware support, it does
not change the model architecture, and so we need only a slight modification to the systems.
For example, half-precision floating-point representations can be applied to either training or
inference of Transformers, or both.

Recently, the deployment of large Transformer models has been further improved by
quantizing these models. In signal processing, quantization is a process of mapping continuous
values (i.e., floating-point representations) to a set of discrete values (i.e., fix-point represen-
tations) . This process is in general implemented using a system called quantizer. In the
context of neural networks, a quantizer involves two functions — the quantization function
and the de-quantization function. The quantization function maps a floating point number to a
(lower-bit) integer. A simple quantization function is given by

Q(x) = ⌊x
s
⌉ (6.196)

where ⌊·⌉ is a rounding function26, x is the real-valued input, and s is the quantization step
size that controls the level of quantization. The quantization function is coupled with a
de-quantization function

D(r) = s · r (6.197)

With this notation, the quantizer can be expressed as D(Q(x)) = s · ⌊xs ⌉. The difference

26⌊a⌉ returns the integer closest to a.
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between D(Q(x)) and x is called quantization error. A smaller value of s typically reduces the
quantization error. In practice, however, we wish to choose an appropriate value of s in order to
spread possible values of Q(r) evenly across values of an integer, for example, s= max{D(r)}

2p−1

where p is the number of bits used to represent an integer and max{D(r)} is the maximum
value for D(r). The above equations show one of the simplest cases of quantization. More
general discussions of quantization can be found in books on digital signal processing and
related surveys [Oppenheim and Schafer, 1975; Rabiner and Gold, 1975; Gray, 1998].

Applying quantization to Transformers is relatively straightforward. The idea is that
we quantize the inputs and model parameters using Q(x), and feed them to a quantized
Transformer model in which all the layers operate on integer-valued tensors. In other words,
we implement the model using integer-only arithmetic. However, the price to be paid for
this compressed model, as with many approximation approaches to deep learning, is that its
prediction is not as accurate as that of the standard Transformer model. Using integer operations
to approximate continuous-valued operations generally leads to approximation errors. These
errors will be accumulated if the quantized neural network is deep. Furthermore, Transformer
models involve components (such as self-attention sub-layers) that require relatively complex
linear algebra operations. Simply applying quantization to these sub-models will lead to
high accuracy loss. One solution is to simplify the model architecture and develop new sub-
models that is more feasible for quantization. Alternatively, a more common paradigm in
quantized neural networks is to add de-quantization functions to the neural networks so that
the output of a layer is floating-point tensors and can be used as usual in the following steps.
Consider a simple example where we multiply a real-valued input matrix a with a real-valued
parameter matrix A. We first quantize a and A, and multiply them using integer-based matrix
multiplication. The result is then de-quantized to a real-valued matrix. In this way, we obtain
an approximation D(Q(a) ·Q(A)) to a ·A in a very cheap way.

However, sandwiching each layer between Q(·) and D(·) will lead to additional cost of
running Q(·) and D(·). In some practical applications, the computational overhead introduced
by Q(·) and D(·) is even bigger than the time saving of performing integer-based operations.
In general, the benefit of quantizing neural networks would be larger than its cost if the neural
networks are large. Therefore, in practice it is common to perform quantized computation
only for operations whose computational costs are high. For example, in recent large language
models, quantization is primarily applied to the multiplication of large matrices, yielding
significant time and memory savings.

While the quantization approaches can be used in both training and inference, a widely-
used approach is to get Transformer models quantized after training (call it post-training
quantization). In this approach, quantization is performed on well-trained floating-point-based
neural networks and there will be fewer quantization-related errors. However, these errors
cannot be compensated for because they exist after training. A more promising idea is to
involve quantization in training so that the model can learn to compensate for quantization-
related errors [Jacob et al., 2018; Nagel et al., 2021]. There have been several attempts to apply
quantization-aware training to Transformers [Bondarenko et al., 2021; Stock et al., 2021; Yang
et al., 2023b]. In addition to computational efficiency, another important consideration for
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high-performance systems is the restrictions of the memory hierarchy. In general, better system
design requires considering the speeds and sizes of different levels of memory. The problem is
even more complicated when we train large Transformer models on modern hardware where
both GPUs and CPUs are used. A general principle of system design is that memory transfer
between different memory levels should be minimized. While we would ideally like to have a
large high-level memory on which we can store all the data that we need to process, in many
practical situations the size of the fast, on-chip memory is orders of magnitude smaller than
the size of data. In this case, we can re-order the memory access in the algorithms so that the
data used in nearby computation steps can be loaded into the high-speed memory at one time.
This idea motivates the development of many fast linear algebra libraries. For example, there
are matrix multiplication algorithms that are highly optimized for different shapes of input
matrices.

It is relatively straightforward to use these optimized linear algebra algorithms to build
a Transformer system. But the modules of this system are not optimized as a whole for
efficiency improvement. For example, a self-attention sub-layer involves a series of operations
of scaling, normalization, and matrix multiplication. Although each of these operations has
been implemented in several supported and efficient libraries of linear algebra, successive calls
to them still require multiple times of memory transfer when we switch from one operation
to another. In practice, a better approach would be that we keep some of the intermediate
states in the on-chip memory, and reuse them in the following computation steps instead of
fetching them again from the slow memory. For example, on modern GPUs, a simple way to
achieve this is to merge multiple operations into a single operation, known as kernel fusion.
For Transformer models, a general idea is to design data partitioning and layout strategies by
which we maximize the computation on each data block loaded into the high-performance
memory, while at the same time minimizing the memory transfer. There have been several
attempts to use these strategies to improve the attention models in Transformers [Ivanov et al.,
2021; Pope et al., 2023]. Some of these methods, such as flash attention and paged attention,
have been successfully incorporated into recent large language models [Dao et al., 2022; Kwon
et al., 2023].

6.5 Applications
Transformers have a wide range of applications, covering numerous NLP problems. While the
Transformer model introduced by Vaswani et al. [2017] is based on a standard encoder-decoder
architecture, it is mainly used in three different ways.

• Decoder-only Models. By removing the cross-attention sub-layers from a Transformer
decoder, the decoder becomes a standard language model. Hence this decoder-only
model can be applied to text generation problems. For example, given a sequence of
left-context tokens, we use the model to predict the next and following tokens.

• Encoder-only Models. Transformer encoders can be treated as sequence models that
take a sequence of tokens at once and produce a sequence of representations, each of
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which corresponds to an input token. These representations can be seen as some sort
of encoding of the input sequence, and are often taken as input to a prediction model.
This encoder+predictor architecture forms the basis of many NLP systems, for example,
systems of sentence classification, sequence labeling, and so on. Pre-trained Transformer
encoders can also be used to map texts into the same vector space so that we can compute
the distance or similarity between any two texts.

• Encoder-Decoder Models. Encoder-decoder models are typically used to model
sequence-to-sequence problems. Applications include many tasks in NLP and related
fields, such as machine translation and image captioning.

Note that while most Transformer-based systems can fall into the above three categories,
the same NLP problem can generally be addressed using different types of models. For
example, recent decoder-only models have demonstrated good performance on a broad range
of problems by framing them as text generation tasks, though some of these problems were
often addressed by using encoder-decoder or encoder-only models. To illustrate how the above
models are applied, this section considers a few applications where Transformers as chosen as
the backbone models.

6.5.1 Language Modeling

Language modeling is an NLP task in which we predict the next token given its preceding
tokens. This is generally formulated as a problem of estimating the distribution of tokens at
position i+1 given tokens at positions 0 ∼ i (denoted by Pr(·|x0, ...,xi) where {x0, ...,xi}
denote the tokens up to position i). The best predicted token is the one which maximizes the
probability, given by

x̂i+1 = argmax
xi+1∈V

Pr(xi+1|x0, ...,xi) (6.198)

where V is the vocabulary. The prediction can be extended to the tokens following x̂i+1

x̂k+1 = argmax
xk+1∈V

Pr(xk+|x0, ...,xi, x̂i+1, ..., x̂k) (6.199)

This model forms the basis of many systems for text generation: given the context tokens
x1...xi, we generate the remaining tokens x̂i+1...x̂k+1 to make the sequence complete and
coherent.

As discussed in Section 6.1.1, Transformer decoders are essentially language models. The
only difference between the problem of decoding in an encoder-decoder Transformer and the
problem of language modeling is that the Transformer decoder makes predictions conditioned
on the “context” tokens on both the encoder and decoder sides, rather than being conditioned
on preceding tokens solely on one side. To modify the Transformer decoder to implement a
standard language model, the cross-attention sub-layers are simply removed and a Transformer
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decoding block can be expressed as

Sl = Layerffn(S
l
self) (6.200)

Slself = Layerself(S
l−1) (6.201)

Here Sl denotes the output of the block at depth l. Layerself(·) denotes the self-attention
sub-layer, and Layerffn(·) denotes the FFN sub-layer. We see that this decoding block has the
same form as an encoding block. The difference between the decoding and encoding blocks
arises from the masking strategies adopted in training, because the former masks the attention
from a position i to any right-context position k > i whereas the latter has no such restriction.
A Softmax layer is stacked on the top of the last block, and is used to produce the distribution
over the vocabulary at each position. For inference, the Transformer decoder works in an
auto-regressive manner, as described in Eq. (6.199).

The training of this model is standard. We learn the model by repeatedly updating the
parameters, based on the gradients of the loss on the training samples. This paradigm can
be extended to the training of large Transformer-based language models, which have been
widely applied in generative AI. However, training Transformer models at scale, including
decoder-only, encoder-only, and encoder-decoder models, may lead to new difficulties, such
as training instabilities. We will discuss these issues further in the following chapters, where
large-scale pre-training is the primary focus.

6.5.2 Text Encoding
For many NLP problems, a widely used paradigm is to first represent an input sequence in
some form, and then make predictions for downstream tasks based on this representation. As a
result, we separate sequence modeling or sequence representation from NLP tasks. One of the
advantages of this paradigm is that we can train a sequence model that is not specialized to
particular tasks, thereby generalizing well.

Clearly, Transformer encoders are a type of sequence model, and can be used as text
encoders. Consider a Transformer encoder with L encoding blocks. The output of the last
encoding block can be seen as the encoding result. Here add a special token x0 to any sequence,
indicating the beginning of a sequence (written as ⟨SOS⟩ or [CLS]). If there is a sequence of
m+1 input tokens x0x1...xm, the output of the encoder will be a sequence of m+1 vectors
hL0h

L
1 ...h

L
m. Since x0 is not a real token and has a fixed positional embedding, it serves as a tag

for collecting information from other positions using the self-attention mechanism. Hence hL0
is a representation of the entire sequence, with no biases for any specific tokens or positions. In
many cases, we need a single representation of a sequence and take it as input to downstream
components of the system, for example, we can construct a sentence classification system
based on a single vector generated from {hL0 , ...,hLm}. In this case, we can simply use hL0
as the representation of the sequence. A more general approach is to add a pooling layer
to the encoder. This allows us to explore various pooling methods to generate the sequence
embedding from {hL0 , ...,hLm}.

In text encoding, token sequences are represented by real-valued vectors, often referred to
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as sentence representations or sentence embeddings, which can be seen as points in a multi-
dimensional space [Hill et al., 2016]. Another way to make use of text encoding, therefore, is
to obtain semantic or syntactic similarities of token sequences based on their relative positions
or proximity in this space. A straightforward method for this is to compute the Euclidean
distances between sequence embeddings. The shorter the distance between two sequences, the
more similar they are considered to be. There are many distance metrics we can choose, and it
is possible to combine them to obtain a better measure of sequence similarity. Such similarity
computations are applied in areas such as text entailment, information retrieval, translation
evaluation, among others [Cer et al., 2018; Reimers and Gurevych, 2019]. Additionally, they
are often used to assess the quality of text encoding models.

Text encoding is also a crucial component of sequence-to-sequence models. Given this, we
can develop a separate Transformer encoder for source-side sequence modeling in an encoder-
decoder system (see Figure 6.17). For example, we can pre-train a Transformer encoder on
large-scale source-side texts, and use it as the encoder in a downstream encoder-decoder model.
It is worth noting that while the encoder is designed based on the Transformer architecture,
the decoder is not confined to just Transformers. Such flexibility enables us to incorporate
pre-trained Transformer encoders into hybrid sequence-to-sequence architectures, such as
systems that combine a Transformer encoder with an LSTM decoder.

In supervised learning scenarios, training a Transformer encoder is straightforward. We
can treat it as a regular component of the target model and train this model on task-specific
labeled data. However, such a method requires the encoder to be optimized on each task, and
the resulting encoder might not always generalize well to other tasks, especially given that
labeled data is scarce in most cases. A more prevalent approach is to frame the training of
text encoders as an independent task in which supervision signals are derived solely from raw
text. This led researchers to develop self-supervised Transformer encoders, such as BERT,
which make use of large-scale unlabeled text, and these encoders were found to generalize
well across many downstream tasks. Further discussions of pre-trained Transformer encoders
can be found in Chapter 7.

6.5.3 Speech Translation
As illustrated in Section 6.1, the standard encoder-decoder Transformer model was proposed
to model sequence-to-sequence problems. Here we consider the problem of translating speech
in one language to text in another language — a problem that is conventionally addressed
using both automatic speech recognition (ASR) and machine translation techniques. Instead
of cascading an automatic speech recognition system and a machine translation system, we
can use Transformer models to build an end-to-end speech-to-text (S2T) translation system to
directly translate the input speech to the output text.

To simplify the discussion, we assume that the input of an S2T translation system is a
sequence of source-side acoustic feature vectors, denoted by a1...am, and the output of the
system is a sequence of target-side tokens, denoted by y1...yn.27 Mapping a1...am to y1...yn
is a sequence-to-sequence problem. Thus it is straightforward to model the problem using an

27In order to obtain the input sequence to the system, we need to discretize continuous speech into signals
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Figure 6.17: Integrating Transformer encoders as components of different systems. A common
approach is to feed the output of the encoder (with pooling) into a classifier to obtain a sequence
classification system. Another way to utilize Transformer encoders is to compute the similarity
between two sequences. We use the same encoder to represent the two sequences, and then
construct a neural network on top of the two representations for producing a similarity score
between them. As usual, Transformer encoders can also be used in encoder-decoder systems
to model sequence-to-sequence problems.

encoder-decoder Transformer model, and the training and inference of this model are standard,
like in neural machine translation.

In S2T translation, however, we have to deal with sequence mappings between modalities
and between languages simultaneously. This poses new challenges compared with conventional
machine translation problems and influences the design of S2T translation models. There have
been several improvements to Transformer models for adapting them better to S2T translation
tasks. Some of the improvements concern the design of Transformer blocks [Di Gangi et al.,
2019]. For example, in Gulati et al. [2020]’s system, a CNN sub-layer and relative positional
embeddings are integrated into each Transformer block, enabling the model to efficiently

represented by feature vectors. This process is typically nontrivial, requiring either a feature extractor based on a
variety of signal processing operations or a neural network that learns feature mappings in an end-to-end manner.
But we will not dive into the details of these methods and simply treat the input feature extractor as an upstream
system.
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capture both local and global features.
Another line of research on S2T translation focuses on improving the encoder-decoder

architecture. This involves modifications to either encoders or decoders, or both. To illustrate,
Figure 6.18 shows the architectures of three S2T translation models. All of them are based on
Transformers, but have different encoder architectures. As shown in the figure, the standard
encoder-decoder architecture has one Transformer encoder for reading the source-side input
a1...am and one Transformer decoder for producing the target-side output y1...yn. By contrast,
the decoupled encoder model separates the encoder into two stacked encoders — one for
acoustic modeling (call it the speech encoder), and one for textual modeling (call it the text
encoder) [Liu et al., 2020d; Xu et al., 2021a]. This design reflects a modeling hierarchy in
which representations in different levels of the network are concerned with different aspects of
the problem, for example, the speech encoder models low-level features in mapping acoustic
embeddings into larger language units, and the text encoder models the semantic or syntactic
features in representing the entire input sequence. An advantage of separating out the text
encoder is that the encoding process follows our prior knowledge that we need to first transcribe
the speech input and then translate the transcript into the target language. Therefore, we can
train the speech encoder in some way we train an ASR system. This enables us to pre-train
the speech encoder and the text encoder on unlabeled data, and incorporate the pre-trained
encoders into S2T translation systems.

An alternative encoding architecture is the two-stream architecture, as shown in Figure
6.18 (c). Like the decoupled encoder architecture, this architecture has a speech encoder and a
text encoder, but the two encoders work in parallel rather than in sequence [Ye et al., 2021].
The speech encoder takes acoustic features as input and the text encoder takes tokens (or their
embeddings) as input. A third encoder, called shared encoder, integrates the outputs from
both the speech and text encoders, merging the representations from the two modalities. This
two-stream architecture is flexible because it provides multiple ways to train S2T translation
models. A common approach is to train each branch individually. For example, if we mask the
speech encoder, then the model will transform into a machine translation model which can be
trained using bilingual texts. Conversely, if we mask the text encoder, then we can train the
model as a standard S2T translation model. For inference, the text encoder can be dropped,
and the speech input is modeled using the speech encoder and the shared encoder.

In deep learning, training is often related to architecture design. Here, we have data in
two modalities and two languages, and so we can develop multiple supervision signals for
multi-task learning of S2T translation models. A widely used method is to introduce ASR-
related loss into the training of speech encoders. For example, in the decoupled encoder model,
a classifier can be constructed based on the output from the speech encoder. By minimizing
the connectionist temporal classification (CTC) loss for this classifier, the speech encoder
can be optimized in a manner similar to ASR. In general, training S2T translation models is
challenging because speech-to-text aligned data is scarce. Among typical responses to this
challenge are data augmentation, pre-training, knowledge distillation with machine translation,
and so on. However, an in-depth discussion of these methods goes beyond the scope of this
discussion on Transformers. The interested reader can refer to a recent survey on speech
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Figure 6.18: Architectures of speech-to-text translation models based on Transformers. In
addition to the standard encoder-decoder architecture, we can explicitly model the acoustic and
textual (semantic) information using two separate encoders, called the speech encoder and the
text encoder. In the decoupled encoder architecture, the two encoders are stacked, that is, text
encoding is a subsequent process after speech encoding. In the two-stream encoder architecture,
the two encoders work in parallel, and their outputs are merged using an additional encoder,
called the shared encoder. The dotted line indicates the potential for interaction between the
two encoders. For example, we could define a loss function to minimize the difference between
their outputs, thereby guiding the model towards more aligned representations.

translation for more information [Xu et al., 2023a].

6.5.4 Vision Models

While Transformers were first used in NLP, their application to other domains has been
a prominent research topic. In computer vision, for instance, there is a notable trend of
shifting from CNNs to Transformers as the backbone models. In this subsection, we consider
Vision Transformer (ViT) - an interesting application of Transformers to image classification



354 Chapter 6. Transformers

Image

Flattened Image Patches

Patch Embedding + Positional Embedding

C
C = Extra Learnable
[CLS] embedding

Transformer Encoder

ClassifierIs it a building?

Figure 6.19: Illustration of Vision Transformer for image classification[Dosovitskiy et al.,
2021]. There are three steps. In the first step, the input image is segmented into patches, which
are then flattened and mapped into embeddings. In the second step, a Transformer encoder
is employed to process the sequence of embeddings, representing the image as a real-valued
vector (e.g., the output of the encoder at the first position). In the last step, a classifier is built
on top of this image representation.

[Dosovitskiy et al., 2021]. Vision Transformer is a milestone model which opens the door
to purely Transformer-based vision models. Here we consider the basic structure of Vision
transformer to make this section concentrated and coherent, although there has been an
extensive literature on Vision transformer and its variants. More detailed discussions of vision
transformer can be found in recent surveys [Han et al., 2022; Liu et al., 2023e].

The core idea behind Vision Transformer is to transform an image into a sequence of visual
tokens, and input this sequence into a Transformer encoder to generate a representation of
the image. The Transformer encoder is standard, and so we will not discuss it here, given the
introduction to Transformers we have presented so far in this chapter. Mapping a 2D image
into a sequence of tokens needs some additional work. Suppose we have an image represented
as an H ×W ×C feature map, where H is the height of the image, W is the width of the
image, and C is the number of channels. The first step is to segment this image into a number
of patches. Suppose all patches are squares of side length P . Then the resulting patches can
be represented by feature maps of shape P ×P ×C. By ordering these patches in some way,
we obtain a sequence of HW

P 2 patches, with each patch being treated as a “token”.

Given this patch sequence, the subsequent steps are straightforward. For the patch at each
position, we obtain a d-dimensional embedding by a linear transformation of the input feature
map. The input of the Transformer encoder is a sequence of d-dimensional vectors, each of
which is the sum of the corresponding patch and positional embeddings. Figure 6.19 illustrates
the patching and embedding steps in Vision Transformer.

Once we have a sequence of vectors for representing the image, we can employ the
Transformer encoder to encode the sequence. The encoding process is exactly the same as that
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in text encoding as discussed in Section 6.5.2. For classification problems, we need only a
single representation of the input. It is convenient to take the output of the encoder at position 0
(denoted by hL0 ) and feed it into a classifier. Given that the first token [CLS] serves as a special
token that would be attended to by all other tokens, hL0 provides an unbiased representation of
the entire sequence.

Typically, a standard way to train Vision Transformer is to minimize some loss on labeled
data, such as ImageNet. More recently, inspired by self-supervised learning in BERT-like
models, there have been successful attempts to train Transformer-based image encoders on
large-scale unlabeled data [Caron et al., 2021; Bao et al., 2021; He et al., 2022]. Note that one
of the most significant contributions of Vision Transformer is that it unifies the representation
models for different modalities. This suggests that if an object, whether an image or text, is
represented as a sequence of embeddings, it can be easily modeled using the Transformer
architecture.

6.5.5 Multimodal Models
The above discussion of Vision Transformer offers the possibility of unifying the representa-
tions from multiple modalities using the same Transformer architecture. In fact, many recent
multimodal systems draw inspiration largely from Transformers [Xu et al., 2023c]. Such
systems convert objects from different modalities into vector sequences and feed these vectors
into a single Transformer model. The output is a fused representation of all inputs, which can
then be used in downstream systems.

As a simple example, consider the task of encoding a pair consisting of text and its corre-
sponding image. First, we represent both the text and the image as sequences of embeddings
that have the same dimensionality. This is a common step in sequence modeling, which we
have confronted many times so far. We can do this by using either a simple embedding model
(e.g., a word or patch embedding model) or a well-trained sequence model (e.g., a vision
model). Then, these two sequences are concatenated into a long sequence involving both
textual and visual embeddings. The follow-on step is standard: a Transformer encoder takes
the concatenated sequence of embeddings as input and produces representations of the text and
image as output. Note that concatenating textual and visual sequences is one of the simplest
methods for vision-text modeling. There are several alternative ways to merge information
from different modalities, for example, we can feed visual representations into the attention
layers of a text encoder or decoder [Li et al., 2022e; Alayrac et al., 2022].

The above multimodal encoder can be used in both encoder-only and encoder-decoder
systems. For encoder-only systems, consider an example where, given an image and a
description of it, we predict the class of the image using a classifier built on top of the
encoder [Kim et al., 2021]. For encoder-decoder systems, we pair the encoder with a decoder,
as in sequence-to-sequence modeling [Cho et al., 2021]. For example, we might employ a
Transformer decoder to generate text based on the output of the encoder. A common application
of this architecture is visual question answering (VQA), where an image and a question about
the image are provided, and the system is tasked with generating an answer [Antol et al., 2015].
The architectures of these models are illustrated in Figure 6.20 (a-b).



356 Chapter 6. Transformers

⟨CLS⟩ A cube with green color.

Word and Positional Embeddings

C

Patch and Positional Embeddings

Transformer Encoder

Classifier Is it an animal?

(a) Multi-modal Encoder + Classifier

⟨CLS⟩ A cube with green color.

Word and Positional Embeddings

C

Patch and Positional Embeddings

Transformer Encoder Decoder

⟨SOS⟩一个 绿色 的 立方体

一个 绿色 的 立方体 。

(b) Multi-modal Encoder + Text Decoder (Translation)

⟨CLS⟩ What’s the color of the cube?

Word and Positional Embeddings

C

Patch and Positional Embeddings

Transformer Decoder

⟨SOS⟩ The color is green

The color is green .

(c) Multi-modal Decoder (Language Modeling)

Figure 6.20: Vision-text models. Blue boxes represent word+position embeddings, and red
boxes represent image patch+position embeddings.
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More recently, NLP has seen new advances by using large language models to deal with
both textual and other forms of data, such as images, videos, and audio, leading to new
breakthroughs in multimodal processing [Liu et al., 2023a; Yin et al., 2023]. By representing
all inputs as a sequence of token embeddings, the problem will be simple: we predict the next
token given its context. This can be done by using decoder-only systems, as shown in Figure
6.20 (c).

6.6 Summary
Transformer models have achieved widespread use over the past few years since the concept of
Transformer was proposed by Vaswani et al. [2017]. This has accelerated the development of
these models, leading to a great variety of new algorithms, systems and concepts. A thorough
discussion of Transformers requires a broad scope, and so it is impossible to cover every
problem and to provide a complete list of the corresponding references. While this chapter has
presented a detailed introduction to Transformers, there are still topics that we did not mention,
such as the theoretical aspects of these models. Figure 6.21 shows an overview of Transformer
models, where we attempt to give a big picture. Note that these models and related techniques
can be classified in many different ways, and we just show one of them. To summarize, we
would like to highlight the following points.

• Foundations of Transformers. Although the impact of Transformers has been revo-
lutionary, they are not completely "new" models. From a deep learning perspective,
Transformers are composed of common building blocks, including word and positional
embeddings [Bengio et al., 2003a; Mikolov et al., 2013c; Gehring et al., 2017b], attention
mechanisms [Bahdanau et al., 2014; Luong et al., 2015], residual connections [He et al.,
2016b], layer-normalization [Ba et al., 2016], and so on. Many of these components
were presented in earlier systems, for example, similar ideas with QKV attention can be
found in memory networks [Sukhbaatar et al., 2015] and hierarchical attention networks
[Yang et al., 2016]. Transformers offer a novel approach to integrating these components,
resulting in a unique architecture. For example, in Transformers, the combination of
multi-head attention and dot-product QKV attention, along with the incorporation of
layer-normalization and residual connections, gives rise to a distinctive neural network
block, specifically a self-attention sub-layer. This design has since become a de facto
standard in many follow-on sequence modeling systems.

• Attention Models. The success of Transformers on NLP tasks has largely been attributed
to the use of multi-head self-attention for sequence modeling. This has led to a surge
of interest in enhancing the attention mechanisms within Transformers. While it is
impossible to detail every attention model, there are several notable research directions.
One prominent direction involves modifying the forms of QKV attention and multi-
head attention for improved performance. The scope of this direction is vast, as there
are numerous aspects to consider when enhancing Transformers [Lin et al., 2022a].
For example, one may add new components to self-attention sub-layers to adapt them
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to specific tasks, resulting in various Transformer variants. A second direction is to
incorporate prior knowledge into the design of attention models. This makes sense,
because much of the emphasis in traditional NLP has been on using linguistic insights to
guide system design, and we generally want NLP systems to be linguistically explainable.
For example, many Transformer-based systems take syntactic parses as input in various
forms and make use of syntax in sequence modeling. A third direction is to develop
efficient attention models [Tay et al., 2020b]. Self-attention has long been criticized for
its quadratic time complexity and dependency on all previous tokens for each new token.
In response, many researchers have focused on simplifying the structure of self-attention,
or on approximating it using sparse or recurrent models. This concern for efficiency also
motivates the development of alternatives to self-attention, such as attention models with
linear time complexity. In addition to exploring stronger and more efficient attention
models, it is natural to examine what knowledge is learned by such models. Interestingly,
researchers have found that the underlying structure of languages can be learned by
multi-head self-attention models, although these models are not trained to represent such
knowledge [Manning et al., 2020].

• Word and Positional Embeddings. Transformers represent each input word as a word
embedding, along with its positional embedding. Learning these word embeddings
is not a specific problem for Transformers. We can either resort to well-trained word
embeddings, such as the Word2Vec or GloVe embeddings, or treat them as learnable
parameters of Transformers. A related issue is tokenization of the input sequences.
In general, tokenization impacts the number of resulting tokens and the difficulty of
learning the corresponding embeddings. In many applications, therefore, one needs
to carefully choose a tokenization method. Furthermore, positional embedding plays
an important role in Transformers, as the attention mechanisms are order-insensitive
by design [Dufter et al., 2022]. Although positional embedding is a general problem,
much of the research is focused on improving Transformers, leading to modifications
to Transformer models [Shaw et al., 2018; Huang et al., 2018]. Additionally, studies
show that, when we deal with sequences that are much longer than those in training
data, extrapolation can be achieved by replacing sinusoidal positional embeddings with
rotary positional embeddings or simply scaling attention weights with a positional scalar
[Raffel et al., 2020; Su et al., 2021; Press et al., 2021].

• Training and Model Scaling. In the era of deep learning, powerful systems are
typically obtained by using large neural networks. A simple approach to increasing
the model capacity of Transformers is to stack more layers and/or enlarge the size
of each representation. We can see many cases where deep and wide Transformer
models consistently outperform small models. However, challenges arise when we
attempt to train extremely large Transformer models, especially when gradient descent is
applied over vast amounts of data, demanding substantial computational resources. An
engineering solution is to distribute the training across a cluster of computers [Lepikhin
et al., 2021; Chowdhery et al., 2022]. While distributed training is a very general



360 Chapter 6. Transformers

method and is not restricted to Transformers, it indeed influences the design of model
architectures, for example, sparse expert models can ease the training with distributed
parameters, serving as the foundation for many expansive Transformer-based systems.
Scaling up the training of Transformers allows us to study the scaling law of large neural
networks: how model performance relates to model size, training data size, and training
cost [Hestness et al., 2017; Kaplan et al., 2020]. This is sometimes accompanied by an
interesting behavior, known as emergence [Wei et al., 2022b]. In recent NLP research,
the acquisition of emergent abilities has been considered one of the prerequisites for
developing strong language models.

• Efficient Models. There are different goals for efficiency. For example, one may wish a
system to be memory efficient when the problem is memory bound, or one may wish it
to be speed efficient when latency is an important consideration. In general, we need to
seek a balance between these goals, resulting in different efficiency optimizations. In
the context of Transformers, many of these optimizations are achieved by modifying
the attention models, as mentioned above. For example, several variants of the self-
attention models are proposed to reduce the memory footprint when processing long
sequences [Tay et al., 2020b]. Similarly, other variants aim to reduce computation and
thus give lower latency. Furthermore, being a type of neural network, Transformers can
be optimized in ways independent of model architectures. Typical methods include but
are not limited to conditional computation, knowledge distillation, structured pruning,
and sequence compression. Efficiency optimizations can also be considered from the
perspective of computer architecture [Kim et al., 2023]. For example, when applying
Transformers to sequence-to-sequence problems, the encoding and decoding processes
are generally compute-intensive and IO-intensive, respectively. Therefore, we can
employ different optimization methods for different components of Transformers.

• Inference. The inference problem is commonly discussed in sequence generation. In
NLP, we often need to find the “best” hypothesis in a space involving sequences of tens
or even hundreds of tokens over a vocabulary. Considering this an instance of the search
problem in artificial intelligence, many algorithms can be applied, such as breadth-first
search, depth-first search and A* search. In many practical applications of NLP, the
efficiency of the search systems is an important consideration. As a result, optimized
search algorithms are required. Most of these algorithms have been explored in machine
translation and ASR, and are directly applicable to neural text generation models like
Transformer. There are also optimizations of conventional decoding methods tailored
to Transformers [Leviathan et al., 2023]. Moreover, the above-mentioned efficient
approaches, such as the efficient attention models, are also in widespread use, with many
successful examples in deploying neural machine translation systems and large language
models [Heafield et al., 2021; Dao et al., 2023].

• Applications. Applications of Transformers cover a wide variety of NLP problems.
During the development of Transformers, they were at first used to build supervised
models that perform particular tasks. Later, a greater success was achieved by using
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them as backbone networks for large scale self-supervised learning of foundation models
[Bommasani et al., 2021]. This markedly changed the paradigm in NLP. We need only
pre-train a model to obtain general knowledge of languages on huge amounts of text.
Then, we adapt this model to downstream tasks using methods with little effort, such
as fine-tuning or prompting. Over the past few years, we have also seen an explosion
of applications for Transformers in fields other than NLP, such as computer vision,
speech processing, and bioinformatics. The idea behind these applications is that we
can represent any input data as a sequence of tokens and directly employ Transformers
to model this sequence. This approach extends Transformers to general representation
models across different modalities, making it easier to use Transformers for handling
multi-modal data.

• Large Language Models as Foundation Models. Transformers form the basis of recent
large language models, such as the GPT series, which show surprising breakthroughs
in NLP, and even in artificial general intelligence (AGI) [Bubeck et al., 2023; Yang
et al., 2023a]. Much of the research in large language models is more or less related
to Transformers. For example, as discussed in Section 6.5.1, the problem of training
these language models is the same as that of training Transformer decoders. And the
modifications to Transformer decoders can be directly applied to large language models.
On the other hand, the rapid development of large language models has also driven
further improvements in various techniques for Transformers, such as efficient and
low-cost adaptation of large Transformers to different tasks.

• Theoretical Analysis. Although Transformers have shown strong empirical results in
various fields, their theoretical aspects have received relatively less attention compared
to the extensive research on model improvement and engineering. This is not a specific
problem for Transformers, but a common problem for the NLP and machine learning
communities. In response, researchers have made attempts to analyze Transformers
more deeply. One way is to view Transformers as deep neural networks and interpret
them via mathematical tools. For example, the residual networks in Transformers are
mathematically equivalent to the Euler solvers for ODEs. This equivalence suggests
that we can leverage insights from numerical ODE methods to inform model design.
Another promising avenue of research aims to develop a theoretical understanding
of the self-attention mechanism, which distinguishes Transformers from other deep
learning models. For example, there have been studies on interpreting self-attention
and Transformers from machine learning perspectives, such as data compression [Yu
et al., 2023a], optimization [Li et al., 2022c], and function approximation [Yun et al.,
2019]. Moreover, Transformers can also be related to formal systems, including Turing
machines [Pérez et al., 2018], counter machines [Bhattamishra et al., 2020], regular
and context-free languages [Hahn, 2020], Boolean circuits [Hao et al., 2022; Merrill
et al., 2022], programming languages [Weiss et al., 2021], first-order logic [Chiang et al.,
2023a], and so on. These provide tools to study the expressivity of Transformers. It is,
however, worth noting that, while we can understand Transformers in several different
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ways, there are no general theories to explain the nature of these models. Perhaps this
is a challenge for the field of machine learning, and many researchers are working on
this issue. But it is indeed an important issue, as the development of the theories behind
complex neural networks like Transformers can help develop systems with explainable
and predictable behaviors.
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Chapter 7

Pre-training

The development of neural sequence models, such as Transformers, along with the improve-
ments in large-scale self-supervised learning, has opened the door to universal language
understanding and generation. This achievement is largely motivated by pre-training: we
separate common components from many neural network-based systems, and then train them
on huge amounts of unlabeled data using self-supervision. These pre-trained models serve as
foundation models that can be easily adapted to different tasks via fine-tuning or prompting.
As a result, the paradigm of NLP has been enormously changed. In many cases, large-scale
supervised learning for specific tasks is no longer required, and instead, we only need to adapt
pre-trained foundation models.

While pre-training has gained popularity in recent NLP research, this concept dates
back decades to the early days of deep learning. For example, early attempts to pre-train
deep learning systems include unsupervised learning for RNNs, deep feedforward networks,
autoencoders, and others [Schmidhuber, 2015]. In the modern era of deep learning, we
experienced a resurgence of pre-training, caused in part by the large-scale unsupervised
learning of various word embedding models [Mikolov et al., 2013c; Pennington et al., 2014].
During the same period, pre-training also attracted significant interest in computer vision,
where the backbone models were trained on relatively large labeled datasets such as ImageNet,
and then applied to different downstream tasks [He et al., 2019; Zoph et al., 2020]. Large-scale
research on pre-training in NLP began with the development of language models using self-
supervised learning. This family of models covers several well-known examples like BERT
[Devlin et al., 2019] and GPT [Brown et al., 2020], all with a similar idea that general language
understanding and generation can be achieved by training the models to predict masked words
in a huge amount of text. Despite the simple nature of this approach, the resulting models
show remarkable capability in modeling linguistic structure, though they are not explicitly
trained to achieve this. The generality of the pre-training tasks leads to systems that exhibit
strong performance in a large variety of NLP problems, even outperforming previously well-
developed supervised systems. More recently, pre-trained large language models have achieved
greater success, showing the exciting prospects for more general artificial intelligence [Bubeck
et al., 2023].

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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This chapter discusses the concept of pre-training in the context of NLP. It begins with a
general introduction to pre-training methods and their applications. BERT is then used as an
example to illustrate how a sequence model is trained via a self-supervised task, called masked
language modeling. This is followed by a discussion of methods for adapting pre-trained
sequence models for various NLP tasks. Note that in this chapter, we will focus primarily on the
pre-training paradigm in NLP, and therefore, we do not intend to cover details about generative
large language models. A detailed discussion of these models will be left to subsequent
chapters.

7.1 Pre-training NLP Models
The discussion of pre-training issues in NLP typically involves two types of problems: sequence
modeling (or sequence encoding) and sequence generation. While these problems have different
forms, for simplicity, we describe them using a single model defined as follows:

o = g(x0,x1, ...,xm;θ)

= gθ(x0,x1, ...,xm) (7.1)

where {x0,x1, ...,xm} denotes a sequence of input tokens1, x0 denotes a special symbol (⟨s⟩ or
[CLS]) attached to the beginning of a sequence, g(·;θ) (also written as gθ(·)) denotes a neural
network with parameters θ, and o denotes the output of the neural network. Different problems
can vary based on the form of the output o. For example, in token prediction problems (as in
language modeling), o is a distribution over a vocabulary; in sequence encoding problems, o is
a representation of the input sequence, often expressed as a real-valued vector sequence.

There are two fundamental issues here.

• Optimizing θ on a pre-training task. Unlike standard learning problems in NLP, pre-
training does not assume specific downstream tasks to which the model will be applied.
Instead, the goal is to train a model that can generalize across various tasks.

• Applying the pre-trained model gθ̂(·) to downstream tasks. To adapt the model to these
tasks, we need to adjust the parameters θ̂ slightly using labeled data or prompt the model
with task descriptions.

In this section, we discuss the basic ideas in addressing these issues.

7.1.1 Unsupervised, Supervised and Self-supervised Pre-training
In deep learning, pre-training refers to the process of optimizing a neural network before it
is further trained/tuned and applied to the tasks of interest. This approach is based on an
assumption that a model pre-trained on one task can be adapted to perform another task. As
a result, we do not need to train a deep, complex neural network from scratch on tasks with

1Here we assume that tokens are basic units of text that are separated through tokenization. Sometimes, we will
use the terms token and word interchangeably, though they have closely related but slightly different meanings in
NLP.
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limited labeled data. Instead, we can make use of tasks where supervision signals are easier to
obtain. This reduces the reliance on task-specific labeled data, enabling the development of
more general models that are not confined to particular problems.

During the resurgence of neural networks through deep learning, many early attempts to
achieve pre-training were focused on unsupervised learning. In these methods, the parameters
of a neural network are optimized using a criterion that is not directly related to specific tasks.
For example, we can minimize the reconstruction cross-entropy of the input vector for each
layer [Bengio et al., 2006]. Unsupervised pre-training is commonly employed as a preliminary
step before supervised learning, offering several advantages, such as aiding in the discovery
of better local minima and adding a regularization effect to the training process [Erhan et al.,
2010]. These benefits make the subsequent supervised learning phase easier and more stable.

A second approach to pre-training is to pre-train a neural network on supervised learning
tasks. For example, consider a sequence model designed to encode input sequences into some
representations. In pre-training, this model is combined with a classification layer to form a
classification system. This system is then trained on a pre-training task, such as classifying
sentences based on sentiment (e.g., determining if a sentence conveys a positive or negative
sentiment). Then, we adapt the sequence model to a downstream task. We build a new
classification system based on this pre-trained sequence model and a new classification layer
(e.g., determining if a sequence is subjective or objective). Typically, we need to fine-tune the
parameters of the new model using task-specific labeled data, ensuring the model is optimally
adjusted to perform well on this new type of data. The fine-tuned model is then employed
to classify new sequences for this task. An advantage of supervised pre-training is that the
training process, either in the pre-training or fine-tuning phase, is straightforward, as it follows
the well-studied general paradigm of supervised learning in machine learning. However, as
the complexity of the neural network increases, the demand for more labeled data also grows.
This, in turn, makes the pre-training task more difficult, especially when large-scale labeled
data is not available.

A third approach to pre-training is self-supervised learning. In this approach, a neural
network is trained using the supervision signals generated by itself, rather than those provided
by humans. This is generally done by constructing its own training tasks directly from
unlabeled data, such as having the system create pseudo labels. While self-supervised learning
has recently emerged as a very popular method in NLP, it is not a new concept. In machine
learning, a related concept is self-training where a model is iteratively improved by learning
from the pseudo labels assigned to a dataset. To do this, we need some seed data to build
an initial model. This model then generates pseudo labels for unlabeled data, and these
pseudo labels are subsequently used to iteratively refine and bootstrap the model itself. Such a
method has been successfully used in several NLP areas, such as word sense disambiguation
[Yarowsky, 1995] and document classification [Blum and Mitchell, 1998]. Unlike the standard
self-training method, self-supervised pre-training in NLP does not rely on an initial model for
annotating the data. Instead, all the supervision signals are created from the text, and the entire
model is trained from scratch. A well-known example of this is training sequence models by
successively predicting a masked word given its preceding or surrounding words in a text. This
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Figure 7.1: Illustration of unsupervised, supervised, and self-supervised pre-training. In
unsupervised pre-training, the pre-training is performed on large-scale unlabeled data. It can
be viewed as a preliminary step to have a good starting point for the subsequent optimization
process, though considerable effort is still required to further train the model with labeled
data after pre-training. In supervised pre-training, the underlying assumption is that different
(supervised) learning tasks are related. So we can first train the model on one task, and transfer
the resulting model to another task with some training or tuning effort. In self-supervised
pre-training, a model is pre-trained on large-scale unlabeled data via self-supervision. The
model can be well trained in this way, and we can efficiently adapt it to new tasks through
fine-tuning or prompting.

enables large-scale self-supervised learning for deep neural networks, leading to the success of
pre-training in many understanding, writing, and reasoning tasks.

Figure 7.1 shows a comparison of the above three pre-training approaches. Self-supervised
pre-training is so successful that most current state-of-the-art NLP models are based on this
paradigm. Therefore, in this chapter and throughout this book, we will focus on self-supervised
pre-training. We will show how sequence models are pre-trained via self-supervision and how
the pre-trained models are applied.

7.1.2 Adapting Pre-trained Models

As mentioned above, two major types of models are widely used in NLP pre-training.

• Sequence Encoding Models. Given a sequence of words or tokens, a sequence encoding
model represents this sequence as either a real-valued vector or a sequence of vectors,
and obtains a representation of the sequence. This representation is typically used as
input to another model, such as a sentence classification system.

• Sequence Generation Models. In NLP, sequence generation generally refers to the
problem of generating a sequence of tokens based on a given context. The term context
has different meanings across applications. For example, it refers to the preceding
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tokens in language modeling, and refers to the source-language sequence in machine
translation2.

We need different techniques for applying these models to downstream tasks after pre-
training. Here we are interested in the following two methods.

1. Fine-tuning of Pre-trained Models
For sequence encoding pre-training, a common method of adapting pre-trained models is
fine-tuning. Let Encodeθ(·) denote an encoder with parameters θ, for example, Encodeθ(·)
can be a standard Transformer encoder. Provided we have pre-trained this model in some way
and obtained the optimal parameters θ̂, we can employ it to model any sequence and generate
the corresponding representation, like this

H = Encodeθ̂(x) (7.2)

where x is the input sequence {x0,x1, ...,xm}, and H is the output representation which is
a sequence of real-valued vectors {h0,h1, ...,hm}. Because the encoder does not work as a
standalone NLP system, it is often integrated as a component into a bigger system. Consider,
for example, a text classification problem in which we identify the polarity (i.e., positive,
negative, and neutral) of a given text. We can build a text classification system by stacking a
classifier on top of the encoder. Let Classifyω(·) be a neural network with parameters ω. Then,
the text classification model can be expressed in the form

Prω,θ̂(·|x) = Classifyω(H)

= Classifyω(Encodeθ̂(x)) (7.3)

Here Prω,θ̂(·|x) is a probability distribution over the label set {positive,negative,neutral},
and the label with the highest probability in this distribution is selected as output. To keep the
notation uncluttered, we will use Fω,θ̂(·) to denote Classifyω(Encodeθ̂(·)).

Because the model parameters ω and θ̂ are not optimized for the classification task, we
cannot directly use this model. Instead, we must use a modified version of the model that
is adapted to the task. A typical way is to fine-tune the model by giving explicit labeling
in downstream tasks. We can train Fω,θ̂(·) on a labeled dataset, treating it as a common

supervised learning task. The outcome of the fine-tuning is the parameters ω̃ and θ̃ that are
further optimized. Alternatively, we can freeze the encoder parameters θ̂ to maintain their
pre-trained state, and focus solely on optimizing ω. This allows the classifier to be efficiently
adapted to work in tandem with the pre-trained encoder.

Once we have obtained a fine-tuned model, we can use it to classify a new text. For
example, suppose we have a comment posted on a travel website:

I love the food here. It’s amazing!

2More precisely, in auto-regressive decoding of machine translation, each target-language token is generated
based on both its preceding tokens and source-language sequence.
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We first tokenize this text into tokens3, and then feed the token sequence xnew into the fine-
tuned model Fω̃,θ̃(·). The model generates a distribution over classes by

Fω̃,θ̃(xnew) =
[
Pr(positive|xnew) Pr(negative|xnew) Pr(neutral|xnew)

]
(7.4)

And we select the label of the entry with the maximum value as output. In this example it is
positive.

In general, the amount of labeled data used in fine-tuning is small compared to that of
the pre-training data, and so fine-tuning is less computationally expensive. This makes the
adaptation of pre-trained models very efficient in practice: given a pre-trained model and a
downstream task, we just need to collect some labeled data, and slightly adjust the model
parameters on this data. A more detailed discussion of fine-tuning can be found in Section 7.4.

2. Prompting of Pre-trained Models
Unlike sequence encoding models, sequence generation models are often employed indepen-
dently to address language generation problems, such as question answering and machine
translation, without the need for additional modules. It is therefore straightforward to fine-tune
these models as complete systems on downstream tasks. For example, we can fine-tune a pre-
trained encoder-decoder multilingual model on some bilingual data to improve its performance
on a specific translation task.

Among various sequence generation models, a notable example is the large language
models trained on very large amounts of data. These language models are trained to simply
predict the next token given its preceding tokens. Although token prediction is such a simple
task that it has long been restricted to “language modeling” only, it has been found to enable
the learning of the general knowledge of languages by repeating the task a large number of
times. The result is that the pre-trained large language models exhibit remarkably good abilities
in token prediction, making it possible to transform numerous NLP problems into simple text
generation problems through prompting the large language models. For example, we can frame
the above text classification problem as a text generation task

I love the food here. It’s amazing! I’m

Here indicates the word or phrase we want to predict (call it the completion). If the
predicted word is happy, or glad, or satisfied or a related positive word, we can classify the
text as positive. This example shows a simple prompting method in which we concatenate
the input text with I’m to form a prompt. Then, the completion helps decide which label is
assigned to the original text.

Given the strong performance of language understanding and generation of large language
models, a prompt can instruct the models to perform more complex tasks. Here is a prompt
where we prompt the LLM to perform polarity classification with an instruction.

3The text can be tokenized in many different ways. One of the simplest is to segment the text into English
words and punctuations {I, love, the, food,here, ., It, ’s,amazing, !}
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Assume that the polarity of a text is a label chosen from {positive, negative,
neutral}. Identify the polarity of the input.

Input: I love the food here. It’s amazing!

Polarity:

The first two sentences are a description of the task. Input and Polarity are indicators of the
input and output, respectively. We expect the model to complete the text and at the same
time give the correct polarity label. By using instruction-based prompts, we can adapt large
language models to solve NLP problems without the need for additional training.

This example also demonstrates the zero-shot learning capability of large language models,
which can perform tasks that were not observed during the training phase. Another method for
enabling new capabilities in a neural network is few-shot learning. This is typically achieved
through in-context learning (ICT). More specifically, we add some samples that demonstrate
how an input corresponds to an output. These samples, known as demonstrations, are used
to teach large language models how to perform the task. Below is an example involving
demonstrations

Assume that the polarity of a text is a label chosen from {positive, negative,
neutral}. Identify the polarity of the input.

Input: The traffic is terrible during rush hours, making it difficult to reach the
airport on time.

Polarity: Negative

Input: The weather here is wonderful.

Polarity: Positive

Input: I love the food here. It’s amazing!

Polarity:

Prompting and in-context learning play important roles in the recent rise of large language
models. We will discuss these issues more deeply in Chapter 9. However, it is worth noting
that while prompting is a powerful way to adapt large language models, some tuning efforts
are still needed to ensure the models can follow instructions accurately. Additionally, the
fine-tuning process is crucial for aligning the values of these models with human values. More
detailed discussions of fine-tuning can be found in Chapter 10.
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7.2 Self-supervised Pre-training Tasks

In this section, we consider self-supervised pre-training approaches for different neural archi-
tectures, including decoder-only, encoder-only, and encoder-decoder architectures. We restrict
our discussion to Transformers since they form the basis of most pre-trained models in NLP.
However, pre-training is a broad concept, and so we just give a brief introduction to basic
approaches in order to make this section concise.

7.2.1 Decoder-only Pre-training

The decoder-only architecture has been widely used in developing language models [Radford
et al., 2018]. For example, we can use a Transformer decoder as a language model by simply
removing cross-attention sub-layers from it. Such a model predicts the distribution of tokens at
a position given its preceding tokens, and the output is the token with the maximum probability.
The standard way to train this model, as in the language modeling problem, is to minimize
a loss function over a collection of token sequences. Let Decoderθ(·) denote a decoder with
parameters θ. At each position i, the decoder generates a distribution of the next tokens based
on its preceding tokens {x0, ...,xi}, denoted by Prθ(·|x0, ...,xi) (or pθi+1 for short). Suppose
we have the gold-standard distribution at the same position, denoted by pgold

i+1 . For language
modeling, we can think of pgold

i+1 as a one-hot representation of the correct predicted word.
We then define a loss function L(pθi+1,p

gold
i+1 ) to measure the difference between the model

prediction and the true prediction. In NLP, the log-scale cross-entropy loss is typically used.

Given a sequence of m tokens {x0, ...,xm}, the loss on this sequence is the sum of the loss
over the positions {0, ...,m−1}, given by

Lossθ(x0, ...,xm) =

m−1∑
i=0

L(pθi+1,p
gold
i+1 )

=

m−1∑
i=0

LogCrossEntropy(pθi+1,p
gold
i+1 ) (7.5)

where LogCrossEntropy(·) is the log-scale cross-entropy, and pgold
i+1 is the one-hot representa-

tion of xi+1.

This loss function can be extended to a set of sequences D. In this case, the objective of
pre-training is to find the best parameters that minimize the loss on D

θ̂ = argmin
θ

∑
x∈D

Lossθ(x) (7.6)

Note that this objective is mathematically equivalent to maximum likelihood estimation, and
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can be re-expressed as

θ̂ = argmax
θ

∑
x∈D

logPrθ(x)

= argmax
θ

∑
x∈D

i−1∑
i=0

logPrθ(xi+1|x0, ...,xi) (7.7)

With these optimized parameters θ̂, we can use the pre-trained language model Decoderθ̂(·)
to compute the probability Prθ̂(xi+1|x0, ...,xi) at each position of a given sequence.

7.2.2 Encoder-only Pre-training

As defined in Section 7.1.2, an encoder Encoderθ(·) is a function that reads a sequence of
tokens x= x0...xm and produces a sequence of vectors H= h0...hm

4. Training this model
is not straightforward, as we do not have gold-standard data for measuring how good the
output of the real-valued function is. A typical approach to encoder pre-training is to combine
the encoder with some output layers to receive supervision signals that are easier to obtain.
Figure 7.2 shows a common architecture for pre-training Transformer encoders, where we add
a Softmax layer on top of the Transformer encoder. Clearly, this architecture is the same as that
of the decoder-based language model, and the output is a sequence of probability distributionsp

W,θ
1
...

pW,θ
m

 = SoftmaxW(Encoderθ(x)) (7.9)

Here pW,θ
i is the output distribution Pr(·|x) at position i. We use SoftmaxW(·) to denote

that the Softmax layer is parameterized by W, that is, SoftmaxW(H) = Softmax(H ·W).
For notation simplicity, we will sometimes drop the superscripts W and θ affixed to each
probability distribution.

The difference between this model and standard language models is that the output pi has
different meanings in encoder pre-training and language modeling. In language modeling,
pi is the probability distribution of predicting the next word. This follows an auto-regressive
decoding process: a language model only observes the words up to position i and predicts the
next. By contrast, in encoder pre-training, the entire sequence can be observed at once, and so
it makes no sense to predict any of the tokens in this sequence.

4If we view hi as a row vector, H can be written as

H =

h0

...
hm

 (7.8)
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x0 x1 x2 x3 x4
(masked)

e0 e1 e2 e3 e4

Encoder

Softmax

model reconstructs the masked token
E.g., evaluate how well the
Self-supervision

(a) Pre-training

x0 x1 x2 x3 x4

e0 e1 e2 e3 e4

Pre-trained Encoder

Prediction Network

Output for Downstream Tasks

(b) Applying the Pre-trained Encoder

Figure 7.2: Pre-training a Transformer encoder (left) and then applying the pre-trained encoder
(right). In the pre-training phase, the encoder, together with a Softmax layer, is trained via
self-supervision. In the application phase, the Softmax layer is removed, and the pre-trained
encoder is combined with a prediction network to address specific problems. In general, for
better adaptation to these tasks, the system is fine-tuned using labeled data.

1. Masked Language Modeling
One of the most popular methods of encoder pre-training is masked language modeling,
which forms the basis of the well-known BERT model [Devlin et al., 2019]. The idea of
masked language modeling is to create prediction challenges by masking out some of the
tokens in the input sequence and training a model to predict the masked tokens. In this sense,
the conventional language modeling problem, which is sometimes called causal language
modeling, is a special case of masked language modeling: at each position, we mask the
tokens in the right-context, and predict the token at this position using its left-context. However,
in causal language modeling we only make use of the left-context in word prediction, while
the prediction may depend on tokens in the right-context. By contrast, in masked language
modeling, all the unmasked tokens are used for word prediction, leading to a bidirectional
model that makes predictions based on both left and right-contexts.

More formally, for an input sequence x = x0...xm, suppose that we mask the tokens at
positions A(x) = {i1, ..., iu}. Hence we obtain a masked token sequence x̄ where the token
at each position in A(x) is replaced with a special symbol [MASK]. For example, for the
following sequence

The early bird catches the worm

we may have a masked token sequence like this
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The [MASK] bird catches the [MASK]

where we mask the tokens early and worm (i.e., i1 = 2 and i2 = 6).
Now we have two sequences x and x̄. The model is then optimized so that we can correctly

predict x based on x̄. This can be thought of as an autoencoding-like process, and the training
objective is to maximize the reconstruction probability Pr(x|x̄). Note that there is a simple
position-wise alignment between x and x̄. Because an unmasked token in x̄ is the same as the
token in x at the same position, there is no need to consider the prediction for this unmasked
token. This leads to a simplified training objective which only maximizes the probabilities for
masked tokens. We can express this objective in a maximum likelihood estimation fashion

(Ŵ, θ̂) = argmax
W,θ

∑
x∈D

∑
i∈A(x)

logPrW,θ
i (xi|x̄) (7.10)

or alternatively express it using the cross-entropy loss

(Ŵ, θ̂) = argmin
W,θ

∑
x∈D

∑
i∈A(x)

LogCrossEntropy(pW,θ
i ,pgold

i ) (7.11)

where PrW,θ
k (xk|x̄) is the probability of the true token xk at position k given the corrupted

input x̄, and pW,θ
k is the probability distribution at position k given the corrupted input x̄. To

illustrate, consider the above example where two tokens of the sequence “the early bird catches
the worm” are masked. For this example, the objective is to maximize the sum of log-scale
probabilities

Loss = logPr(x2 = early|x̄ = [CLS] The [MASK]︸ ︷︷ ︸
x̄2

bird catches the [MASK]︸ ︷︷ ︸
x̄6

)+

logPr(x6 = worm|x̄ = [CLS] The [MASK]︸ ︷︷ ︸
x̄2

bird catches the [MASK]︸ ︷︷ ︸
x̄6

) (7.12)

Once we obtain the optimized parameters Ŵ and θ̂, we can drop Ŵ. Then, we can further
fine-tune the pre-trained encoder Encoderθ̂(·) or directly apply it to downstream tasks.

2. Permuted Language Modeling

While masked language modeling is simple and widely applied, it introduces new issues. One
drawback is the use of a special token, [MASK], which is employed only during training but
not at test time. This leads to a discrepancy between training and inference. Moreover, the
auto-encoding process overlooks the dependencies between masked tokens. For example, in
the above example, the prediction of x2 (i.e., the first masked token) is made independently of
x6 (i.e., the second masked token), though x6 should be considered in the context of x2.

These issues can be addressed using the permuted language modeling approach to pre-
training [Yang et al., 2019]. Similar to causal language modeling, permuted language modeling
involves making sequential predictions of tokens. However, unlike causal modeling where
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predictions follow the natural sequence of the text (like left-to-right or right-to-left), permuted
language modeling allows for predictions in any order. The approach is straightforward: we
determine an order for token predictions and then train the model in a standard language
modeling manner, as described in Section 7.2.1. Note that in this approach, the actual order
of tokens in the text remains unchanged, and only the order in which we predict these tokens
differs from standard language modeling. For example, consider a sequence of 5 tokens
x0x1x2x3x4. Let ei represent the embedding of xi (i.e., combination of the token embedding
and positional embedding). In standard language modeling, we would generate this sequence
in the order of x0→ x1→ x2→ x3→ x4. The probability of the sequence can be modeled
via a generation process.

Pr(x) = Pr(x0) ·Pr(x1|x0) ·Pr(x2|x0,x1) ·Pr(x3|x0,x1,x2) ·
Pr(x4|x0,x1,x2,x3)

= Pr(x0) ·Pr(x1|e0) ·Pr(x2|e0,e1) ·Pr(x3|e0,e1,e2) ·
Pr(x4|e0,e1,e2,e3) (7.13)

Now, let us consider a different order for token prediction: x0→ x4→ x2→ x1→ x3.
The sequence generation process can then be expressed as follows:

Pr(x) = Pr(x0) ·Pr(x4|e0) ·Pr(x2|e0,e4) ·Pr(x1|e0,e4,e2) ·
Pr(x3|e0,e4,e2,e1) (7.14)

This new prediction order allows for the generation of some tokens to be conditioned
on a broader context, rather than being limited to just the preceding tokens as in standard
language models. For example, in generating x3, the model considers both its left-context
(i.e., e0,e1,e2) and right-context (i.e., e4). The embeddings e0,e1,e2,e4 incorporate the
positional information of x0,x1,x2,x4, preserving the original order of the tokens. As a result,
this approach is somewhat akin to masked language modeling: we mask out x3 and use its
surrounding tokens x0,x1,x2,x4 to predict this token.

The implementation of permuted language models is relatively easy for Transformers.
Because the self-attention model is insensitive to the order of inputs, we do not need to
explicitly reorder the sequence to have a factorization like Eq. (7.14). Instead, permutation
can be done by setting appropriate masks for self-attention. For example, consider the case of
computing Pr(x1|e0,e4,e2). We can place x0,x1,x2,x3,x4 in order and block the attention
from x3 to x1 in self-attention, as illustrated below

x0 x1 x2 x3 x4

Masks for Self-attention:
Blue box = valid attention
Gray box = blocked attention
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For a more illustrative example, we compare the self-attention masking results of causal
language modeling, masked language modeling and permuted language modeling in Figure
7.3.

3. Pre-training Encoders as Classifiers
Another commonly-used idea to train an encoder is to consider classification tasks. In self-
supervised learning, this is typically done by creating new classification challenges from the
unlabeled text. There are many different ways to design the classification tasks. Here we
present two popular tasks.

A simple method, called next sentence prediction (NSP), is presented in BERT’s original
paper [Devlin et al., 2019]. The assumption of NSP is that a good text encoder should capture
the relationship between two sentences. To model such a relationship, in NSP we can use
the output of encoding two consecutive sentences SentA and SentB to determine whether
SentB is the next sentence following SentA. For example, suppose SentA = ’It is raining .’
and SentB = ’I need an umbrella .’. The input sequence of the encoder could be

[CLS] It is raining . [SEP] I need an umbrella . [SEP]

where [CLS] is the start symbol (i.e., x0) which is commonly used in encoder pre-training,
and [SEP] is a separator that separates the two sentences. The processing of this sequence
follows a standard procedure of Transformer encoding: we first represent each token xi as
its corresponding embedding ei, and then feed the embedding sequence {e0, ...,em} into the
encoder to obtain the output sequence {h0, ...,hm}. Since h0 is generally considered as the
representation of the entire sequence, we add a Softmax layer on top of it to construct a binary
classification system. This process is illustrated as follows

token: [CLS] It is raining . [SEP] I need an umbrella . [SEP]

embedding: e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Encoder

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
encoding: h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

↓
Softmax

↓
Is Next or Not?

In order to generate training samples, we need two sentences each time, one for SentA and
the other for SentB . A simple way to do this is to utilize the natural sequence of two consecutive
sentences in the text. For example, we obtain a positive sample by using actual consecutive
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(a) Causal Language Modeling (order: x0→ x1→ x2→ x3→ x4)
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x2

x2

x3

x3

x4
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maskedmasked

masked
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1

Pr(x1|e0,emask,e2,emask,e4)

1
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1

(b) Masked Language Modeling (order: x0, [MASK],x2, [MASK],x4→ x1,x3)

x0

x0

x1

x1

x2

x2

x3

x3

x4

x4

Pr(x0) = 1

Pr(x1|e0,e4,e2)

Pr(x2|e0,e4)

Pr(x3|e0,e4,e2,e1)

Pr(x4|e0)

(c) Permuted Language Modeling (order: x0→ x4→ x2→ x1→ x3)

Figure 7.3: Comparison of self-attention masking results of causal language modeling, masked
language modeling and permuted language modeling. The gray cell denotes the token at
position j does not attend to the token at position i. The blue cell (i, j) denotes that the token
at position j attends to the token at position i. emask represents the embedding of the symbol
[MASK], which is a combination of the token embedding and the positional embedding.
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sentences, and a negative sample by using randomly sampled sentences. Consequently, training
this model is the same as training a classifier. Typically, NSP is used as an additional training
loss function for pre-training based on masked language modeling.

A second example of training Transformer encoders as classifiers is to apply classification-
based supervision signals to each output of an encoder. For example, Clark et al. [2019b] in
their ELECTRA model, propose training a Transformer encoder to identify whether each input
token is identical to the original input or has been altered in some manner. The first step of
this method is to generate a new sequence from a given sequence of tokens, where some of
the tokens are altered. To do this, a small masked language model (call it the generator) is
applied: we randomly mask some of the tokens, and train this model to predict the masked
tokens. For each training sample, this masked language model outputs a token at each masked
position, which might be different from the original token. At the same time, we train another
Transformer encoder (call it the discriminator) to determine whether each predicted token is
the same as the original token or altered. More specifically, we use the generator to generate a
sequence where some of the tokens are replaced. Below is an illustration.

original: [CLS] The boy spent hours working on toys .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
masked: [CLS] The boy spent [MASK] working on [MASK] .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Generator (small masked language model)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
replaced: [CLS] The boy spent decades working on toys .

Then, we use the discriminator to label each of these tokens as original or replaced, as
follows

replaced: [CLS] The boy spent decades working on toys .

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Discriminator (the model we want)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
label: original original original original replaced original original original original

For training, the generator is optimized as a masked language model with maximum
likelihood estimation, and the discriminator is optimized as a classifier using a classification-
based loss. In ELECTRA, the maximum likelihood-based loss and the classification-based loss
are combined for jointly training both the generator and discriminator. An alternative approach
is to use generative adversarial networks (GANs), that is, the generator is trained to fool the
discriminator, and the discriminator is trained to distinguish the output of the generator from
the true distribution. However, GAN-style training complicates the training task and is more
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difficult to scale up. Nevertheless, once training is complete, the generator is discarded, and the
encoding part of the discriminator is applied as the pre-trained model for downstream tasks.

7.2.3 Encoder-Decoder Pre-training

In NLP, encoder-decoder architectures are often used to model sequence-to-sequence problems,
such as machine translation and question answering. In addition to these typical sequence-to-
sequence problems in NLP, encoder-decoder models can be extended to deal with many other
problems. A simple idea is to consider text as both the input and output of a problem, and
so we can directly apply encoder-decoder models. For example, given a text, we can ask a
model to output a text describing the sentiment of the input text, such as positive, negative, and
neutral.

Such an idea allows us to develop a single text-to-text system to address any NLP problem.
We can formulate different problems into the same text-to-text format. We first train an
encoder-decoder model to gain general-purpose knowledge of language via self-supervision.
This model is then fine-tuned for specific downstream tasks using targeted text-to-text data.

1. Masked Encoder-Decoder Pre-training

In Raffel et al. [2020]’s T5 model, many different tasks are framed as the same text-to-text
task. Each sample in T5 follows the format

Source Text → Target Text

Here→ separates the source text, which consists of a task description or instruction and the
input given to the system, from the target text, which is the response to the input task. As an
example, consider a task of translating from Chinese to English. A training sample can be
expressed as

[CLS] Translate from Chinese to English: 你好！ → ⟨s⟩ Hello!

where [CLS] and ⟨s⟩ are the start symbols on the source and target sides, respectively5.

5We could use the same start symbol for different sequences. Here we use different symbols to distinguish the
sequences on the encoder and decoder-sides.
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Likewise, we can express other tasks in the same way. For example

[CLS] Answer: when was Albert Einstein born?

→ ⟨s⟩ He was born on March 14, 1879.

[CLS] Simplify: the professor, who has published numerous papers in his field,

will be giving a lecture on the topic next week.

→ ⟨s⟩ The experienced professor will give a lecture next week.

[CLS] Text: John bought a new car. Hypothesis: John has a car.

→ ⟨s⟩ Entailment

[CLS] Score the translation from English to Chinese. English: when in Rome, do as

the Romans do. Chinese: 人在罗马就像罗马人一样做事。

→ ⟨s⟩ 0.81

where instructions are highlighted in gray. An interesting case is that in the last example we
reframe the scoring problem as the text generation problem. Our goal is to generate a text
representing the number 0.81, rather than outputting it as a numerical value.

The approach described above provides a new framework of universal language under-
standing and generation. Both the task instructions and the problem inputs are provided to
the system in text form. The system then follows the instructions to complete the task. This
method puts different problems together, with the benefit of training a single model that can
perform many tasks simultaneously.

In general, fine-tuning is necessary for adapting the pre-trained model to a specific down-
stream task. In this process, one can use different ways to instruct the model for the task,
such as using a short name of the task as the prefix to the actual input sequence or providing
a detailed description of the task. Since the task instructions are expressed in text form and
involved as part of the input, the general knowledge of instruction can be gained through
learning the language understanding models in the pre-training phase. This may help enable
zero-shot learning. For example, pre-trained models can generalize to address new problems
where the task instructions have never been encountered.

There have been several powerful methods of self-supervised learning for either Trans-
former encoders or decoders. Applying these methods to pre-train encoder-decoder models is
relatively straightforward. One common choice is to train encoder-decoder models as language
models. For example, the encoder receives a sequence prefix, while the decoder generates the
remaining sequence. However, this differs from standard causal language modeling, where
the entire sequence is autoregressively generated from the first token. In our case, the encoder
processes the prefix at once, and then the decoder predicts subsequent tokens in the manner of
causal language modeling. Put more precisely, this is a prefix language modeling problem: a
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language model predicts the subsequent sequence given a prefix, which serves as the context
for prediction.

Consider the following example

[CLS] The puppies are frolicking︸ ︷︷ ︸
Prefix

→ ⟨s⟩ outside the house .︸ ︷︷ ︸
Subsequent Sequence

We can directly train an encoder-decoder model using examples like this. Then, the encoder
learns to understand the prefix, and the decoder learns to continue writing based on this
understanding. For large-scale pre-training, it is easy to create a large number of training
examples from unlabeled text.

It is worth noting that for pre-trained encoder-decoder models to be effective in multi-
lingual and cross-lingual tasks, such as machine translation, they should be trained with
multi-lingual data. This typically requires that the vocabulary includes tokens from all the
languages. By doing so, the models can learn shared representations across different languages,
thereby enabling capabilities in both language understanding and generation in a multi-lingual
and cross-lingual context.

A second approach to pre-training encoder-decoder models is masked language modeling.
In this approach, as discussed in Section 7.2.2, tokens in a sequence are randomly replaced
with a mask symbol, and the model is then trained to predict these masked tokens based on the
entire masked sequence.

As an illustration, consider the task of masking and reconstructing the sentence

The puppies are frolicking outside the house .

By masking two tokens (say, frolicking and the), we have the BERT-style input and output of
the model, as follows

[CLS] The puppies are [MASK] outside [MASK] house .

→ ⟨s⟩ frolicking the

Here denotes the masked position at which we do not make token predictions. By varying
the percentage of the tokens in the text, this approach can be generalized towards either BERT-
style training or language modeling-style training [Song et al., 2019]. For example, if we mask
out all the tokens, then the model is trained to generate the entire sequence

[CLS] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]

→ ⟨s⟩ The puppies are frolicking outside the house .

In this case, we train the decoder as a language model.
Note that, in the context of the encoder-decoder architecture, we can use the encoder to

read the masked sequence, and use the decoder to predict the original sequence. With this
objective, we essentially have a denoising autoencoder: the encoder transforms a corrupted
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[CLS] The puppies are [M] in [M] house .

Encoder Decoder

frolicking[M][M][M]⟨s⟩ [M] the [M]

[M] [M] [M]frolicking [M] the [M] [M]

Loss

(a) Training an encoder-decoder model with BERT-style masked language modeling

[CLS] The puppies are [M] in [M] house .

Encoder Decoder

frolickingarepuppiesThe⟨s⟩ in the house

The puppies are frolicking in the house .

(b) Training an encoder-decoder model with denoising autoencoding

Loss over the sequence

Figure 7.4: Training an encoder-decoder model using BERT-style and denoising autoencoding
methods. In both methods, the input to the encoder is a corrupted token sequence where
some tokens are masked and replaced with [MASK] (or [M] for short). The decoder predicts
these masked tokens, but in different ways. In BERT-style training, the decoder only needs
to compute the loss for the masked tokens, while the remaining tokens in the sequence can
be simply treated as [MASK] tokens. In denoising autoencoding, the decoder predicts the
sequence of all tokens in an autoregressive manner. As a result, the loss is obtained by
accumulating the losses of all these tokens, as in standard language modeling.

input into some hidden representation, and the decoder reconstructs the uncorrupted input from
this hidden representation. Here is an example of input and output for denoising training.

[CLS] The puppies are [MASK] outside [MASK] house .

→ ⟨s⟩ The puppies are frolicking outside the house .

By learning to map from this corrupted sequence to its uncorrupted counterpart, the model
gains the ability to understand on the encoder side and to generate on the decoder side. See
Figure 7.4 for an illustration of how an encoder-decoder model is trained with BERT-style and
denoising autoencoding objectives.

As we randomly select tokens for masking, we can certainly mask consecutive tokens
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[Joshi et al., 2020]. Here is an example.

[CLS] The puppies are [MASK] outside [MASK] [MASK] .

→ ⟨s⟩ The puppies are frolicking outside the house .

Another way to consider consecutive masked tokens is to represent them as spans. Here
we follow Raffel et al. [2020]’s work, and use [X], [Y] and [Z] to denote sentinel tokens that
cover one or more consecutive masked tokens. Using this notation, we can re-express the
above training example as

[CLS] The puppies are [X] outside [Y] .

→ ⟨s⟩ [X] frolicking [Y] the house [Z]

The idea is that we represent the corrupted sequence as a sequence containing placeholder
slots. The training task is to fill these slots with the correct tokens using the surrounding
context. An advantage of this approach is that the sequences used in training would be shorter,
making the training more efficient. Note that masked language modeling provides a very
general framework for training encoder-decoder models. Various settings can be adjusted to
have different training versions, such as altering the percentage of tokens masked and the
maximum length of the masked spans.

2. Denoising Training

If we view the problem of training encoder-decoder models as a problem of training denoising
autoencoders, there will typically be many different methods for introducing input corruption
and reconstructing the input. For instance, beyond randomly masking tokens, we can also alter
some of them or rearrange their order.

Suppose we have an encoder-decoder model that can map an input sequence x to an output
sequence y

y = Decodeω(Encodeθ(x))

= Modelθ,ω(x) (7.15)

where θ and ω are the parameters of the encoder and the decoder, respectively. In denoising
autoencoding problems, we add some noise to x to obtain a noisy, corrupted input xnoise. By
feeding xnoise into the encoder, we wish the decoder to output the original input. The training
objective can be defined as

(θ̂, ω̂) = argmin
θ,ω

Loss(Modelθ,ω(xnoise),x) (7.16)

Here the loss function Loss(Modelθ,ω(xnoise),x) evaluates how well the model Modelθ,ω(xnoise)

reconstructs the original input x. We can choose the cross-entropy loss as usual.
As the model architecture and the training approach have been developed, the remaining
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issue is the corruption of the input. Lewis et al. [2020a], in their BART model, propose
corrupting the input sequence in several different ways.

• Token Masking. This is the same masking method that we used in masked language
modeling. The tokens in the input sequence are randomly selected and masked.

• Token Deletion. This method is similar to token masking. However, rather than
replacing the selected tokens with a special symbol [MASK], these tokens are removed
from the sequence. See the following example for a comparison of the token masking
and token deletion methods.

Original (x): The puppies are frolicking outside the house .

Token Masking (xnoise): The puppies are [MASK] outside [MASK] house .

Token Deletion (xnoise): The puppies are frolicking outside the house .

where the underlined tokens in the original sequence are masked or deleted.

• Span Masking. Non-overlapping spans are randomly sampled over the sequence. Each
span is masked by [MASK]. We also consider spans of length 0, and, in such cases,
[MASK] is simply inserted at a position in the sequence. For example, we can use span
masking to corrupt the above sequence as

Original (x): The 0 puppies are frolicking outside the house .

Span Masking (xnoise): The [MASK] puppies are [MASK] house .

Here the span frolicking outside the is replaced with a single [MASK]. 0 indicates a
length-0 span, and so we insert an [MASK] between The and puppies. Span masking
introduces new prediction challenges in which the model needs to know how many
tokens are generated from a span. This problem is very similar to fertility modeling in
machine translation [Brown et al., 1993].

If we consider a sequence consisting of multiple sentences, additional methods of corrup-
tion can be applied. In the BART model, there are two such methods.

• Sentence Reordering. This method randomly permutes the sentences so that the model
can learn to reorder sentences in a document. Consider, for example, two consecutive
sentences

Hard work leads to success . Success brings happiness .

We can reorder the two sentences to have a corrupted input sequence

Success brings happiness . Hard work leads to success .

• Document Rotation. The goal of this task is to identify the start token of the sequence.
First, a token is randomly selected from the sequence. Then, the sequence is rotated so
that the selected token is the first token. For example, suppose we select the token leads
from the above sequence. The rotated sequence is
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leads to success . Success brings happiness .Hard work Hard work

selected

where the subsequence Hard work before leads is appended to the end of the sequence.

For pre-training, we can apply multiple corruption methods to learn robust models, for
example, we randomly choose one of them for each training sample. In practice, the outcome
of encoder-decoder pre-training depends heavily on the input corruption methods used, and so
we typically need to choose appropriate training objectives through careful experimentation.

7.2.4 Comparison of Pre-training Tasks
So far, we have discussed a number of pre-training tasks. Since the same training objective
can apply to different architectures (e.g., using masked language modeling for both encoder-
only and encoder-decoder pre-training), categorizing pre-training tasks based solely on model
architecture does not seem ideal. Instead, we summarize these tasks based on the training
objectives.

• Language Modeling. Typically, this approach refers to an auto-regressive generation
procedure of sequences. At one time, it predicts the next token based on its previous
context.

• Masked Language Modeling. Masked Language Modeling belongs to a general mask-
predict framework. It randomly masks tokens in a sequence and predicts these tokens
using the entire masked sequence.

• Permuted Language Modeling. Permuted language modeling follows a similar idea
to masked language modeling, but considers the order of (masked) token prediction.
It reorders the input sequence and predicts the tokens sequentially. Each prediction is
based on some context tokens that are randomly selected.

• Discriminative Training. In discriminative training, supervision signals are created
from classification tasks. Models for pre-training are integrated into classifiers and
trained together with the remaining parts of the classifiers to enhance their classification
performance.

• Denoising Autoencoding. This approach is applied to the pre-training of encoder-
decoder models. The input is a corrupted sequence and the encoder-decoder models are
trained to reconstruct the original sequence.

Table 7.1 illustrates these methods and their variants using examples. The use of these
examples does not distinguish between models, but we mark the model architectures where
the pre-training tasks can be applied. In each example, the input consists of a token sequence,
and the output is either a token sequence or some probabilities. For generation tasks, such
as language modeling, superscripts are used to indicate the generation order on the target
side. If the superscripts are omitted, it indicates that the output sequence can be generated
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Method Enc Dec E-D Input Output

Causal LM • • The1 kitten2 is3 chasing4 the5 ball6 .7

Prefix LM • • [C] The kitten is chasing1 the2 ball3 .4

Masked LM • • [C] The kitten [M] chasing the [M] . is ball

MASS-style • • [C] The kitten [M] [M] [M] ball . is chasing the

BERT-style • • [C] The kitten [M] playing the [M] . kitten is chasing ball

Permuted LM • [C] The kitten is chasing the ball . The5 kitten7 is6 chasing1 the4 ball2 .3

Next Sentence • [C] The kitten is chasing the ball . Pr(IsNext | representation-of-[C])

Prediction Birds eat worms .

Sentence • Encode a sentence as ha and Score(ha,hb)

Comparison another sentence as hb

Token Classification • [C] The kitten is chasing the ball . Pr(·|The) Pr(·|kitten) ... Pr(·|.)

Token Reordering • [C] . kitten the chasing The is ball The1 kitten2 is3 chasing4 the5 ball6 .7

Token Deletion • [C] The kitten is chasing the ball . The1 kitten2 is3 chasing4 the5 ball6 .7

Span Masking • [C] The kitten [M] is [M] . The1 kitten2 is3 chasing4 the5 ball6 .7

Sentinel Masking • [C] The kitten [X] the [Y] [X]
1 is2 chasing3 [Y]

4 ball5 .6

Sentence • [C] The ball rolls away swiftly . The The1 kitten2 is3 chasing4 the5 ball6 .7

Reordering kitten is chasing the ball . The8 ball9 rolls10 away11 swiftly12 .13

Document • [C] chasing the ball . The ball rolls The1 kitten2 is3 chasing4 the5 ball6 .7

Rotation away swiftly . The kitten is The8 ball9 rolls10 away11 swiftly12 .13

Table 7.1: Comparison of pre-training tasks, including language modeling, masked language
modeling, permuted language modeling, discriminative training, and denoising autoencoding.
[C] = [CLS], [M] = [MASK], [X], [Y] = sentinel tokens. Enc, Dec and E-D indicate whether
the approach can be applied to encoder-only, decoder-only, encoder-decoder models, respec-
tively. For generation tasks, superscripts are used to represent the order of the tokens.

either autoregressively or simultaneously. On the source side, we assume that the sequence
undergoes a standard Transformer encoding process, meaning that each token can see the entire
sequence in self-attention. The only exception is in permuted language modeling, where an
autoregressive generation process is implemented by setting attention masks on the encoder
side. To simplify the discussion, we remove the token ⟨s⟩ from the target-side of each example.

While these pre-training tasks are different, it is possible to compare them in the same
framework and experimental setup [Dong et al., 2019; Raffel et al., 2020; Lewis et al., 2020a].
Note that we cannot list all the pre-training tasks here as there are many of them. For more
discussions on pre-training tasks, the interested reader may refer to some surveys on this topic
[Qiu et al., 2020b; Han et al., 2021a].
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7.3 Example: BERT

In this section, we introduce BERT models, which are among the most popular and widely
used pre-trained sequence encoding models in NLP.

7.3.1 The Standard Model

The standard BERT model, which is proposed in Devlin et al. [2019]’s work, is a Transformer
encoder trained using both masked language modeling and next sentence prediction tasks. The
loss used in training this model is a sum of the loss of the two tasks.

LossBERT = LossMLM+LossNSP (7.17)

As is regular in training deep neural networks, we optimize the model parameters by minimizing
this loss. To do this, a number of training samples are collected. During training, a batch
of training samples is randomly selected from this collection at a time, and LossBERT is
accumulated over these training samples. Then, the model parameters are updated via gradient
descent or its variants. This process is repeated many times until some stopping criterion is
satisfied, such as when the training loss converges.

1. Loss Functions

In general, BERT models are used to represent a single sentence or a pair of sentences, and
thus can handle various downstream language understanding problems. In this section we
assume that the input representation is a sequence containing two sentences SentA and SentB ,
expressed as

[CLS] SentA [SEP] SentB [SEP]

Here we follow the notation in BERT’s paper and use [SEP] to denote the separator.

Given this sequence, we can obtain LossMLM and LossNSP separately. For masked lan-
guage modeling, we predict a subset of the tokens in the sequence. Typically, a certain
percentage of the tokens are randomly selected, for example, in the standard BERT model,
15% of the tokens in each sequence are selected. Then the sequence is modified in three ways

• Token Masking. 80% of the selected tokens are masked and replaced with the symbol
[MASK]. For example

Original: [CLS] It is raining . [SEP] I need an umbrella . [SEP]

Masked: [CLS] It is [MASK] . [SEP] I need [MASK] umbrella . [SEP]

where the selected tokens are underlined. Predicting masked tokens makes the model
learn to represent tokens from their surrounding context.

• Random Replacement. 10% of the selected tokens are changed to a random token. For
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example

Original: [CLS] It is raining . [SEP] I need an umbrella . [SEP]

Random Token: [CLS] It is raining . [SEP] I need an hat . [SEP]

This helps the model learn to recover a token from a noisy input.

• Unchanged. 10% of the selected tokens are kept unchanged. For example,

Original: [CLS] It is raining . [SEP] I need an umbrella . [SEP]

Unchanged Token: [CLS] It is raining . [SEP] I need an umbrella . [SEP]

This is not a difficult prediction task, but can guide the model to use easier evidence for
prediction.

LetA(x) be the set of selected positions of a given token sequence x, and x̄ be the modified
sequence of x. The loss function of masked language modeling can be defined as

LossMLM = −
∑

i∈A(x)

logPri(xi|x̄) (7.18)

where Pri(xi|x̄) is the probability of predicting xi at the position i given x̄. Figure 7.5 shows
a running example of computing LossMLM.

For next sentence prediction, we follow the method described in Section 7.2.2. Each
training sample is classified into a label set {IsNext,NotNext}, for example,

Sequence: [CLS] It is raining . [SEP] I need an umbrella . [SEP]

Label: IsNext

Sequence: [CLS] The cat sleeps on the windowsill . [SEP] Apples grow on trees . [SEP]

Label: NotNext

The output vector of the encoder for the first token [CLS] is viewed as the sequence repre-
sentation, denoted by hcls (or h0). A classifier is built on top of hcls. Then, we can compute
the probability of a label c given hcls, i.e., Pr(c|hcls). There are many loss functions one can
choose for classification problems. For example, in maximum likelihood training, we can
define LossNSP as

LossNSP = − logPr(cgold|hcls) (7.19)

where cgold is the correct label for this sample.
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[CLS] It is raining . [SEP] I need an umbrella . [SEP]Input:

Select tokens with a probability of 15%

[CLS] It is raining . [SEP] I need an umbrella . [SEP]Token Selection:

Mask selected tokens with a probability of 80%

[CLS] It is [MASK] . [SEP] I need [MASK] umbrella . [SEP]Token Masking:

Alter selected tokens with a probability of 10%

[CLS] It is [MASK] . [SEP] I need [MASK] hat . [SEP]Token:
Replacement

Keep selected tokens unchanged with a probability of 10%

[CLS] It is [MASK] . [SEP] I need [MASK] hat . [SEP]Unchanged:

Train the Transformer encoder with the modified sequence

[CLS] It is [MASK] . [SEP] I need [MASK] hat . [SEP]

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

training I an umbrella

Transformer Encoder

Figure 7.5: A running example of BERT-style masked language modeling. First, 15% of
the tokens are randomly selected. These selected tokens are then processed in one of three
ways: replaced with a [MASK] token (80% of the time), replaced with a random token (10%
of the time), or kept unchanged (10% of the time). The model is trained to predict these
selected tokens based on the modified sequence. ei represents the embedding of the token at
the position i. Gray boxes represent the Softmax layers.

2. Model Setup
As shown in Figure ??, BERT models are based on the standard Transformer encoder architec-
ture. The input is a sequence of embeddings, each being the sum of the token embedding, the
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positional embedding, and the segment embedding.

e = x+epos+eseg (7.20)

Both the token embedding (x) and positional embedding (epos) are regular, as in Transformer
models. The segment embedding (eseg) is a new type of embedding that indicates whether a
token belongs to SentA or SentB . This can be illustrated by the following example.

Token [CLS] It is raining . [SEP] I need an umbrella . [SEP]

x x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

epos PE(0) PE(1) PE(2) PE(3) PE(4) PE(5) PE(6) PE(7) PE(8) PE(9) PE(10) PE(11)

eseg eA eA eA eA eA eA eB eB eB eB eB eB

The main part of BERT models is a multi-layer Transformer network. A Transformer layer
consists of a self-attention sub-layer and an FFN sub-layer. Both of them follow the post-norm
architecture: output = LNorm(F (input)+ input), where F (·) is the core function of the
sub-layer (either a self-attention model or an FFN), and LNorm(·) is the layer normalization
unit. Typically, a number of Transformer layers are stacked to form a deep network. At each
position of the sequence, the output representation is a real-valued vector which is produced
by the last layer of the network.

There are several aspects one may consider in developing BERT models.

• Vocabulary Size (|V |). In Transformers, each input token is represented as an entry in a
vocabulary V . Large vocabularies can cover more surface form variants of words, but
may lead to increased storage requirements.

• Embedding Size (de). Every token is represented as a de-dimensional real-valued vector.
As presented above, this vector is the sum of the token embedding, positional embedding,
and segment embedding, all of which are also de-dimensional real-valued vectors.

• Hidden Size (d). The input and output of a sub-layer are of d dimensions. Besides,
most of the hidden states of a sub-layer are d-dimensional vectors. In general, d can be
roughly viewed as the width of the network.

• Number of Heads (nhead). In self-attention sub-layers, one needs to specify the number
of heads used in multi-head self-attention. The larger this number is, the more sub-spaces
in which attention is performed. In practical systems, we often set nhead ≥ 4.

• FFN Hidden Size (dffn). The size of the hidden layer of the FFNs used in Transform-
ers is typically larger than d. For example, a typical setting is dffn = 4d. For larger
Transformers, such as recent large models, dffn may be set to a very large value.

• Model Depth (L). Using deep networks is an effective way to improve the expressive
power of Transformers. For BERT models, L is typically set to 12 or 24. However,
networks with even greater depth are also feasible and can be applied for further en-
hancements.
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Self-attention

PositionToken Segment

x0x1...xm

Layer Normalization

FFN

Layer Normalization

Output Layer

...

h0h1...hm

layers

Input
xi corresponds to an entry of V

Embedding

e= x+epos+eseg ∈ Rde

Self-attention Sub-layer
hidden size: d
number of heads: nhead

FFN Sub-layer
hidden size: d
FFN hidden size: dffn

Encoder Output
hi ∈ Rd is the contextual
representation of xi

Figure 7.6: The model architecture of BERT (Transformer encoder). The input tokens are first
represented as embeddings, each of which is the sum of the corresponding token embedding,
positional embedding and segment embedding. Then, the embedding sequence is processed by
a stack of Transformer layers. Each layer in this stack includes a self-attention sub-layer and a
FFN sub-layer. The output of the BERT model is a sequence of vectors produced by the final
Transformer layer.

Different settings of these hyper-parameters lead to different model sizes. There are two
widely-used BERT models.

• BERTbase: d= 768, L= 12, nhead = 12, total number of parameters = 110M.

• BERTlarge: d= 1,024, L= 24, nhead = 16, total number of parameters = 340M.

Training BERT models follows the standard training process of Transformers. Training
larger models such as BERTlarge requires more training effort and time. This is a common
problem for pre-training, especially when a model is trained on a very large amount of data.
In practice, there are often considerations of training efficiency. For example, a practice is to
first train a BERT model on relatively short sequences for a large number of training steps, and
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then continue training it on full-length sequences for the remaining training steps.

7.3.2 More Training and Larger Models
BERT is a milestone model in NLP, sparking many subsequent efforts to improve it. One
direction is to scale up the model itself, including increasing training data and developing
larger models.

RoBERTa, an extension of the standard BERT model, is an example of such efforts [Liu
et al., 2019]. It introduces two major improvements. First, simply using more training data and
more compute can improve BERT models without need of changing the model architectures.
Second, removing the NSP loss does not decrease the performance on downstream tasks if the
training is scaled up. These findings suggest exploring a general direction of pre-training: we
can continue to improve pre-training by scaling it up on simple pre-training tasks.

A second approach to improving BERT models is to increase the number of model
parameters. For example, in He et al. [2021]’s work, a 1.5 billion-parameter BERT-like model
is built by increasing both the model depth and hidden size. However, scaling up BERT and
various other pre-trained models introduces new challenges in training, for example, training
very large models often becomes unstable and difficult to converge. This makes the problem
more complicated, and requires careful consideration of various aspects, including model
architecture, parallel computation, parameter initialization, and so on. In another example,
Shoeybi et al. [2019] successfully trained a 3.9 billion-parameter BERT-like model, where
hundreds of GPUs were used to manage the increased computational demands.

7.3.3 More Efficient Models
Compared to its predecessors, BERT is a relatively large model for the time it was proposed.
This increase in model size results in larger memory requirements and a consequent slowdown
in system performance. Developing smaller and faster BERT models is part of the broader
challenge of building efficient Transformers, which has been extensively discussed in Chapter
6. However, a deeper discussion of this general topic is beyond the scope of our current
discussion. Here we instead consider a few efficient variants of BERT.

Several threads of research are of interest to NLP researchers in developing efficient
BERT models. First, work on knowledge distillation, such as training student models with
the output of well-trained teacher models, shows that smaller BERT models can be obtained
by transferring knowledge from larger BERT models. Given that BERT models are multi-
layer networks with several different types of layers, knowledge distillation can be applied at
different levels of representation. For example, beyond distilling knowledge from the output
layers, it is also possible to incorporate training loss that measures the difference in output of
hidden layers between teacher models and student models [Sun et al., 2020b; Jiao et al., 2020].
Indeed, knowledge distillation has been one of the most widely-used techniques for learning
small pre-trained models.

Second, conventional model compression methods can be directly applied to compress
BERT models. One common approach is to use general-purpose pruning methods to prune the
Transformer encoding networks [Gale et al., 2019]. This generally involves removing entire
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layers [Fan et al., 2019] or a certain percentage of parameters in the networks [Sanh et al., 2020;
Chen et al., 2020b]. Pruning is also applicable to multi-head attention models. For example,
Michel et al. [2019] show that removing some of the heads does not significantly decrease
the performance of BERT models, but speeds up the inference of these models. Another
approach to compressing BERT models is quantization [Shen et al., 2020b]. By representing
model parameters as low-precision numbers, the models can be greatly compressed. While
this method is not specific to BERT models, it proves effective for large Transformer-based
architectures.

Third, considering that BERT models are relatively deep and large networks, another
thread of research uses dynamic networks to adapt these models for efficient inference. An
idea in this paradigm is to dynamically choose the layers for processing a token, for example,
in depth-adaptive models we exit at some optimal depth and thus skip the rest of the layers in
the layer stack [Xin et al., 2020; Zhou et al., 2020]. Similarly, we can develop length-adaptive
models in which the length of the input sequence is dynamically adjusted. For example, we
can skip some of the tokens in the input sequence so that the model can reduce computational
load on less important tokens, enhancing overall efficiency.

Fourth, it is also possible to share parameters across layers to reduce the size of BERT
models. A simple way to do this is to share the parameters of a whole Transformer layer across
the layer stack [Dehghani et al., 2018; Lan et al., 2020]. In addition to the reduced number of
parameters, this enables reuse of the same layer in a multi-layer Transformer network, leading
to savings of memory footprint at test time.

7.3.4 Multi-lingual Models

The initial BERT model was primarily focused on English. Soon after this model was proposed,
it was extended to many languages. One simple way to do this is to develop a separate model
for each language. Another approach, which has become more popular in recent work on large
language models, is to train multi-lingual models directly on data from all the languages. In
response, multi-lingual BERT (mBERT) models were developed by training them on text
from 104 languages 6. The primary difference from monolingual BERT models is that mBERT
models use larger vocabularies to cover tokens from multiple languages. As a result, the
representations of tokens from different languages are mapped into the same space, allowing
for the sharing of knowledge across languages via this universal representation model.

One important application of multi-lingual pre-trained models is cross-lingual learning.
In the cross-lingual setting, we learn a model on tasks in one language, and apply it to the
same tasks in another language. In cross-lingual text classification, for example, we fine-tune a
multi-lingual pre-trained model on English annotated documents. Then, we use the fine-tuned
model to classify Chinese documents.

An improvement to multi-lingual pre-trained models like mBERT is to introduce bilingual
data into pre-training. Rather than training solely on monolingual data from multiple languages,
bilingual training explicitly models the relationship between tokens in two languages. The

6https://github.com/google-research/bert/
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resulting model will have innate cross-lingual transfer abilities, and thus can be easily adapted
to different languages. Lample and Conneau [2019] propose an approach to pre-training
cross-lingual language models (XLMs). In their work, a cross-lingual language model can
be trained in either the causal language modeling or masked language modeling manner. For
masked language modeling pre-training, the model is treated as an encoder. The training
objective is the same as BERT: we maximize the probabilities of some randomly selected
tokens which are either masked, replaced with random tokens, or kept unchanged in the input.
If we consider bilingual data in pre-training, we sample a pair of aligned sentences each time.
Then, the two sentences are packed together to form a single sequence used for training. For
example, consider an English-Chinese sentence pair

鲸鱼 是 哺乳 动物 。 ↔ Whales are mammals .

We can pack them to obtain a sequence, like this

[CLS]鲸鱼 是 哺乳 动物 。 [SEP] Whales are mammals . [SEP]

We then select a certain percentage of the tokens and replace them with [MASK].

[CLS] [MASK] 是 [MASK] 动物 。 [SEP] Whales [MASK] [MASK] . [SEP]

The goal of pre-training is to maximize the product of the probabilities of the masked tokens
given the above sequence. By performing training in this way, the model can learn to represent
both the English and Chinese sequences, as well as to capture the correspondences between
tokens in the two languages. For example, predicting the Chinese token 鲸鱼 may require the
information from the English token Whales. Aligning the representations of the two languages
essentially transforms the model into a “translation” model. So this training objective is also
called translation language modeling. Figure 7.7 shows an illustration of this approach.

A benefit of multi-lingual pre-trained models is their inherent capability of handling code-
switching. In NLP and linguistics, code-switching refers to switching among languages in a
text. For example, the following is a mixed language text containing both Chinese and English:

周末 我们 打算 去 做 hiking ， 你 想 一起 来 吗 ？
(We plan to go hiking this weekend, would you like to join us?)

For multi-lingual pre-trained models, we do not need to identify whether a token is Chinese or
English. Instead, every token is just an entry of the shared vocabulary. This can be imagined
as creating a “new” language that encompasses all the languages we want to process.

The result of multi-lingual pre-training is influenced by several factors. Given that the
model architecture is fixed, one needs to specify the size of the shared vocabulary, the number
(or percentage) of samples in each language, the size of the model, and so on. Conneau et al.
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[CLS] [MASK] 是 [MASK] 动物 。 [SEP] Whales [MASK] [MASK] . [SEP]

(zh) (zh) (zh) (zh) (zh) (zh) (zh) (en) (en) (en) (en) (en)

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

鲸鱼 哺乳 are mammals

Transformer Encoder

Figure 7.7: An illustration of translation language modeling. For ease of understanding, we
present a simple example where all the selected tokens are masked. The model is trained to
predict these masked tokens. As the sequence contains tokens in two languages, predicting
a token in one language allows access to tokens in the other language, thereby enabling
cross-lingual modeling. In Lample and Conneau [2019]’s work, an input embedding (i.e.,
ei) is the sum of the token embedding, positional embedding, and language embedding.
This requires that each token is assigned with a language label. Thus we can distinguish
tokens in different languages. In multi-lingual pre-training, particularly in work using shared
vocabularies, specifying the language to which a token belongs is not necessary. The use
of language embeddings in turn makes it difficult to handle code-switching. Therefore, we
assume here that all token representations are language-independent.

[2020] point out several interesting issues regarding large-scale multi-lingual pre-training for
XLM-like models. First, as the number of supported languages increases, a larger model is
needed to handle these languages. Second, a larger shared vocabulary is helpful for modeling
the increased diversity in languages. Third, low-resource languages more easily benefit from
cross-lingual transfer from high-resource languages, particularly when similar high-resource
languages are involved in pre-training. However, interference may occur if the model is
trained for an extended period, meaning the overall performance of the pre-trained model starts
decreasing at a certain point during pre-training. Thus, in practical systems, one may need to
stop the pre-training early to prevent interference.

7.4 Applying BERT Models
Once a BERT model is pre-trained, it can then be used to solve NLP problems. But BERT
models are not immediately ready for performing specific downstream tasks. In general,
additional fine-tuning work is required to make them adapt. As a first step, we need a predictor
to align the output of the model with the problem of interest. Let BERTθ̂(·) be a BERT model
with pre-trained parameters θ̂, and Predictω(·) be a prediction network with parameters ω. By
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integrating the prediction network with the output of the BERT model, we develop a model to
tackle the downstream tasks. This model can be expressed as

y = Predictω(BERTθ̂(x)) (7.21)

where x is the input and y is the output that fits the problem. For example, in classification
problems, the model outputs a probability distribution over labels.

Then, we collect a set of labeled samples D, and fine-tune the model by

(ω̃, θ̃) = argmin
ω,θ̂+

∑
(x,ygold)∈D

Loss(yω,θ̂+ ,ygold) (7.22)

where (x,ygold) represents a tuple of an input and its corresponding output. The notation of
this equation seems a bit complicated, but the training/tuning process is standard. We optimize
the model by minimizing the loss over the tuning samples. The outcome is the optimized
parameters ω̃ and θ̃. The optimization starts with the pre-trained parameters θ̂. Here we use
θ̂+ to indicate that the parameters are initialized with θ̂, and use yω,θ̂+ to denote the model

output computed using the parameters ω and θ̂+.
With the fine-tuned parameters ω̃ and θ̃, we can apply the model Predictω̃(BERTθ̃(·)) to

new data of the same tasks for which the model was fine-tuned. The form of the downstream
tasks determines the input and output formats of the model, as well as the architecture of the
prediction network. In the following we list some tasks to which BERT models are generally
suited.

• Classification (Single Text). One of the most widely-used applications of BERT models
is text classification. In this task, a BERT model receives a sequence of tokens and
encodes it as a sequence of vectors. The first output vector hcls (or h0) is typically used
as the representation of the entire text. The prediction network takes hcls as input to
produce a distribution of labels. Let [CLS]x1x2...xm be an input text. See below for an
illustration of BERT-based text classification.

[CLS] x1 x2 ... xm [SEP]

ecls e1 e2 ... em em+1

hcls h1 h2 ... hm hm+1

Class

BERT

Here the gray box denotes the prediction network. Many NLP problems can be cat-
egorized as text classification tasks, and there have been several text classification
benchmarks for evaluating pre-trained models. For example, we can classify texts by
their grammatical correctness (grammaticality) or emotional tone (sentiment) [Socher
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et al., 2013; Warstadt et al., 2019]. Note that the prediction network could be any
classification model, such as a deep neural network or a more traditional classification
model. The entire model can then be trained or fine-tuned in the manner of a standard
classification model. For example, the prediction network can be simply a Softmax
layer and the model parameters can be optimized by maximizing the probabilities of the
correct labels.

• Classification (Pair of Texts). Classification can also be performed on a pair of texts.
Suppose we have two texts, x1...xm and y1...yn. We can concatenate these texts to form
a single sequence with a length len. Then, we predict a label for this combined text
sequence based on the hcls vector, as follows

[CLS] x1 x2 ... xm [SEP] y1 y2 ... yn [SEP]

Text 1 Text 2

ecls e1 e2 ... em em+1 em+2 em+3 ... elen−1 elen

hcls h1 h2 ... hm hm+1 hm+2 hm+3 ... hlen−1 hlen

Class

BERT

where len= n+m+2. Text pair classification covers several problems, including se-
mantic equivalence judgement (determine whether two texts are semantically equivalent)
[Dolan and Brockett, 2005], text entailment judgement (determine whether a hypothesis
can be logically inferred or entailed from a premise) [Bentivogli and Giampiccolo, 2011;
Williams et al., 2018], grounded commonsense inference (determine whether an event
is likely to happen given its context) [Zellers et al., 2018], and question-answering
inference (determine whether an answer corresponds to a given question).

• Regression. Instead of generating a label distribution, we can have the prediction
network output a real-valued score. For example, by adding a Sigmoid layer to the
prediction network, the system can be employed to compute the similarity between
two given sentences. The architecture is the same as that of BERT-based classification
systems, with only the change of the output layer.
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[CLS] x1 x2 ... xm [SEP] y1 y2 ... yn [SEP]

Text 1 Text 2

ecls e1 e2 ... em em+1 em+2 em+3 ... elen−1 elen

hcls h1 h2 ... hm hm+1 hm+2 hm+3 ... hlen−1 hlen

Number (similarity, evaluation score, etc.)

BERT

For training or fine-tuning, we can minimize the regression loss of the model output as
usual.

• Sequence Labeling. Sequence labeling is a machine learning approach applicable to a
wide range of NLP problems. This approach assigns a label to each token in an input
sequence, and some linguistic annotations can then be derived from this sequence of
labels. An example of sequence labeling in NLP is part-of-speech (POS) tagging. We
label each word in a sentence with its corresponding POS tag. Another example is
named entity recognition (NER) in which we label each word with an NER tag, and
named entities are identified using these tags. See below for an illustration of the model
architecture for NER.

[CLS] x1 x2 ... xm [SEP]

ecls e1 e2 ... em em+1

hcls h1 h2 ... hm hm+1

{B, I,O} {B, I,O} {B, I,O}
Tag Tag Tag

BERT

Here {B, I,O} is the tag set of NER. For example, B-ORG means the beginning of an
organization, I-ORG means the word is inside an organization, and O means the word
does not belong to any named entity. This NER model can output a distribution over
the tag set at each position, denoted as pi. The training or fine-tuning of the model can
be performed over these distributions {p1, ...,pm}. For example, suppose pi(tagi) is
the probability of the correct tag at position i. The training loss can be defined to be the
negative likelihood

Loss = − 1

m

m∑
i=1

logpi(tagi) (7.23)

Finding the best label sequence given a trained NER model is a well-studied issue in
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NLP. This is often achieved via dynamic programming, which, in the context of path
finding over a lattice, has linear complexity [Huang, 2009].

• Span Prediction. Some NLP tasks require predicting a span in a text. A common
example is reading comprehension. In this task, we are given a query x1...xm and a
context text y1...yn. The goal is to identify a continuous span in y1...yn that best answers
the query. This problem can be framed as a sequence labeling-like task in which we
predict a label for each yj to indicate the beginning or ending of the span. Following Seo
et al. [2017], we add two networks on top of the BERT output for yj : one for generating
the probability of yj being the beginning of the span (denoted by pbegj ), and one for
generating the probability of yj being the ending of the span (denoted by pendj ). The
resulting model architecture is shown as follows

[CLS] x1 x2 ... xm [SEP] y1 y2 ... yn [SEP]

Query Context Text

ecls e1 e2 ... em em+1 em+2 em+3 ... elen−1 elen

hcls h1 h2 ... hm hm+1 hm+2 hm+3 ... hlen−1 hlen

(p
beg
1 )

Beg

(pend1 )

End

(p
beg
2 )

Beg

(pend2 )

End

(pbeg
n )

Beg

(pendn )

End

BERT

We pack the query and context text together to obtain the input sequence. The prediction
networks are only applied to outputs for the context text, generating the probabilities
pbegj and pendj at each position. The loss can be computed by summing the negative log
likelihoods of the two models across the entire context text.

Loss = − 1

n

n∑
j=1

(
logpbegj +logpendj

)
(7.24)

At test time, we search for the best span by

(ĵ1, ĵ2) = argmax
1≤j1≤j2≤n

(
logpbegj1

+logpendj2

)
(7.25)

• Encoding for Encoder-Decoder Models. While our focus in this section has been
primarily on language understanding problems, it is worth noting that BERT models
can be applied to a broader range of NLP tasks. In fact, BERT models can be used
in all the scenarios where we need to encode a piece of text. One application that we
have not mentioned is text generation which includes a range of tasks such as machine
translation, summarization, question answering, and dialogue generation. These tasks
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can be formulated as sequence-to-sequence problems: we use an encoder to represent the
source text, and a decoder to generate the corresponding target text. A straightforward
method to apply BERT models is to consider them as encoders. Before fine-tuning,
we can initialize the parameters of the encoder with those from a pre-trained BERT
model. Then, the encoder-decoder model can be fine-tuned on pairs of texts as usual.
The following shows the architecture of a neural machine translation system where a
BERT model is applied on the source side.

[CLS] x1 ... xm [SEP]

Source Text

excls ex1 ... exm exm+1

BERT (Encoder)

Adapter

⟨s⟩ y1 y2 ... yn−1

ey0 ey1 ey2
... eyn−1

Decoder

y1 y2 y3 ... yn

Target Text

Here x1...xm denotes the source sequence, y1...yn denotes the target sequence, ex1 ...e
x
m

denotes the embedding sequence of x1...xm, and ey1...e
y
n denotes the embedding se-

quence of y1...yn. The adapter, which is optional, maps the output of the BERT model
to the form that is better suited to the decoder.

Fine-tuning BERT models is a complicated engineering problem, influenced by many
factors, such as the amount of fine-tuning data, the model size, and the optimizer used in
fine-tuning. In general, we wish to fine-tune these models sufficiently so that they can perform
well in the downstream tasks. However, fine-tuning BERT models for specific tasks may lead
to overfitting, which in turn reduces their ability to generalize to other tasks. For example,
suppose we have a BERT model that performs well on a particular task. If we then fine-tune it
for new tasks, this may decrease its performance on the original task. This problem is related
to the catastrophic forgetting problem in continual training, where a neural network forgets
previously learned information when updated on new samples. In practical applications, a
common way to alleviate catastrophic forgetting is to add some old data into fine-tuning and
train the model with more diverse data. Also, one may use methods specialized to catastrophic
forgetting, such as experience replay [Rolnick et al., 2019] and elastic weight consolidation
[Kirkpatrick et al., 2017]. The interested reader can refer to some surveys for more detailed
discussions of this issue in continual learning [Parisi et al., 2019; Wang et al., 2023a;f].

7.5 Summary
In this chapter we have discussed the general idea of pre-training in NLP. In particular, we have
discussed self-supervised pre-training and its application to encoder-only, decoder-only, and
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encoder-decoder architectures. Moreover, we have presented and compared a variety of pre-
training tasks for these architectures. As an example, BERT is used to illustrate how sequence
models are pre-trained via masked language modeling and applied to different downstream
tasks.

Recent years have shown remarkable progress in NLP, led by the large-scale use of self-
supervised pre-training. And sweeping advances are being made across many tasks, not only
in NLP but also in computer vision and other areas of AI. One idea behind these advances is
that a significant amount of knowledge about the world can be learned by simply training these
AI systems on huge amounts of unlabeled data. For example, a language model can learn some
general knowledge of a language by repeatedly predicting masked words in large-scale text. As
a result, this pre-trained language model can serve as a foundation model, which can be easily
adapted to address specific downstream NLP tasks. This paradigm shift in NLP has enabled
the development of incredibly powerful systems for language understanding, generation, and
reasoning [Manning, 2022]. However, it is important to recognize that we are still in the
early stages of creating truly intelligent systems, and there is a long way to go. Nevertheless,
large-scale pre-training has opened a door to intelligent systems that researchers have long
aspired to develop, though several key research areas remain open for exploration, such as
learning intelligence efficiently using reasonably small-sized data and acquiring complex
reasoning and planning abilities.

Note that this chapter is mostly introductory and cannot cover all aspects of pre-training.
For example, there are many methods to fine-tune a pre-trained model, offering different ways
to better adapt the model to diverse situations. Moreover, large language models, which are
considered one of the most significant achievements in AI in recent years, are skipped in this
section. We leave the discussion of these topics to the following chapters.
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Chapter 8

Generative Models

One of the most significant advances in NLP in recent years might be the development of large
language models (LLMs). This has helped create systems that can understand and generate
natural languages like humans. These systems have even been found to be able to reason,
which is considered a very challenging AI problem. With these achievements, NLP made big
strides and entered a new era of research in which difficult problems are being solved, such as
building conversational systems that can communicate with humans smoothly.

The concept of language modeling or probabilistic language modeling dates back to early
experiments conducted by Shannon [1951]. In his work, a language model was designed to
estimate the predictability of English — how well can the next letter of a text be predicted
when the preceding N letters are known. Although Shannon’s experiments were preliminary,
the fundamental goals and methods of language modeling have remained largely unchanged
over the decades since then. For quite a long period, particularly before 2010, the dominant
approach to language modeling was the n-gram approach [Jurafsky and Martin, 2008]. In
n-gram language modeling, we estimate the probability of a word given its preceding n−1

words, and thus the probability of a sequence can be approximated by the product of a series
of n-gram probabilities. These probabilities are typically estimated by collecting smoothed
relative counts of n-grams in text. While such an approach is straightforward and simple,
it has been extensively used in NLP. For example, the success of modern statistical speech
recognition and machine translation systems has largely depended on the utilization of n-gram
language models [Jelinek, 1998; Koehn, 2010].

Applying neural networks to language modeling has long been attractive, but a real
breakthrough appeared as deep learning techniques advanced. A widely cited study is Bengio
et al. [2003a]’s work where n-gram probabilities are modeled via a feed-forward network and
learned by training the network in an end-to-end fashion. A by-product of this neural language
model is the distributed representations of words, known as word embeddings. Rather than
representing words as discrete variables, word embeddings map words into low-dimensional
real-valued vectors, making it possible to compute the meanings of words and word n-grams
in a continuous representation space. As a result, language models are no longer burdened
with the curse of dimensionality, but can represent exponentially many n-grams via a compact

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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and dense neural model.
The idea of learning word representations through neural language models inspired sub-

sequent research in representation learning in NLP. However, this approach did not attract
significant interest in developing NLP systems in the first few years after its proposal. Starting
in about 2012, though, advances were made in learning word embeddings from large-scale
text via simple word prediction tasks. Several methods, such as Word2Vec, were proposed
to effectively learn such embeddings, which were then successfully applied in a variety of
NLP systems [Mikolov et al., 2013a;c]. As a result of these advances, researchers began to
think of learning representations of sequences using more powerful language models, such
as LSTM-based models [Sutskever et al., 2014; Peters et al., 2018]. And further progress
and interest in sequence representation exploded after Transformer was proposed. Alongside
the rise of Transformer, the concept of language modeling was generalized to encompass
models that learn to predict words in various ways. Many powerful Transformer-based models
were pre-trained using these word prediction tasks, and successfully applied to a variety of
downstream tasks [Devlin et al., 2019].

Indeed, training language models on large-scale data has led NLP research to exciting
times. While language modeling has long been seen as a foundational technique with no direct
link to the goals of artificial intelligence that researchers had hoped for, it helps us see the
emergence of intelligent systems that can learn a certain degree of general knowledge from
repeatedly predicting words in text. Recent research demonstrates that a single, well-trained
LLM can handle a large number of tasks and generalize to perform new tasks with a small
adaptation effort [Bubeck et al., 2023]. This suggests a step towards more advanced forms of
artificial intelligence, and inspires further exploration into developing more powerful language
models as foundation models.

In this chapter, we consider the basic concepts of generative LLMs. For simplicity, we
use the terms large language models or LLMs to refer to generative models like GPT, though
this term can broadly cover other types of models like BERT. We begin by giving a general
introduction to LLMs, including the key steps of building such models. We then discuss two
scaling issues of LLMs: how LLMs are trained at scale, and how LLMs can be improved to
handle very long texts. Finally, we give a summary of these discussions.

8.1 A Brief Introduction to LLMs
In this section we give an introduction to the basic ideas of LLMs as required for the rest of this
chapter and the following chapters. We will use terms word and token interchangeably. Both
of them refer to the basic units used in language modeling, though their original meanings are
different.

Before presenting details, let us first consider how language models work. The goal
of language modeling is to predict the probability of a sequence of tokens occurring. Let
{x0,x1, ...,xm} be a sequence of tokens, where x0 is the start symbol ⟨s⟩ (or ⟨SOS⟩)1. The

1The start symbol can also be [CLS] following BERT models.



8.1 A Brief Introduction to LLMs 405

probability of this sequence can be defined using the chain rule

Pr(x0, ...,xm) = Pr(x0) ·Pr(x1|x0) ·Pr(x2|x0,x1) · · ·Pr(xm|x0, ...,xm−1)

=
m∏
i=0

Pr(xi|x0, ...,xi−1) (8.1)

or alternatively in a logarithmic form

logPr(x0, ...,xm) =
m∑
i=0

logPr(xi|x0, ...,xi−1) (8.2)

Here Pr(xi|x0, ...,xi−1) is the probability of the token xi given all its previous tokens
{x0, ...,xi−1} 2. In the era of deep learning, a typical approach to language modeling is
to estimate this probability using a deep neural network. Neural networks trained to accom-
plish this task receive a sequence of tokens x0, ...,xi−1 and produce a distribution over the
vocabulary V (denoted by Pr(·|x0, ...,xi−1)). The probability Pr(xi|x0, ...,xi−1) is the value
of the i-th entry of Pr(·|x0, ...,xi−1).

When applying a trained language model, a common task is to find the most likely token
given its previous context tokens. This token prediction task can be described as

x̂i = argmax
xi∈V

Pr(xi|x0, ...,xi−1) (8.3)

We can perform word prediction multiple times to generate a continuous text: each time
we predict the best token x̂i, and then add this predicted token to the context for predicting
the next token x̂i+1. This results in a left-to-right generation process implementing Eqs. (8.1)
and (8.2). To illustrate, consider the generation of the following three words given the prefix
‘⟨s⟩ a’, as shown in Table 8.1. Now we discuss how LLMs are constructed, trained, and
applied.

8.1.1 Decoder-only Transformers
As is standard practice, the input of a language model is a sequence of tokens (denoted
by {x0, ...,xm−1}). For each step, an output token is generated, shifting the sequence one
position forward for the next prediction. To do this, the language model outputs a distribution
Pr(·|x0, ...,xi−1) at each position i, and the token xi is selected according to this distribution.
This model is trained by maximizing the log likelihood

∑m
i=1 logPr(xi|x0, ...,xi−1)

3.
Here, we focus on the decoder-only Transformer architecture, as it is one of the most

popular model architectures used in LLMs. The input sequence of tokens is represented by a
sequence of de-dimensional vectors {e0, ...,em−1}. ei is the sum of the token embedding of
xi and the positional embedding of i. The major body of the model is a stack of Transformer

2We assume that when i = 0, Pr(xi|x0, ...,xi−1) = Pr(x0) = 1. Hence Pr(x0, ...,xm) =
Pr(x0)Pr(x1, ...,xm|x0) = Pr(x1, ...,xm|x0).

3Note that
∑m

i=1 logPr(xi|x0, ...,xi−1) =
∑m

i=0 logPr(xi|x0, ...,xi−1) since logPr(x0) = 0.
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Context Predict Decision Rule Sequence Probability

⟨s⟩ a b argmaxx2∈V Pr(x2|⟨s⟩ a) Pr(⟨s⟩) ·Pr(a|⟨s⟩)· Pr(b|⟨s⟩ a)
⟨s⟩ a b c argmaxx3∈V Pr(x3|⟨s⟩ a b) Pr(⟨s⟩) ·Pr(a|⟨s⟩) ·Pr(b|⟨s⟩ a)·

Pr(c|⟨s⟩ a b)
⟨s⟩ a b c d argmaxx4∈V Pr(x4|⟨s⟩ a b c) Pr(⟨s⟩) ·Pr(a|⟨s⟩) ·Pr(b|⟨s⟩ a)·

Pr(c|⟨s⟩ a b)· Pr(d|⟨s⟩ a b c)

Table 8.1: Illustration of generating the three tokens b c d given the prefix ⟨s⟩ a via a
language model. In each step, the model picks a token xi from V so that Pr(xi|x0, ...,xi−1) is
maximized. This token is then appended to the end of the context sequence. In the next step,
we repeat the same process, but based on the new context.

blocks (or layers). Each Transformer block has two stacked sub-layers, one for self-attention
modeling and one for FFN modeling. These sub-layers can be defined using the post-norm
architecture

output = LNorm(F (input)+ input) (8.4)

or the pre-norm architecture

output = LNorm(F (input))+ input (8.5)

where input and output denote the input and output, both being an m×d matrix. The i-th
rows of input and output can be seen as contextual representations of the i-th token in the
sequence.

F (·) is the core function of a sub-layer. For FFN sub-layers, F (·) is a multi-layer FFN. For
self-attention sub-layers, F (·) is a multi-head self-attention function. In general, self-attention
is expressed in a form of QKV attention

Attqkv(Q,K,V) = Softmax(
QKT

√
d

+Mask)V (8.6)

where Q, K and V ∈ Rm×d are the queries, keys, and values, respectively. It is important to
note that only previous tokens are considered when predicting a token. So a masking variable
Mask ∈ Rm×m is incorporated into self-attention to achieve this. The entry (i,k) of Mask

has a value of 0 if i≤ k, and a value of − inf otherwise.

Given a representation H ∈ Rm×d, the multi-head self-attention function can be defined as

F (H) = Merge(head1, ...,headτ )W
head (8.7)

where Merge(·) representees a concatenation of its inputs, and Whead ∈ Rd×d represents a
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x0 x1 ... xm−1

e0 e1 ... em−1

hL
0 hL

1
... hL

m−1

...

Pr(x1|x0)
Pr(x2|x0x1)

Pr(xm|x0x1...xm−1)

x1 x2 ... xm

Language Model

z0 z1 ... zm−1

Post-norm or Pre-norm

Post-norm or Pre-norm

Self-attention

FFN

L
B

lo
ck

s

Figure 8.1: The Transformer-decoder architecture for language modeling. The central com-
ponents are L stacked Transformer blocks, each comprising a self-attention sub-layer and an
FFN sub-layer. To prevent the model from accessing the right-context, a masking variable
is incorporated into self-attention. The output layer uses a Softmax function to generate a
probability distribution for the next token, given the sequence of previous tokens. During
inference, the model takes the previously predicted token to predict the next one, repeating
this process until the end of the sequence is reached. {z0, ...,zm−1} denote the inputs of a
Transformer block, and {hL0 , ...,hLm−1} denote the outputs of the last Transformer block.

parameter matrix. headj is the output of QKV attention on a sub-space of representation

headj = Attqkv(Q
[j],K[j],V[j]) (8.8)

Q[j],K[j],and V[j] are the queries, keys, and values projected onto the j-th sub-space via linear
transformations

Q[j] = HWq
j (8.9)

K[j] = HWk
j (8.10)

V[j] = HWv
j (8.11)

where Wq
j , W

k
j , and Wv

j ∈ Rd×
d
τ are the parameter matrices of the transformations.

Suppose we have L Transformer blocks. A Softmax layer is built on top of the output of
the last block. The Softmax layer outputs a sequence of m distributions over the vocabulary,
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like this 
Pr(·|x0, ...,xm−1)

...
Pr(·|x0,x1)
Pr(·|x0)

 = Softmax(HLWo) (8.12)

where HL is the output of the last Transformer block, and Wo ∈ Rd×|V | is the parameter
matrix.

Figure 8.1 shows the Transformer architecture for language modeling. Applying this
language model follows an autoregressive process. Each time the language model takes a token
xi−1 as input and predicts a token xi that maximizes the probability Pr(xi|x0, ...,xi−1). It is
important to note that, despite different implementation details, many LLMs share the same
architecture described above. These models are called large because both their depth and width
are significant. Table 8.2 shows the model sizes for a few LLMs, as well as their model setups.

8.1.2 Training LLMs

Now suppose that we are given a training set D comprising K sequences. The log-likelihood
of each sequence x= x0...xm in D can be calculated using a language model

Lθ(x) =

m∑
i=1

logPrθ(xi|x0, ...,xi−1) (8.13)

Here the subscript θ affixed to L(·) and Pr(·) denotes the parameters of the language model.
Then, the objective of maximum likelihood training is defined as

θ̂ = argmax
θ

∑
x∈D
Lθ(x) (8.14)

Training Transformer-based language models with the above objective is commonly viewed
as a standard optimization process for neural networks. This can be achieved using gradient
descent algorithms, which are widely supported by off-the-shelf deep learning toolkits. Some-
what surprisingly, better results were continuously yielded as language models were evolved
into more computationally intensive models and trained on larger datasets [Kaplan et al., 2020].
These successes have led NLP researchers to continue increasing both the training data and
model size in order to build more powerful language models.

However, as language models become larger, we confront new training challenges, which
significantly change the problem compared to training relatively small models. One of these
challenges arises from the need for large-scale distributed systems to manage the data, model
parameters, training routines, and so on. Developing and maintaining such systems requires a
significant amount of work in both software and hardware engineering, as well as expertise in
deep learning. A related issue is that when the training is scaled up, we need more computing
resources to ensure the training process can be completed in an acceptable time. For example,
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LLM # of Parameters Depth L Width d # of Heads
(Q/KV)

GPT-1 [Radford et al., 2018] 0.117B 12 768 12/12
GPT-2 [Radford et al., 2019] 1.5B 48 1,600 25/25
GPT-3 [Brown et al., 2020] 175B 96 12,288 96/96

LLaMA2 [Touvron et al., 2023b]
7B 32 4,096 32/32

13B 40 5,120 40/40
70B 80 8,192 64/64

LLaMA3/3.1 [Dubey et al., 2024]
8B 32 4,096 32/8

70B 80 8,192 64/8
405B 126 16,384 128/8

Gemma2 [Team et al., 2024]
2B 26 2,304 8/4
9B 42 3,584 16/8

37B 46 4,608 32/16

Qwen2.5 [Yang et al., 2024]
0.5B 24 896 14/2

7B 28 3,584 28/4
72B 80 8,192 64/8

DeepSeek-V3 [Liu et al., 2024a] 671B 61 7,168 128/128

Falcon [Penedo et al., 2023]
7B 32 4,544 71/71

40B 60 8,192 128/128
180B 80 14,848 232/232

Mistral [Jiang et al., 2023a] 7B 32 4,096 32/32

Table 8.2: Comparison of some LLMs in terms of model size, model depth, model width, and
number of heads (a/b means a heads for queries and b heads for both keys and values).

it generally requires hundreds or thousands of GPUs to train an LLM with tens of billions of
parameters from scratch. This requirement drastically increases the cost of training such models,
especially considering that many training runs are needed as these models are developed. Also,
from the perspective of deep learning, the training process can become unstable if the neural
networks are very deep and/or the model size is very large. In response, we typically need to
modify the model architecture to adapt LLMs to large-scale training. In Section 8.2 we will
present more discussions on these issues.

8.1.3 Fine-tuning LLMs
Once we have pre-trained an LLM, we can then apply it to perform various NLP tasks.
Traditionally language models are used as components of other systems, for example, they
are widely applied to score translations in statistical machine translation systems. By contrast,
in generative AI, LLMs are considered complete systems and are employed to address NLP
problems by making use of their generation nature. A common approach is to describe the task
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we want to address in text and then prompt LLMs to generate text based on this description.
This is a standard text generation task where we continue or complete the text starting from a
given context.

More formally, let x = x0...xm denote a token sequence of context given by users, and
y = y1...yn denote a token sequence following the context. Then, the inference of LLMs can
be defined as a problem of finding the most likely sequence y based on x:

ŷ = argmax
y

logPr(y|x)

= argmax
y

n∑
i=1

logPr(yi|x0, ...,xm,y1, ...,yi−1) (8.15)

Here
∑n

i=1 logPr(yi|x0, ...,xm,y1, ...,yi−1) essentially expresses the same thing as the right-
hand side of Eq. (8.2). It models the log probability of predicting tokens from position m+1,
rather than position 0. Throughout this chapter and subsequent ones, we will employ separate
variables x and y to distinguish the input and output of an LLM, though they can be seen as
sub-sequences from the same sequence. By adopting such notation, we see that the form of the
above equation closely resembles those used in other text generation models in NLP, such as
neural machine translation models.

To illustrate how LLMs are applied, consider the problem of determining the grammatical-
ity for a given sentence. We can define a template like this

{*sentence*}
Question: Is this sentence grammatically correct?
Answer:

Here represents the text we intend to generate. {*sentence*} is a placeholder variable that
will be replaced by the actual sentence provided by the users. For example, suppose we have a
sentence “John seems happy today.”. We can replace the {*sentence*} in the template with
this sentence to have an input to the language model

John seems happy today.
Question: Is this sentence grammatically correct?
Answer:

To perform the task, the language model is given the context x=“John seems happy today
.\n Question : Is this sentence grammatically correct?\n Answer :”4. It then generates the
following text as the answer, based on the context. For example, the language model may
output “Yes” (i.e., y= “Yes”) if this text is the one with the maximum probability of prediction
given this context.

4\n is a special character used for line breaks.
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Likewise, we can define more templates to address other tasks. For example, we can
translate an English sentence into Chinese using the following template

{*sentence*}
Question: What is the Chinese translation of this English sentence?
Answer:

or using an instruction-like template

{*sentence*}
Translate this sentence from English into Chinese.

or using a code-like template.

[src-lang] = English [tgt-lang] = Chinese [input] = {*sentence*}
[output] =

The above templates provide a simple but effective method to “prompt” a single LLM to
perform various tasks without adapting the structure of the model. However, this approach
requires that the LLM can recognize and follow the instructions or questions. One way to do
this is to incorporate training samples with instructions and their corresponding responses into
the pre-training dataset. While this method is straightforward, building and training LLMs from
scratch is computationally expensive. Moreover, making instruction-following data effective
for pre-training requires a significant amount of such data, but collecting large-scale labeled
data for all tasks of interest is very difficult.

A second method, which has been a de facto standard in recent research, is to adapt LLMs
via fine-tuning. As such, the token prediction ability learned in the pre-training phase can
be generalized to accomplish new tasks. The idea behind fine-tuning is that some general
knowledge of language has been acquired in pre-training, but we need a mechanism to activate
this knowledge for applying it to new tasks. To achieve this, we can slightly fine-tune the model
parameters using instruction-following data. This approach is called instruction fine-tuning.

An instruction fine-tuning sample, which is represented by a sequence of tokens, can
be seen as a tuple consisting of an input and the desired output. Here, the input includes
instructions, system information (or system prefix), and any other user-provided information5.
To illustrate, consider the following examples (blue text = input and underlined text = output).

5System information refers to a sequence of tokens added at the beginning of an input in order to guide the
behavior of an LLM, such as, you are a helpful assistant and should not output toxic content.
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Read the following sentence, and answer whether it is grammatically correct.
LLMs are powerful models but are expensive to build.

Yes

LLMs are powerful models but are expensive to build.
Does this sentence make sense grammatically?
Answer Option
- Yes
- No

Yes

Yes or No? Yes = the following sentence is grammatically correct. No = it
contains grammatical errors.
LLMs are powerful models but are expensive to build.

Yes

All these samples describe the same binary classification task, but with different instruc-
tions. To increase the diversity in the fine-tuning data and make LLMs generalize, we can
define more tasks using instructions.

Write a short story about three characters.
Character 1: A boy whose name is Andy.
Character 2: Andy’s dog.
Character 3: Andy’s friend, Jane.

In the heart of a bustling city, Andy, his loyal dog Rocket, and his friend
Jane discovered a hidden garden beneath the glow of twilight. Surrounded by
ancient trees and whispering winds, they shared dreams and secrets, forging
an unbreakable bond. As the night deepened, they made a pact under the
stars to always find magic in the mundane. Together, they realized that true
adventure lay in the moments spent with friends, and every day was a treasure
waiting to be discovered.
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Show me a recipe for making ice cream.

Ingredients:
2 cups heavy cream; 1 cup milk; 3/4 cup sugar; 2 tsp vanilla extract;
Pinch of salt.
Steps:
1. Whisk all ingredients until sugar dissolves.
2. Chill mixture for 2 hours in the fridge.
3. Freeze in a shallow dish, stirring every 30 minutes, 3-4 times.
4. Freeze solid for 2 hours.
5. Serve your homemade ice cream.

If you buy 5 apples and each apple costs $1.20, how much do you spend in
total?

$6.00

Write a Python program to calculate the sum of squares of the following
numbers.
1 , 2 , 10 , -9 , 78

numbers = [1,2,10,-9 ,78]
sum_of_squares = sum(x**2 for x in numbers)
print(sum_of_squares)

To acquire instruction-following abilities, a certain amount of fine-tuning data is required.
This data may include diverse instructions and possible responses. It has been found that
scaling the number of fine-tuning tasks is beneficial for improving the performance of LLMs
[Chung et al., 2022]. Note that although more fine-tuning data is favorable, the amount of this
data is generally orders of magnitude smaller than that of the pre-training data. For example,
LLMs can be fine-tuned with tens or hundreds of thousands of samples, or even fewer if these
samples are of high quality [Zhou et al., 2023a; Chen et al., 2023b], whereas pre-training such
models may require billions or trillions of tokens, resulting in significantly larger computational
demands and longer training times [Touvron et al., 2023a].

It is also worth noting that we should not expect the fine-tuning data to cover all the
downstream tasks to which we intend to apply LLMs. A common understanding of how the pre-
training + fine-tuning approach works is that LLMs have gained knowledge for understanding
instructions and generating responses in the pre-training phase. However, these abilities are not
fully activated until we introduce some form of supervision. The general instruction-following
behavior emerges as we fine-tune the models with a relatively small amount of labeled data.
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As a result, we can achieve some level of zero-shot learning: the fine-tuned models can
handle new tasks that they have not been explicitly trained or fine-tuned for [Sanh et al., 2022;
Wei et al., 2022a]. This zero-shot learning ability distinguishes generative LLMs from earlier
pre-trained models like BERT, which are primarily fine-tuned for specific tasks.

Once we have prepared a collection of instruction-described data, the fine-tuning process
is relatively simple. This process can be viewed as a standard training process as pre-training,
but on a much smaller training dataset. Let Dtune be the fine-tuning dataset and θ̂ be the model
parameters optimized via pre-training. We can modify Eq. (8.14) to obtain the objective of
fine-tuning

θ̃ = argmax
θ̂+

∑
sample∈Dtune

Lθ̂+(sample) (8.16)

Here θ̃ denotes the optimal parameters. The use of notation θ̂+ means that the fine-tuning
starts with the pre-trained parameters θ̂.

For each sample∈Dtune, we divide it into an input segment xsample and an output segment
ysample, that is,

sample = [ysample,xsample] (8.17)

We then define the loss function to be

Lθ̂+(sample) = − logPrθ̂+(ysample|xsample) (8.18)

In other words, we compute the loss over the sub-sequence ysample, rather than the entire
sequence. In a practical implementation of back-propagation for this equation, the sequence
[ysample,xsample] is constructed in the forward pass as usual. However, in the backward pass,
error gradients are propagated back only through the parts of the network that correspond to
ysample, leaving the rest of the network unchanged. As an example, consider a sequence

⟨s⟩ Square this number . 2 .︸ ︷︷ ︸
Context (Input)

The result is 4 .︸ ︷︷ ︸
Prediction (Output)

The loss is calculated and back propagated only for The result is 4 ..
Instruction fine-tuning also requires substantial engineering work. In order to achieve

satisfactory results, one may experiment with different settings of the learning rate, batch size,
number of fine-tuning steps, and so on. This typically requires many fine-tuning runs and
evaluations. The cost and experimental effort of fine-tuning remain critical and should not be
overlooked, though they are much lower than those of the pre-training phase.

While we focus on instruction fine-tuning for an illustrative example here, fine-tuning
techniques play an important role in developing various LLMs and are more widely used.
Examples include fine-tuning LLMs as chatbots using dialog data, and adapting these models
to handle very long sequences. The wide application of fine-tuning has led researchers to
improve these techniques, such as designing more efficient fine-tuning algorithms. While the
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research on fine-tuning is fruitful, in this section we just give a flavour of the key steps involved.
We will see more detailed discussions on this topic in the following chapters.

8.1.4 Aligning LLMs with the World

Instruction fine-tuning provides a simple way to adapt LLMs to tasks that can be well defined.
This problem can broadly be categorized as an alignment problem. Here, alignment is referred
to as a process of guiding LLMs to behave in ways that align with human intentions. The
guidance can come from labeled data, human feedback, or any other form of human preferences.
For example, we want LLMs not only to be accurate in following instructions, but also to be
unbiased, truthful, and harmless. So we need to supervise the models towards human values
and expectations. A common example is that when we ask an LLM how to build a weapon, it
may provide a list of key steps to do so if it is not carefully aligned. However, a responsible
model should recognize and avoid responding to requests for harmful or illegal information.
Alignment in this case is crucial for ensuring that LLMs act responsibly and in accordance
with ethical guidelines.

A related concept to alignment is AI safety. One ultimate goal of AI is to build intelligent
systems that are safe and socially beneficial. To achieve this goal we should keep these systems
robust, secure, and subjective, in any conditions of real-world use, even in conditions of misuse
or adverse use. For LLMs, the safety can be increased by aligning them with appropriate
human guidance, such as human labeled data and interactions with users during application.

Alignment is difficult as human values and expectations are diverse and shifting. Some-
times, it is hard to describe precisely what humans want, unless we see the response of LLMs
to user requests. This makes alignment no longer a problem of tuning LLMs on predefined
tasks, but a bigger problem of training them with the interactions with the real world.

As a result of the concerns with controlling AI systems, there has been a surge in research
on the alignment issue for LLMs. Typically, two alignment steps are adopted after LLMs are
pre-trained on large-scale unlabeled data.

• Supervised Fine-tuning (SFT). This involves continuing the training of pre-trained
LLMs on new, task-oriented, labelled data. A commonly used SFT technique is instruc-
tion fine-tuning. As described in the previous subsection, by learning from instruction-
response annotated data, LLMs can align with the intended behaviors for following
instructions, thereby becoming capable of performing various instruction-described
tasks. Supervised fine-tuning can be seen as following the pre-training + fine-tuning
paradigm, and offers a relatively straightforward method to adapt LLMs.

• Learning from Human Feedback. After an LLM finishes pre-training and supervised
fine-tuning, it can be used to respond to user requests if appropriately prompted. But
this model may generate content that is unfactual, biased, or harmful. To make the
LLM more aligned with the users, one simple approach is to directly learn from human
feedback. For example, given some instructions and inputs provided by the users, experts
are asked to evaluate how well the model responds in accordance with their preferences
and interests. This feedback is then used to further train the LLM for better alignment.
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A typical method for learning from human feedback is to consider it as a reinforcement
learning (RL) problem, known as reinforcement learning from human feedback (RLHF)
[Ouyang et al., 2022]. The RLHF method was initially proposed to address general sequential
decision-making problems [Christiano et al., 2017], and was later successfully employed
in the development of the GPT series models [Stiennon et al., 2020]. As a reinforcement
learning approach, the goal of RLHF is to learn a policy by maximizing some reward from the
environment. Specifically, two components are built in RLHF:

• Agent. An agent, also called an LM agent, is the LLM that we want to train. This agent
operates by interacting with its environment: it receives a text from the environment and
outputs another text that is sent back to the environment. The policy of the agent is the
function defined by the LLM, that is, Pr(y|x).

• Reward Model. A reward model is a proxy of the environment. Each time the agent
produces an output sequence, the reward model assigns this output sequence a numerical
score (i.e., the reward). This score tells the agent how good the output sequence is.

In RLHF, we need to perform two learning tasks: 1) reward model learning, which involves
training a reward model using human feedback on the output of the agent, and 2) policy
learning, which involves optimizing a policy guided by the reward model using reinforcement
learning algorithms. Here is a brief outline of the key steps involved in RLHF.

• Build an initial policy using pre-training and instruction fine-tuning.

• Use the policy to generate multiple outputs for each input, and then collect human
feedback on these outputs (e.g., comparisons of the outputs).

• Learn a reward model from the human feedback.

• Fine-tune the policy with the supervision from the reward model.

Figure 8.2 shows an overview of RLHF. Given that this section serves only as a brief
introduction to concepts of LLMs, a detailed discussion of RLHF techniques will not be
included. We instead illustrate the basic ideas behind RLHF using a simple example.

Suppose we have trained an LLM via pre-training and instruction fine-tuning. This LLM
is deployed to respond to requests from users. For example, a user may input

How can I live a more environmentally friendly life?

We use the LLM to generate 4 different outputs (denoted by {y1, ...,y4}) by sampling the
output space
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LLM

Pre-training Data

I love the food here! ...
How can I get there? ...

SFT Data

weather in London . ...
Write a poem about the

Pre-training &
Supervised fine-tuning

(a) Learning an Initial LLM

LLM
User Input

environmentally friendly?
How can I live more

Model Output

3. ............ 4. ............
1. ............ 2. ............

Predicting

Comparisons

y1 ≻ y4 ≻ y2 ≻ y3

Annotating Data with Human Preferences

(b) Annotating Data with Human Preferences

Reward Model

Comparison Data

{(x,yk1
≻ yk2
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Training

(c) Training the Reward Model

LLM
(Policy)
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x∼D

Input-output Pairs

{x,y}

Sampling y via the Policy Pr(y|x)
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Figure 8.2: An overview of RLHF. There are 4 key steps involved: a) training an initial LLM
(i.e., policy) using pre-training and supervised fine-tuning; b) collecting human preference data
by ranking the outputs of the LLM; c) training a reward model using the ranking results; d)
RL fine-tuning of the policy based on the reward model. Double line arrows mean training or
fine-tuning.

Output 1 (y1): Consider switching to an electric vehicle or bicycle instead of
traditional cars to reduce carbon emissions and protect our
planet.

Output 2 (y2): Adopt a minimalist lifestyle. Own fewer possessions to reduce
consumption and the environmental impact of manufacturing
and disposal.

Output 3 (y3): Go off-grid. Generate your own renewable energy and collect
rainwater to become completely self-sufficient and reduce
reliance on non-renewable resources.

Output 4 (y4): Support local farm products to reduce the carbon footprint of
transporting food, while enjoying fresh, healthy food.
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We then ask annotators to evaluate these outputs. One straightforward way is to assign a
rating score to each output. In this case, the reward model learning problem can be framed
as a task of training a regression model. But giving numerical scores to LLM outputs is not
an easy task for annotators. It is usually difficult to design an annotation standard that all
annotators can agree on and easily follow. An alternative method, which is more popular in the
development of LLMs, is to rank these outputs. For example, a possible ranking of the above
outputs is

y1 ≻ y4 ≻ y2 ≻ y3

A reward model is then trained using this ranking result. In general, a reward model in
RLHF is a language model that shares the same architecture as the target LLM, but with a
smaller model size. Given the input x and output yk, we concatenate them to form a sequence
seqk = [x,yk]. This sequence is processed from left to right using forced decoding. Since
each position can only access its left context in language modeling, the output of the top-most
Transformer layer at the first position cannot be used as the representation of the sequence.
Instead, a special symbol (e.g., ⟨\s⟩) is added to the end of the sequence, and the corresponding
output of the Transformer layer stack is considered as the representation of the entire sequence.
An output layer, such as a linear transformation layer, is built on top of this representation to
generate the reward, denoted by R(seqk) or R(x,yk).

We train this reward model using ranking loss. For example, a pair-wise ranking loss
function can be written in the form

Lossω(Dr) = −E(x,yk1
,yk2

)∼Dr
log(Sigmoid(Rω(x,yk1)−Rω(x,yk2))) (8.19)

where ω represents the parameters of the reward model, and Dr represents a set of tuples of an
input and a pair of outputs. (x,yk1 ,yk2)∼Dr is a sampling operation which draws a sample
(x,yk1 ,yk2) from Dr with some probability. As an example, suppose we first draw a model
input x with a uniform distribution and then draw a pair of model outputs with a probability of
yk1 ≻ yk2 given x (denoted by Pr(yk1 ≻ yk2 |x)). The corresponding loss function is given by

Lossω(Dr)
= −

∑
Pr(x) ·Pr(yk1 ≻ yk2 |x) · log(Sigmoid(Rω(x,yk1)−Rω(x,yk2)))

= − 1

K

∑
Pr(yk1 ≻ yk2 |x) · log(Sigmoid(Rω(x,yk1)−Rω(x,yk2))) (8.20)

where K represents the number of model inputs involved in sampling. While the form of these
functions may seem complex, their idea is simple: we penalize the model if the predicted
ranking of two outputs differs from the human-labeled ranking. By contrast, the model receives
a bonus, if the predicted ranking matches the human-labeled ranking.

We can train the reward model by minimizing the above ranking loss

ω̂ = argmin
ω

Lossω(Dr) (8.21)
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The resulting model Rω̂(·) can be employed to evaluate any given pair of input and output.
Note that although the reward model is trained using a ranking-based objective, it is used for
scoring. This allows it to provide continuous supervision signals, which is very beneficial for
training other models.

We now turn to the policy learning problem. A commonly adopted objective is to maximize
the reward on a set of input-output pairs. Following an analogous form of Eq. (8.16), we obtain
a simple training objective for RL fine-tuning

θ̃ = argmax
θ̂+

E(x,yθ̂+ )∼Drlft
Rω̂(x,yθ̂+) (8.22)

where the optimal parameters θ̃ are obtained by fine-tuning the pre-trained parameters θ̂. Drlft

is the RL fine-tuning dataset. For each sample (x,yθ̂+), x is sampled from a prepared dataset
of input sequences, and yθ̂+ is sampled from the distribution Prθ̂+(y|x) given by the policy.

In practice, more advanced reinforcement learning algorithms, such as proximal policy
optimization (PPO), are often used for achieving more stable training, as well as better
performance. We leave the detailed discussion of reinforcement learning algorithms to the
following parts of this book where RLHF is extensively used for alignment.

An interesting question arises here: why not consider learning from human preferences as
a standard supervised learning problem? This question is closely related to our aforementioned
discussion on the difficulty of data annotation. Often, describing human values and goals is
challenging, and it is even more difficult for humans to provide outputs that are well aligned.
As an alternative, annotating the preferences of a given list of model outputs offers a simpler
task. By doing so, we can create a model that understands human preferences, which can then
be used as a reward model for training policies. From the perspective of machine learning,
RLHF is particularly useful for scenarios where the desired behavior of an agent is difficult
to demonstrate but can be easily recognized by humans. Another advantage of RLHF is its
ability to explore the sample space. By employing sampling techniques, models trained with
reinforcement learning can venture beyond the annotated data set to explore additional samples.
This exploratory ability allows RLHF to discover potentially beneficial policies that are not
immediately apparent from the labeled data alone.

8.1.5 Prompting LLMs
We have so far shown that LLMs can be used to perform various tasks by giving them
appropriate prompts. There are no restrictions on these prompts, which can include any
information we wish to ask or communicate with LLMs, such as natural language instructions
and the context of conversations. Since this approach requires no additional training or tuning,
adapting LLMs becomes highly efficient once they are developed. This somewhat influences
the paradigms in NLP: we no longer need to develop specific systems for individual tasks but
can instead use a single, well-trained LLM to perform different tasks by prompting it. An
appealing aspect of LLM prompting arises as a result: users can easily have “customized”
systems by designing their own prompts for LLMs. Given the important role played by
prompting in LLMs, prompting engineering has become a very active area of research in
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NLP.

The term prompt is used in many different ways in the literature. In this chapter, this
term refers to the entire input to LLMs, and so we use the terms prompt and model input
interchangeably. Before discussing prompting further, let us first see a few examples where
the prompts are more complex than those presented in the previous subsections. Note that
this subsection is not aimed at writing high-quality prompts but rather at highlighting some
interesting issues in prompting LLMs.

One of the popular ways to use LLMs is to assign them a “role” played in generating
responses. For example, LLMs can act as a psychologist when answering questions.

Please explain what delayed gratification is?

Note, you are a researcher with a deep background in psychology. Your own
field of study is developmental psychology in children, with a focus on aspects
of control and intelligence. You are very familiar with the concept of delayed
gratification and have applied it to your own research. You have published
papers on delayed gratification and conducted related experiments.

Delayed gratification is the process of resisting an immediate reward in
anticipation of receiving a more valuable reward in the future. It is a
significant concept in developmental psychology, especially in relation to how
children learn self-control and develop cognitive abilities. Research shows
that the ability to delay gratification is associated with positive outcomes in
academic performance, social competence, and emotional well-being. Studies
and experiments in this area highlight the importance of cultivating this skill
early in life to support long-term success and resilience.

Another example is the use of LLMs in detecting and correcting errors such as syntactic or
semantic mistakes in text. For an LLM which is trained on both code and natural language
data, we may use it for code debugging6.

6In this example, the code is not tokenized for easier reading.
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Fix the bugs in this C language program.

#include <stdio.h>
int main() {

printg("Hello, World!")
return 0;

}

1. The function name ’printg’ is incorrect . It should be ’printf’.
2. There is a missing semicolon at the end of the ’printf’ function call.

Here is the corrected version of the program:

#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

Also, LLMs can be fine-tuned to act as a conversation partner 7.

Hi! I’m an assistant. How can I help you?

Who won the FIFA World Cup 2022?

Argentina won the FIFA World Cup 2022.

Where was it held?

The 2022 FIFA World Cup was held in Qatar.

How many times has Argentina won the World Cup?

Argentina has won the FIFA World Cup three times.

...

These examples and previous ones have shown that appropriate responses can be generated
via prompts involving clear instructions and questions. However, when problem solving
requires knowledge that is not explicitly specified, LLMs may make mistakes, even though the
instructions are sufficiently clear and precise. A family of challenging tasks for LLMs involves
arithmetic reasoning and commonsense reasoning. For example, we can ask an LLM to solve
primary school math problems presented in natural language.

7To fine-tune an LLM for multi-turn dialogue, one needs to consider conversation history in the context for
predicting the response in the current round of conversation. This makes the actual prompt used in response
generation relatively longer than that used in single-turn dialogue.
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Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?

The answer is 10.

The correct answer should be 7, so the model output is incorrect.

One approach to addressing such issues is to incorporate learning into prompts, called
in-context learning or (ICL). The idea of ICL is to demonstrate the ways to solve problems in
prompts, and condition predictions on these demonstrations. Here is an example where a similar
problem and the corresponding answer are presented in the prompt (green = demonstrations).

Tom has 12 marbles. He wins 7 more marbles in a game with his friend but
then loses 5 marbles the next day. His brother gives him another 3 marbles as
a gift. How many marbles does Tom have now?

The answer is 17.

Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?

The answer is 12.

But the LLM still made mistakes this time. A reason for this might be that solving math
problems does not only involve problem-answer mappings but also, to a larger extent, the
underlying logical inference in multiple steps. A method to improve the inference abilities of
LLMs is chain-of-thought prompting (COT prompting) [Wei et al., 2022c]. In COT prompt-
ing, we decompose complex reasoning problems into multiple problem-solving intermediate
steps. These steps are demonstrated in prompts so that LLMs can be prompted to learn to
mimic the underlying thought processes in solving the problems. COT prompting has been
found to be very useful for achieving good results on challenging tasks, such as the GSM8K
mathematical reasoning benchmark.

Consider the above demonstration example Tom has 12 marbles. He wins 7 more marbles
in a game with his friend but then loses 5 marbles the next day. His brother gives him another
3 marbles as a gift. How many marbles does Tom have now ?. The corresponding logical
reasoning steps can be structured:

1. Tom starts with 12 marbles.

2. He wins 7 more marbles in a game, so we add those to his initial count: 12 marbles + 7
marbles = 19 marbles.

3. The next day, Tom loses 5 marbles, so we subtract those from his current total: 19
marbles - 5 marbles = 14 marbles.
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4. His brother gives him 3 more marbles, so we add those to his current total: 14 marbles +
3 marbles = 17 marbles.

5. After all these events, Tom has 17 marbles.

We can add these reasoning steps into the prompt, and get the correct answer.

Tom has 12 marbles. He wins 7 more marbles in a game with his friend but
then loses 5 marbles the next day. His brother gives him another 3 marbles as
a gift. How many marbles does Tom have now?

Tom initially has 12 marbles. After winning a game, he gains 7 more, increasing
his total to 19 marbles. He loses 5 marbles the next day, bringing his total
down to 14 marbles. His brother gifts him 3 more marbles, increasing his total
to 17 marbles. Therefore, Tom now has 17 marbles. So the answer is 17.

Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?

Jack starts with 7 apples. He eats 2 apples for dinner, so we subtract 2 from
7, leaving him with 5 apples. His mom gives him 5 more apples, adding 5 to
his current total. Now he has 5 + 5 = 10 apples. The next day, Jack gives 3
apples to his friend John. Subtracting 3 from 10, Jack is left with 7 apples.
Therefore, Jack has 7 apples left. So the answer is 7.

This approach is also called one-shot COT prompting. Likewise, we can add more
demonstrations to have a few-shot COT prompting approach.

Furthermore, a special kind of COT, zero-shot COT, introduces instructions that provoke
LLMs to think, without presenting any intermediate reasoning steps in the prompts [Kojima
et al., 2022]. An interesting example is that by appending a simple sentence “Let’s think step
by step.” to the end of a prompt, LLMs can generate reasoning steps to reach the final answer.
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Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?
Let’s think step by step.

1. Initial Quantity: Jack starts with 7 apples.
2. After Dinner: He eats 2 apples, so 7−2 = 5 apples remain.
3. His Mom Gives More: His mom gives him 5 more apples, so 5+5 = 10

apples are now with him.
4. Giving to John: The next day, Jack gives 3 apples to his friend John,

so 10−3 = 7 apples are left.
In the end, Jack has 7 apples left.

Zero-shot, one-shot, and few-shot learning are common concepts in the area of in-context
learning for LLMs and are not restricted to COT prompting. Broadly speaking, any prompting
that involves only simple instructions without any demonstrations can be considered a form of
zero-shot learning. This zero-shot learning ability emerges as LLMs are pre-trained and/or
fine-tuned. Also, one-shot and few-shot learning methods are more often considered when
LLMs do not acquire the corresponding zero-shot learning ability. These methods are therefore
important for in-context learning when addressing new tasks. Examples include those for
performing various NLP tasks by demonstrating task-formatted samples. See the following
examples for sentiment sentence classification and phrase translation via few-shot learning.

Given the following text snippets, classify their sentiment as Positive, Negative,
or Neutral.

Example 1: “I had an amazing day at the park!”
Sentiment: Positive

Example 2: “The service at the restaurant was terrible.”
Sentiment: Negative

Example 3: “I think it’s going to rain today.”
Sentiment: Neutral

Text: “This movie was a fantastic journey through imagination.”
Sentiment: Positive
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Translate the following Chinese phrases into English.

Example 1: “你好”
Translation: “Hello”

Example 2: “谢谢你”
Translation: “Thank you”

Phrase to translate: “早上好”
Translation: “Good Morning”

Above, we have presented examples to illustrate the fundamental in-context learning
capabilities of prompting LLMs. This section, however, does not include more advanced
prompting techniques in order to keep the content concise and compact. More discussions on
prompting can be found in Chapter 9.

8.2 Training at Scale
As a first step in developing LLMs, we need to train these models on large amounts of data.
The training task is itself standard: the objective is to maximize the likelihood, which can be
achieved via gradient descent. However, as we scale up both the model size and the amount of
data, the problem becomes very challenging, for example, large models generally make the
training unstable. In this section, we discuss several issues of large-scale training for LLMs,
including data preparation, model modification, and distributed training. We also discuss the
scaling laws for LLMs, which help us understand their training efficiency and effectiveness.

8.2.1 Data Preparation
The importance of data cannot be overstated in NLP. As larger neural networks are developed,
the demand for data continues to increase. For example, developing LLMs may require trillions
of tokens in pre-training (see Table 8.3), orders of magnitude larger than those used in training
conventional NLP models. In general, we may want to gather as much training data as possible.
However, larger training datasets do not mean better training results, and the development of
LLMs raises new issues in creating or collecting these datasets.

A first issue is the quality of data. High-quality data has long been seen as crucial
for training data-driven NLP systems. Directly using raw text from various sources is in
general undesirable. For example, a significant portion of the data used to train recent LLMs
comes from web scraping, which may contain errors and inappropriate content, such as toxic
information and fabricated facts. Also, the internet is flooded with machine-generated content
due to the widespread use of AI, presenting further challenges for processing and using web-
scraped data. Researchers have found that training LLMs on unfiltered data is harmful [Raffel
et al., 2020]. Improving data quality typically involves incorporating filtering and cleaning
steps in the data processing workflow. For example, Penedo et al. [2023] show that by adopting
a number of data processing techniques, 90% of their web-scraped data can be removed for
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LLM # of Tokens Data

GPT3-175B [Brown et al., 2020] 0.5T Webpages, Books, Wikipedia

Falcon-180B [Almazrouei et al., 2023] 3.5T Webpages, Books, Conversations,
Code, Technical Articles

LLaMA2-65B [Touvron et al., 2023a] 1.0T ∼ 1.4T Webpages, Code, Wikipedia,
Books, Papers, Q&As

PaLM-450B [Chowdhery et al., 2022] 0.78T Webpages, Books, Conversations,
Code, Wikipedia, News

Gemma-7B [Gemma Team, 2024] 6T Webpages, Mathematics, Code

Table 8.3: Amounts of training data used in some LLMs in terms of the number of tokens.

LLM training. In addition to large-scale web-scraped data, LLM training data often includes
books, papers, user-generated data on social media, and so on. Most of the latest LLMs are
trained on such combined datasets, which are found to be important for the strong performance
of the resulting models.

A second issue is the diversity of data. We want the training data to cover as many types
of data as possible, so that the trained models can adapt to different downstream tasks easily.
It has been widely recognized that the quality and diversity of training data both play very
important roles in LLMs. An interesting example is that incorporating programming code into
training data has been found to be beneficial for LLMs. The benefits are demonstrated not
only in enhancing the programming abilities of LLMs, but also in improving reasoning for
complex problems, especially those requiring COT prompting. The concept “diversity” can
be extended to include language diversity as well. For example, many LLMs are trained on
multi-lingual data, and therefore we can handle multiple languages using a single model. While
this approach shows strong abilities in multi-lingual and cross-lingual tasks, its performance on
specific languages largely depends on the volume and quality of the data for those languages.
It has been shown in some cases to provide poor results for low-resource languages.

A third issue is the bias in training data. This is not a problem that is specific to LLMs
but exists in many NLP systems. A common example is gender bias, where LLMs show
a preference for one gender over another. This can partly be attributed to class imbalance
in the training data, for example, the term nurses is more often associated with women. In
order to debias the data, it is common practice to balance the categories of different language
phenomena, such as gender, ethnicity, and dialects. The bias in data is also related to the
diversity issue mentioned above. For example, since many LLMs are trained and aligned with
English-centric data, they are biased towards the cultural values and perspectives prevalent
among English-speaking populations. Increasing language diversity in training data can
somewhat mitigate the bias.

Another issue with collecting large-scale data is the privacy concern. If LLMs are trained
on data from extensive sources, this potentially leads to risks regarding the exposure of
sensitive information, such as intellectual property and personal data. This is particularly
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concerning given the capacity of LLMs to represent patterns from the data they are trained
on, which might inadvertently involve memorizing and reproducing specific details. A simple
approach to privacy protection is to remove or anonymize sensitive information. For example,
anonymization techniques can be applied to remove personally identifiable information from
training data to prevent LLMs from learning from such data. However, in practice, erasing or
redacting all sensitive data is difficult. Therefore, many LLMs, particularly those launched for
public service, typically work with systems that can detect the potential exposure of sensitive
data, or are fine-tuned to reject certain requests that could lead to information leakage.

8.2.2 Model Modifications

Training LLMs is difficult. A commonly encountered problem is that the training process
becomes more unstable as LLMs get bigger. For example, one needs to choose a small learning
rate to achieve stable training with gradient descent, but this in turn results in much longer
training times. Sometimes, even when the training configuration is carefully designed, training
may diverge at certain points during optimization. The training of LLMs is generally influenced
by many factors, such as parameter initialization, batching, and regularization. Here, we focus
on common modifications and improvements to the standard Transformer architecture, which
are considered important in developing trainable LLMs.

1. Layer Normalization with Residual Connections

Layer normalization is used to stabilize training for deep neural networks. It is a process of
subtracting the mean and dividing by the standard deviation. By normalizing layer output in
this way, we can effectively reduce the covariate shift problem and improve the training stability.
In Transformers, layer normalization is typically used together with residual connections. As
described in Section 8.1.1, a sub-layer can be based on either the post-norm architecture, in
which layer normalization is performed right after a residual block, or the pre-norm architecture,
in which layer normalization is performed inside a residual block. While both of these
architectures are widely used in Transformer-based systems [Wang et al., 2019a], the pre-norm
architecture has proven to be especially useful in training deep Transformers. Given this, most
LLMs are based on the pre-norm architecture, expressed as output = LNorm(F (input))+

input.

A widely-used form of the layer normalization function is given by

LNorm(h) = α · h−µ
σ+ ϵ

+β (8.23)

where h is a d-dimensional real-valued vector, µ is the mean of all the entries of h, and σ is the
corresponding standard deviation. ϵ is introduced for the sake of numerical stability. α ∈ Rd

and β ∈ Rd are the gain and bias terms.

A variant of layer normalization, called root mean square (RMS) layer normalization, only
re-scales the input vector but does not re-center it [Zhang and Sennrich, 2019]. The RMS layer
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normalization function is given by

LNorm(h) = α · h

σrms+ ϵ
+β (8.24)

where σrms is the root mean square of h, that is, σrms = (1d
∑d

k=1h
2
k)

1
2 . This layer normaliza-

tion function is used in LLMs like the LLaMA series.

2. Activation Functions in FFNs

In Transformers, FFN sub-layers are designed to introduce non-linearities into representation
learning, and are found to be useful for preventing the representations learned by self-attention
from degeneration8 [Dong et al., 2021]. A standard form of the FFNs used in these sub-layers
can be expressed as

FFN(h) = σ(hWh+bh)Wf +bf (8.25)

where Wh ∈ Rd×dh , bh ∈ Rdh , Wf ∈ Rdh×d, and bf ∈ Rd are the parameters, and dh is the
hidden size. σ(·) is the activation function of the hidden layer. A common choice for σ(·) is
the rectified linear unit (ReLU), given by

σrelu(h) = max(0,h) (8.26)

In practical implementations, increasing dh is helpful and thus it is often set to a larger
number in LLMs. But a very large hidden size poses challenges for both training and deploy-
ment. In this case, the design of the activation function plays a relatively more important
role in wide FFNs. There are several alternatives to the ReLU in LLMs. One of these is the
gaussian error linear unit (GeLU) which can be seen as a smoothed version of the ReLU.
Rather than controlling the output by the sign of the input, the GeLU function weights its input
by the percentile Pr(h≤ h). Here h is a d-dimensional vector whose entries are drawn from
the standard normal distribution Gaussian(0,1)9. Specifically, the GeLU function is defined
to be

σgelu(h) = hPr(h≤ h)

= hΦ(h) (8.27)

where Φ(h) is the cumulative distribution function of Gaussian(0,1), which can be imple-
mented in convenient ways [Hendrycks and Gimpel, 2016]. The GeLU function has been
adopted in several LLMs, such as BERT, GPT-3, and BLOOM.

Another family of activation functions which is popular in LLMs is gated linear unit

8Here degeneration refers to the phenomenon in which the rank of a matrix is reduced after some processing.
9Pr(h ≤ h) is an informal notation. It refers to a vector, with each entry representing the percentile for the

corresponding entry of h.
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(GLU)-based functions. The basic form of GLUs is given by

σglu(h) = σ(hW1+b1)⊙ (W2+b2) (8.28)

where W1 ∈ Rd×d, b1 ∈ Rd, W2 ∈ Rd×d, and b2 ∈ Rd are model parameters. Different
choices of σ(·) result in different versions of GLU functions. For example, if σ(·) is defined to
be the GeLU function, we will have the GeGLU function

σgeglu(h) = σgelu(hW1+b1)⊙ (W2+b2) (8.29)

This activation function has been successfully applied in LLMs like Gemma.

As another example, consider σ(·) to be the Swish function σswish(h) = h⊙Sigmoid(ch)

[Ramachandran et al., 2017]. Then, the SwiGLU function is given by

σswiglu(h) = σswish(hW1+b1)⊙ (W2+b2) (8.30)

Both the PaLM and LLaMA series are based on the SwiGLU function. For more discussions
of GLUs, the reader can refer to Shazeer [2020]’s work.

3. Removing Bias Terms

Another popular model design is to remove the bias terms in affine transformations used in
LLMs. This treatment can be applied to layer normalization, transformations of the inputs to
QKV attention, and FFNs. For example, we can modify Eq. (8.25) to obtain an FFN with no
bias terms

FFN(h) = σ(hWh)Wf (8.31)

Chowdhery et al. [2022] report that removing bias terms helps improve the training stability
of LLMs. This method has been used in several recent LLMs, such as LLaMA and Gemma.

4. Other Issues

Many LLMs also involve modifications to their positional embedding models. For example,
one can replace sinusoidal positional encodings with rotary position embeddings so that the
learned LLMs can handle long sequences better. These models will be discussed in Section
8.3.

Note that while model modifications are common in training LLMs, the stability of training
can be improved in many different ways. For example, increasing the batch size as the training
proceeds has been found to be useful for some LLMs. In general, achieving stable and efficient
large-scale LLM training requires carefully designed setups, including learning schedules,
optimizer choices, training parallelism, mixed precision training, and so on. Some of these
issues are highly engineered, and therefore, we typically need a number of training runs to
obtain satisfactory LLMs.
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8.2.3 Distributed Training

Training LLMs requires significant amounts of computational resources. A common approach
to improving training efficiency is to use large-scale distributed systems. Fortunately, alongside
the rise of neural networks in AI, deep learning-oriented software and hardware have been
developed, making it easier to implement LLMs and perform computations. For example, one
can now easily fine-tune an LLM using deep learning software frameworks and a machine
with multiple GPUs. However, scaling up the training of LLMs is still challenging, and
requires significant efforts in developing hardware and software systems for stable and efficient
distributed training.

An important consideration of distributed training is parallelism. There are several forms
of parallelism: data parallelism, model parallelism, tensor parallelism, and pipeline parallelism.
Despite different ways to distribute computations across devices, these parallelism methods
are based on a similar idea: the training problem can be divided into smaller tasks that can
be executed simultaneously. The issue of parallelism in training LLMs has been extensively
studied [Narayanan et al., 2021; Fedus et al., 2022b]. Here we sketch the basic concepts.

• Data Parallelism. This method is one of the most widely used parallelism methods for
training neural networks. To illustrate, consider the simplest case where the standard
delta rule is used in gradient descent

θt+1 = θt− lr ·
∂Lθt(Dmini)

∂θt
(8.32)

where the new parameters θt+1 is obtained by updating the latest parameters θt with a
small step lr in the direction of the negative loss gradient. ∂Lθt

(Dmini)

∂θt
is the gradient of

the loss with respect to the parameters θt, and is computed on a minibatch of training
sample Dmini. In data parallelism, we divide Dmini into N smaller batches, denoted by
{D1, ...,DN}. Then, we distribute these batches to N workers, each with a correspond-
ing batch. Once the data is distributed, these workers can work at the same time. The
gradient of the entire minibatch is obtained by aggregating the gradients computed by
the workers, like this

∂Lθt(Dmini)

∂θt
=

∂Lθt(D1)

∂θt︸ ︷︷ ︸
worker 1

+
∂Lθt(D2)

∂θt︸ ︷︷ ︸
worker 2

+ · · ·+ ∂Lθt(DN )
∂θt︸ ︷︷ ︸

worker N

(8.33)

In ideal cases where the workers coordinate well and the communication overhead is
small, data parallelism can achieve nearly an N -fold speed-up for training.

• Model Parallelism. Although data parallelism is simple and effective, it requires each
worker to run the entire LLM and perform the complete forward and backward process.
As LLMs grow larger, it sometimes becomes unfeasible to load and execute an LLM
on a single device. In this case, we can decouple the LLM into smaller components
and run these components on different devices. One simple way to do this is to group
consecutive layers in the layer stack and assign each group to a worker. The workers
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operate in the order of the layers in the stack, that is, in the forward pass we process
the input from lower-level to upper-level layers, and in the backward pass we propagate
the error gradients from upper-level to lower-level layers. Consider, for example, a
Transformer decoder with L stacked blocks. To distribute the computation load, each
block is assigned to a worker. See the following illustration for a single run of the
forward and backward passes of this model.

Worker L BL (↑) BL (↓)

... ... ...

Worker 2 B2 (↑) B2 (↓)

Worker 1 B1 (↑) B1 (↓)

Here Bl denotes the computation of block l, and the symbols ↑ and ↓ denote the forward
and backward passes, respectively. Note that this parallelism method forces the workers
to run in sequence, so a worker has to wait for the previous worker to finish their job.
This results in the devices being idle for most of the time. In practical systems, model
parallelism is generally used together with other parallelism mechanisms to maximize
the use of devices.

• Tensor Parallelism. Parallelism can also be performed in a single computation step.
A common example is splitting a large parameter matrix into chunks, multiplying an
input tensor with each of these chunks separately, and then concatenating the results of
these multiplications to form the output. For example, consider the multiplication of
the representation h ∈ Rd with the parameter matrix Wh ∈ Rd×dh in an FFN sub-layer
(see Eq. (8.25)). We can slice the matrix Wh ∈ Rd×dh vertically to a sequence of M
sub-matrices

Wh =
[
W1

h W2
h ... WM

h

]
(8.34)

where each sub-matrix Wk
h has a shape of d× dh

M . The multiplication of h with Wh can
be expressed as

hWh = h
[
W1

h W2
h ... WM

h

]
=

[
hW1

h hW2
h ... hWM

h

]
(8.35)

We can perform matrix multiplications {hW1
h,hW

2
h, ...,hW

M
h } on M devices sepa-

rately. As a result, we distribute a large matrix multiplication across multiple devices,
each of which may have relatively small memory. From the perspective of the design of
modern GPUs, tensor parallelism over GPUs provides a two-level, tile-based approach
to parallel computing. First, at a higher level, we decompose a matrix multiplication
into sub-matrix multiplications that can directly fit into the memory of GPUs. Then, at
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a lower level, we execute these sub-matrix multiplications on GPUs using tile-based
parallel algorithms that are specifically optimized for GPUs.

• Pipeline Parallelism. Above, in model parallelism, we have described a simple ap-
proach to spreading groups of model components across multiple devices. But this
method is inefficient because only one device is activated at a time during processing.
Pipeline parallelism addresses this issue by introducing overlaps between computations
on different devices [Harlap et al., 2018; Huang et al., 2019]. To do this, a batch of
samples is divided into a number of micro-batches, and then these micro-batches are
processed by each worker as usual. Once a micro-batch is processed by a worker and
passed to the next one, the following micro-batch immediately occupies the same worker.
In other words, we create a pipeline in which different computation steps can overlap if
multiple jobs are given to the pipeline. The following shows an illustration of pipeline
parallelism for processing 3 micro-batches.

Worker L BL,1 BL,2 BL,3 BL,1 BL,2 BL,3

... ... ...

Worker 2 B2,1 B2,2 B2,3 B2,1 B2,2 B2,3

Worker 1 B1,1 B1,2 B1,3 B1,1 B1,2 B1,3

Here Bl,k represents the processing of the k-th micro-batch by the l-th worker. Ideally
we would like to maximize the number of micro-batches, and thus minimize the idle
time of the workers. However, in practice, using small micro-batches often reduces GPU
utilization and increases task-switching costs. This may, in turn, decrease the overall
system throughput.

The ultimate goal of parallel processing is to achieve linear growth in efficiency, that is, the
number of samples that can be processed per unit of time increases linearly with the number
of devices. However, distributed training is complicated, and influenced by many factors in
addition to the parallelism method we choose. One problem, which is often associated with
distributed systems, is the cost of communication. We can think of a distributed system as a
group of networked nodes. Each of these nodes can perform local computation or pass data
to other nodes. If there are a large number of such nodes, it will be expensive to distribute
and collect data across them. Sometimes, the time savings brought about by parallelism are
offset by the communication overhead of a large network. Another problem with large-scale
distributed systems is that the synchronization of nodes introduces additional costs. As is often
the case, some nodes may take longer to work, causing others to wait for the slowest ones.
While we can use asynchronous training to handle heterogeneity in computational resources,
this may lead to stale gradients and non-guaranteed convergence. Moreover, as more nodes
are added to the network, there is more chance to have crashed nodes during training. In this
case, we need to ensure that the whole system is fault tolerant. In many practical settings, to
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increase scalability, one needs to take into account additional issues, including architecture
design, data transfer and computation overlap, load balancing, memory bandwidth and so on.

Training LLMs is so computationally expensive that, even though distributed training
is already in use, researchers and engineers often still employ various model compression
and speed-up methods to improve training efficiency [Weng, 2021]. One example is mixed
precision training, in which low precision data (such as FP16 and FP8 data) is used for gradient
computation on each individual node, and single or double precision data (such as FP32/FP64
data) is used for updating the model [Micikevicius et al., 2018]. A key operation in this
approach is gradient accumulation where gradients need to be accumulated and synchronized
across nodes. However, due to the non-associativity of floating-point addition, this can lead to
slight numerical differences in accumulated gradients on different nodes, which may affect
model convergence and final performance. This problem is more obvious if there are a large
number of nodes involved in distributed training, especially given that low-precision numerical
computations may encounter overflow and underflow issues, as well as inconsistencies across
different hardware devices. Therefore, the design of distributed systems needs to consider
these numerical computation issues to ensure satisfactory results and convergence.

8.2.4 Scaling Laws
The success of LLMs reveals that training larger language models using more resources can
lead to improved model performance. Researchers have explained this as scaling laws of
LLMs. More specifically, scaling laws describe the relationships between the performance of
LLMs and the attributes of LLM training, such as the model size, the amount of computation
used for training, and the amount of training data. For example, Hestness et al. [2017] show
that the performance of deep neural networks is a power-law-like function of the training data
size. In the beginning, when the amount of training data is not large, the performance of the
model improves slowly. Afterward, when more training data is used, the model enters a phase
of rapid performance improvement, and the performance curve resembles a power-law curve.
Ultimately, the improvement in performance becomes slow again, and more data does not lead
to significant gains. Figure 8.3 shows an example of such curves.

In NLP, a traditional view holds that the performance gains will disappear at a certain point
as the training is scaled up. However, recent results show that, if we consider the problem on a
larger scale, scaling up training is still a very effective method for obtaining stronger LLMs.
For example, both closed-source and open-source LLMs can benefit from more data, even
though trillions of tokens have already been used for training.

With the increase in the scale of model training, LLMs exhibit new capabilities, known as
the emergent abilities of LLMs. For example, Wei et al. [2022b] studied the scaling properties
of LLMs across different model sizes and amounts of computational resources. Their work
shows that some abilities emerge when we scale the model size to certain level. The appearance
of emergent abilities has demonstrated the role of scaled training in enhancing the performance
of LLMs, and it has also, to some extent, motivated researchers to continuously attempt to
train larger models. As larger and stronger LMs continue to appear, our understanding of the
scaling laws continues to mature. This helps researchers predict the performance of LLMs
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Figure 8.3: A scaling law of test error against a variable of interest (e.g., training dataset size)
[Hestness et al., 2017]. The curve of the scaling law can be divided into three phases. At the
beginning, the number of test errors decreases slowly when more training data is used, but
this only lasts for a short period. In the second phase, the number of test errors decreases
drastically, and the curve becomes a power law curve. After that, the error reduction slows
down again in the third phase. Note that there are irreducible errors that cannot be eliminated,
regardless of the amount of training data.

during training and estimate the minimal computational resources required to achieve a given
level of performance.

To understand how model performance scales with various factors considered during
training, it is common to express the model performance as a function of these factors. For
example, in the simplest case, we can express the loss or error of an LLM as a function of a
single variable of interest. However, there are no universal scaling laws that can describe this
relationship. Instead, different functions are proposed to fit the learning curves of LLMs.

Let x be the variable of interest (such as the number of model parameters) and L(x) be the
loss of the model given x (such as the cross-entropy loss on test data). The simplest form of
L(x) is a power law

L(x) = axb (8.36)

where a and b are parameters that are estimated empirically. Despite its simplicity, this function
has successfully interpreted the scaling ability of language models and machine translation
systems in terms of model size (denoted by N ) and training dataset size (denoted by D)
[Gordon et al., 2021; Hestness et al., 2017]. For example, Kaplan et al. [2020] found that
the performance of their language model improves as a power law of either N or D after an
initial transient period, and expressed these relationships using L(N) =

(
N

8.8×1013

)−0.076 and

L(D) =
(

D
5.4×1013

)−0.095 (see Figure 8.4).
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Figure 8.4: Test loss against model size (N ) and training dataset size (D) (data points are
plotted for illustrative purposes). We plot test loss as a function of N , which is defined as
L(N) =

(
N

8.8×1013

)−0.076, and a function of D, which is defined as L(D) =
(

D
5.4×1013

)−0.095

[Kaplan et al., 2020].

An improvement to this scaling law is to add an irreducible error term to the power law.
The form of L(x) is then given by

L(x) = axb+ ϵ∞ (8.37)

where ϵ∞ is the irreducible error that accounts for the error due to unknown variables, which is
present even as x→∞. Eq. (8.37) is one of the most widely used forms for designing scaling
laws of LLMs. For example, Rosenfeld et al. [2020] developed a scaling law that involves both
model scaling and dataset scaling, like this

L(N,D) = aN b+ cDd+ ϵ∞ (8.38)

An example of such formulation is the Chinchilla scaling law. It states that the test loss per
token is the sum of the inverse proportion functions of N and D, with an additional irreducible
error term. Hoffmann et al. [2022] express this scaling law as

L(N,D) =
406.4

N0.34︸ ︷︷ ︸
model scaling

+
410.7

D0.28︸ ︷︷ ︸
dataset scaling

+ 1.69︸︷︷︸
irreducible error

(8.39)

All the scaling laws mentioned above are based on monotonic functions. So they cannot
cover functions with inflection points, such as double descent curves. In response, researchers
have explored more sophisticated functions to fit the learning curves. Examples of such
functions can be found in Alabdulmohsin et al. [2022] and Caballero et al. [2023]’s work.

The significance of scaling laws lies in providing directional guidance for LLM research:
if we are still in the region of the power law curve, using more resources to train larger models
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is a very promising direction. While this result “forces” big research groups and companies to
invest more in computational resources to train larger models, which is very expensive, scaling
laws continuously push the boundaries of AI further away. On the other hand, understanding
scaling laws helps researchers make decisions in training LLMs. For example, given the
computational resources at hand, the performance of LLMs may be predicted.

One last note on scaling laws in this section. For LLMs, a lower test loss does not always
imply better performance on all downstream tasks. To adapt LLMs, there are several steps
such as fine-tuning and prompting that may influence the final result. Therefore, the scaling
laws for different downstream tasks might be different in practice.

8.3 Long Sequence Modeling
We have already seen that, in large-scale training, larger language models can be developed
by using more data and computational resources. However, scaling up can also occur in other
directions. For instance, in many applications, LLMs are adapted to process significantly
long sequences. An interesting example is that we pre-train an LLM on extensive texts of
normal length and then apply it to deal with very long token sequences, far beyond the length
encountered in pre-training. Here we use Pr(y|x) to denote the text generation probability
where x is the context and y is the generated text. There are broadly three types of long
sequence modeling problems.

• Text generation based on long context (i.e., x is a long sequence). For example, we
generate a short summary for a very long text.

• Long text generation (i.e., y is a long sequence). For example, we generate a long story
based on a few keywords.

• Long text generation based on long context (i.e., both x and y are long sequences).
For example, we translate a long document from Chinese to English.

Recently, NLP researchers have been more interested in applying and evaluating LLMs
on tasks where extremely long input texts are involved. Imagine an LLM, which reads a
C++ source file containing tens of thousands of lines, and outlines the functionality of the
program corresponding to the source file. Such models, capable of handling extensive textual
contexts, are sometimes called long-context LLMs. In this section we will restrict ourselves
to long-context LLMs, but the methods discussed here can be applicable to other problems.

For Transformers, dealing with long sequences is computationally expensive, as the
computational cost of self-attention grows quadratically with the sequence length. This makes
it infeasible to train and deploy such models for very long inputs. Two strands of research have
tried to adapt Transformers to long-context language modeling.

• The first explores efficient training methods and model architectures to learn self-
attention models from long-sequence data.

• The other adapts pre-trained LLMs to handle long sequences with modest or no fine-
tuning efforts.
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Here, we will discuss the former briefly since Chapter 6 extensively covers many methods
in this strand. We will focus on the latter, highlighting popular methods in recent LLMs. We
will also discuss the strengths and limitations of these long-sequence models.

8.3.1 Optimization from HPC Perspectives

We begin our discussion by considering improvements to standard Transformer models from
the perspectives of high-performance computing. Most of these improvements, though not
specifically designed for LLMs, have been widely applied across various deep learning models
[Kim et al., 2023]. A commonly used approach is to adopt a low-precision implementation of
Transformers. For example, we can use 8-bit or 16-bit fixed-point data types for arithmetic
operations, instead of 32-bit or 64-bit floating-point data types. Using these low-precision data
types can increase the efficiency and memory throughput, so that longer sequences can be
processed more easily. An alternative approach is to improve Transformers by using hardware-
aware techniques. For example, on modern GPUs, the efficiency of Transformers can be
improved by using IO-aware implementations of the self-attention function [Dao et al., 2022;
Kwon et al., 2023].

Another way to handle long sequences is through sequence parallelism [Li et al., 2023b;
Korthikanti et al., 2023]. Specifically, consider the general problem of attending the query qi
at the position i to the keys K and values V. We can divide K by rows and obtain a set of
sub-matrices {K[1], ...,K[nu]}, each corresponding to a segment of the sequence. Similarly,
we can obtain the sub-matrices of V, denoted by {V[1], ...,V[nu]}. Then, we assign each pair
of K[u] and V[u] to a computing node (e.g., a GPU of a GPU cluster). The assigned nodes can
run in parallel, thereby parallelizing the attention operation.

Recall that the output of the self-attention model can be written as

Attqkv(qi,K,V) =
m−1∑
j=0

αi,jvj (8.40)

where αi,j is the attention weight between positions i and j. In Transformers, αi,j is obtained
by normalizing the rescaled version of the dot product between qi and kj . Let βi,j denote the
attention score between qi and kj . We have

βi,j =
qi ·kj√

d
+Mask(i, j) (8.41)

where Mask(i, j) is the masking variable for (i, j). Then, we define the attention weight αi,j
to be

αi,j = Softmax(βi,j)

=
exp(βi,j)∑
j′ exp(βi,j′)

(8.42)
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On each computing node, we need to implement these equations. Given the keys and
values assigned to this node, computing the numerator of the right-hand side of Eq. (8.42) (i.e.,
exp(βi,j)) is straightforward, as all the required information is stored on the node. However,
computing the denominator of the right-hand side of Eq. (8.42) involves a sum of exp(βi,j′)
over all j′s, which requires transferring data to and from other nodes. To illustrate, suppose
that vj and kj are placed on node u. We can rewrite Eq. (8.42) as

αi,j

=

node u︷ ︸︸ ︷
exp(βi,j)∑

kj′∈K[1]

exp(βi,j′)

︸ ︷︷ ︸
node 1

+ · · ·+
∑

kj′∈K[u]

exp(βi,j′)

︸ ︷︷ ︸
node u

+ · · ·+
∑

kj′∈K[nu]

exp(βi,j′)

︸ ︷︷ ︸
node nu

(8.43)

where the notation kj′ ∈K[u] represents that kj′ is a row vector of K[u]. In a straightforward
implementation, we first perform the summations {

∑
kj′∈K[u] exp(βi,j′)} separately on the

corresponding nodes. Then, we collect these summation results from different nodes to
combine them into a final result. This corresponds to a collective operation in the context of
parallel processing. There are many efficient implementations of such operations, such as the
all-reduce algorithms. Hence the sum of all exp(βi,j) values can be computed using optimized
routines in collective communication toolkits.

Given the attention weights {αi,j}, we then compute the attention results using Eq. (8.40).
The problem can be re-expressed as

Attqkv(qi,K,V)

=
∑

vj′∈V[1]

αi,j′vj′

︸ ︷︷ ︸
node 1

+ · · ·+
∑

vj′∈V[u]

αi,j′vj′

︸ ︷︷ ︸
node u

+ · · ·+
∑

vj′∈V[nu]

αi,j′vj′

︸ ︷︷ ︸
node nu

(8.44)

Like Eq. (8.43), Eq. (8.44) can be implemented as a summation program in parallel pro-
cessing. First, perform the weighted summations of values on different nodes simultaneously.
Then, we collect the results from these nodes via collective operations.

Note that, although this section primarily focuses on long sequence modeling, much of
the motivation for sequence parallelism comes from the distributed training methods of deep
networks, as discussed in Section 8.2.3. As a result, the implementation of these methods can
be based on the same parallel processing library.

8.3.2 Efficient Architectures
One difficulty of applying Transformers to long sequences is that self-attention has a quadratic
time complexity with respect to the sequence length. Moreover, a key-value cache (or KV
cache for short) is maintained during inference, and its size increases as more tokens are
processed. Although the KV cache grows linearly with the sequence length, for extremely
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long input sequences, the memory footprint becomes significant and it is even infeasible
to deploy LLMs for such tasks. As a result, the model architecture of long-context LLMs
generally moves away from the standard Transformer, turning instead to the development of
more efficient variants and alternatives.

One approach is to use sparse attention instead of standard self-attention. This family of
models is based on the idea that only a small number of tokens are considered important when
attending to a given token, and so most of the attention weights between tokens are close to
zero. As a consequence, we can prune most of the attention weights and represent the attention
model in a compressed form. To illustrate, consider the self-attention model

Attqkv(Q,K,V) = α(Q,K)V (8.45)

where the attention weight matrix α(Q,K) ∈ Rm×m is obtained by

α(Q,K) = Softmax(
QKT

√
d

+Mask)

=


α0,0 0 0 ... 0

α1,0 α1,1 0 ... 0

α2,0 α2,1 α2,2 ... 0
...

...
...

. . .
...

αm−1,0 αm−1,1 αm−1,2 ... αm−1,m−1

 (8.46)

Each row vector
[
αi,0 ... αi,i 0 ... 0

]
corresponds to a distribution of attending the

i-th token to every token of the sequence. Since language models predict next tokens only
based on their left-context, we normally write the output of the attention model at position i as

Attqkv(qi,K≤i,V≤i) =
[
αi,0 ... αi,i

]v0
...
vi


=

i∑
j=0

αi,jvj (8.47)

where K≤i =

k0
...
ki

 and V≤i =

v0
...
vi

 are the keys and values up to position i.

In the original version of self-attention
[
αi,0 ... αi,i

]
is assumed to be dense, that is,

most of the values are non-zero. In sparse attention, some of the entries of
[
αi,0 ... αi,i

]
are

considered non-zero, and the remaining entries are simply ignored in computation. Suppose
G⊆ {0, ..., i} is the set of indices of the non-zero entries. For language models, the output of
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the sparse attention model at position i is given by

Attsparse(qi,K≤i,V≤i) =
∑
j∈G

α′
i,jvj (8.48)

Here {α′
i,j} are normalized over G. Hence their values are different from the original attention

weights (in fact we have α′
i,j > αi,j). The sparsity of the model is determined by how large G

is. Sparse attention models differ in the way we define G. One simple approach is to define G
based on heuristically designed patterns. For example, a widely-used pattern involves having
G cover a window of tokens located near position i [Parmar et al., 2018].

While sparse attention reduces the computation through the use of sparse operations, such
models still have significant limitations as we must keep the entire KV cache (i.e., K≤i and
V≤i) during inference. If the sequence is very long, storing this cache will become highly
memory-intensive. To address this, we can consider a different form of attention models where
the KV cache is not explicitly retained. Linear attention is one such approach [Katharopoulos
et al., 2020]. It uses a kernel function ϕ(·) to project each query and key onto points q′

i = ϕ(qi)

and k′
i = ϕ(ki), respectively. By removing the Softmax function under such transformations10,

the form of the resulting attention model is given by

Attqkv(qi,K≤i,V≤i) ≈ Attlinear(q
′
i,K

′
≤i,V≤i)

=
q′
iµi

q′
iνi

(8.49)

where µi and νi are variables that are computed in the recurrent forms

µi = µi−1+k′T
i vi (8.50)

νi = νi−1+k′T
i (8.51)

µi and νi can be seen as representations of the history up to position i. A benefit of this model
is that we need not keep all past queries and values. Instead only the latest representations µi
and νi are used. So the computational cost of each step is a constant, and the model can be
easily extended to deal with long sequences.

In fact, this sequential approach to long sequence modeling arises naturally when we adopt
a viewpoint of recurrent models. Such models read one token (or a small number of tokens)
at a time, update the recurrent state using these inputs, and then discard them before the next
token arrives. The output at each step is generated based only on the recurrent state, rather than
on all the previous states. The memory footprint is determined by the recurrent state which
has a fixed size. Recurrent models can be used in real-time learning scenarios where data
arrives in a stream and predictions can be made at any time step. In NLP, applying recurrent

10In the new space after this transformation, the Softmax normalization can be transformed into the simple
scaling normalization.
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models to language modeling is one of the earliest successful attempts to learn representations
of sequences. Although Transformer has been used as the foundational architecture in LLMs,
recurrent models are still powerful models, especially for developing efficient LLMs. More
recently, recurrent models have started their resurgence in language modeling and have been
reconsidered as a promising alternative to Transformers [Gu and Dao, 2023].

Figure 8.5 shows a comparison of the models discussed in this subsection. Since these
models, along with others not mentioned here, have been intensively discussed in Chapter 6
and in related surveys [Tay et al., 2020b], a detailed discussion of them is precluded here.

8.3.3 Cache and Memory
LLMs based on the standard Transformer architecture are global models. The inference for
these models involves storing the entire left-context in order to make predictions for future
tokens. This requires a KV cache where the representations (i.e., keys and values) of all
previously-generated tokens are kept, and the cost of caching grows as the inference proceeds.
Above, we have discussed methods for optimizing this cache via efficient attention approaches,
such as sparse attention and linear attention. Another idea, which may have overlap with the
previous discussion, is to explicitly encode the context via an additional memory model.

1. Fixed-size KV Cache
A straightforward approach is to represent the keys and values using a fixed-size memory
model. Suppose we have a memory Mem which retains the contextual information. We can
write the attention operation at position i in a general form

Att(qi,Mem) = Attqkv(qi,K≤i,V≤i) (8.52)

In this model, Mem is simply the KV cache, i.e., Mem = (K≤i,V≤i). Thus the size of
Mem is determined by i. If we define Mem as a fixed-size variable, then the cost of performing
Att(qi,Mem) will be fixed. There are several alternative ways to design Mem.

• One of the simplest methods is to consider a fixed-size window of previous keys and
values. Mem is therefore given by

Mem = (K[i−nc+1,i],V[i−nc+1,i]) (8.53)

where nc denotes the size of the window. The notation K[i−nc+1,i] and V[i−nc+1,i]

denote the keys and values over positions from i−nc+1 to i.11 This model can be seen
as a type of local attention model.

• It is also possible to define Mem as a pair of summary vectors, which leads to a more
compressed representation of the history. A simple way to summarize the previous keys

11More formally, we write K[i−nc+1,i] =

ki−nc+1
...
ki

 and V[i−nc+1,i] =

vi−nc+1
...
vi

. Sometimes we

denote K[i−nc+1,i] by {ki−nc+1, ...,ki} and V[i−nc+1,i] by {vi−nc+1, ...,vi} for notation simplicity.
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qikiki−1ki−2· · ·k1k0

vivi−1vi−2· · ·v1v0

Attqkv(qi,K≤i,V≤i)

(a) Standard Self-attention

qikiki−1ki−2· · ·k1k0

vivi−1vi−2· · ·v1v0

Attqkv(qi,{k1,ki},{v1,vi})

(b) Sparse Attention

qikiki−1ki−2· · ·k1k0

vivi−1vi−2· · ·v1v0

νi = νi−1+k′T
i

µi = µi−1+k′T
i vi

νi

µi⇒

⇒
Attlinear(qi,K≤i,V≤i) =

q′iµi

q′
i
νi

(c) Linear Attention

hihi−1hi−2hi−3· · ·h1h0

inputi

hi = f(hi−1, inputi)

(d) Recurrent Models

Figure 8.5: Illustrations of self-attention, sparse attention, linear attention and recurrent models.
Blue boxes = cached states for producing the output at position i. f(·) = a recurrent cell.

and values is to use the moving average of them. For example, Mem can be defined as
the unweighted moving average of the previous nc keys and values

Mem =
(∑i

j=i−nc+1kj

nc
,

∑i
j=i−nc+1vj

nc

)
(8.54)
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Alternatively, we can use a weighted version of moving average

Mem =
(∑i

j=i−nc+1βj−i+nckj∑nc
j=1βj

,

∑i
j=i−nc+1βj−i+ncvj∑nc

j=1βj

)
(8.55)

Here {β1, ...,βnc} are the coefficients, which can be either learned as model parameters
or determined via heuristics. For example, they can be set to increasing coefficients (i.e.,
β1 < β2 < ... < βnc−1 < βnc) in order to give larger weight to positions that are closer
to i. We can extend the moving average to include all the positions up to i. This leads to
the cumulative average of the keys and values, given in the form

Mem =
(∑i

j=0kj

i+1
,

∑i
j=0vj

i+1

)
(8.56)

In general, the cumulative average can be written using a recursive formula

Memi =
(ki,vi)+ i ·Memi−1

i+1
(8.57)

where Memi and Memi−1 denote the cumulative averages of the current and previous
positions, respectively. An advantage of this model is that we only need to store a single
key-value pair during inference, rather than storing all the key-value pairs. Note that the
above memory models are related to recurrent models, and more advanced techniques
have been used to develop alternatives to self-attention mechanisms in Transformers
[Ma et al., 2023].

• The memory Mem can also be a neural network. At each step, it takes both the previous
output of the memory and the current states of the model as input, and produces the new
output of the memory. This neural network can be formulated as the function

Mem = Update(Skv,Mempre) (8.58)

Here Mem and Mempre represent the outputs of the memory at the current step and the
previous step, respectively. Skv is a set of key-value pairs, representing the recent states
of the model. This formulation is general and allows us to develop various memory
models by selecting different Update(·) and Skv configurations. For example, if Skv
only contains the latest key-value pair (ki,vi) and Update(·) is defined as a recurrent
cell, then Eq. (8.58) can be expressed as an RNN-like model

Mem = f((ki,vi),Mempre) (8.59)

where f(·) is a recurrent cell. Recurrence can also be applied to segment-level modeling
for efficiency consideration. A simple approach is that we can divide the sequence into
segments, and treat Skv as a segment. Applying recurrent models to Update(·) will
result in memory models that operate on segments. A special example is that we define
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Update(·) as an FIFO function that adds Skv into the memory and removes the oldest
key-value segment from the memory, given by

Mem = FIFO(Skv,Mempre) (8.60)

Consider a memory which includes two segments, one for current segment, and one for
the previous segment. In the attention operation, each position can access the history
key-value pairs in two closest consecutive segments. This essentially defines a local
memory, but it and its variants have been widely used segment-level recurrent models
[Dai et al., 2019; Hutchins et al., 2022; Bulatov et al., 2022].

• The above memory models can be extended to involve multiple memories. An example
of this approach is compressive Transformer [Rae et al., 2019b]. It employs two distinct
fixed-size memories: one for modeling local context (denoted by Mem), and the other
for modeling and compressing long-term history (denoted by CMem). The KV cache
in this model is the combination of Mem and CMem. The attention function can be
written as

Attcom(qi,Mem,CMem) = Attqkv(qi, [Mem,CMem]) (8.61)

where [Mem,CMem] is a combined memory of Mem and CMem. As with other
segment-level models, the compressive Transformer model operates on segments of the
sequence. Each segment is a sequence of ns consecutive tokens, and we denote Skkv
as the key-value pairs corresponding to the tokens of the k-th segment. When a new
segment arrives, Mem is updated in an FIFO fashion: we append the nc key-value pairs
in Skkv to Mem, and then pop the ns oldest key-value pairs from Mem, which is given
by

Mem = FIFO(Skkv,Mempre) (8.62)

The popped key-value pairs are then used to update the compressive memory CMem.
These ns key-value pairs are compressed into ns

c key-value pairs via a compression
network. CMem is an FIFO which appends the compressed ns

c key-value pairs to the
tail of the queue, and drops the first ns

c key-value pairs of the queue. It is given by

CMem = FIFO(Ckkv,CMempre) (8.63)

where Ckkv represents the set of compressed key-value pairs. Implicit in the compressive
Transformer model is that local context should be represented explicitly with minimal
information loss, while long-range context can be more compressed.

• We have already seen that both global and local contexts are useful and can be modeled
using attention models. This view motivates the extension to attention models for
combining both local and long-term memories [Ainslie et al., 2020; Zaheer et al., 2020;
Gupta and Berant, 2020]. A simple but widely-used approach is to involve the first few
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tokens of the sequence in attention, serving as global tokens. This approach is usually
applied along with other sparse attention models. An advantage of incorporating global
tokens of the sequence is that it helps smooth the output distribution of the Softmax
function used in attention weight computation, and thus stabilizes model performance
when the context size is very large [Xiao et al., 2024]. One drawback, however, is that
using a fixed-size global memory may result in information loss. When dealing with
long sequences, we need to enlarge the KV cache for sufficient representations of the
context, but this in turn increases the computational cost.

Figure 8.6 shows illustrations of the above approaches. Note that, while we focus on
optimization of the KV cache here, this issue is closely related to those discussed in the
previous section. All of the methods we have mentioned so far can broadly be categorized as
efficient attention approaches, which are widely used in various Transformer variants.

2. Memory-based Models

The modeling of memories discussed above was based on updates to the KV cache, and the
resulting models are typically referred to as internal memories. We now consider another
family of models, called external memories, which operate as independent models to access
large-scale contexts for LLMs. Many such models are based on memory-based methods
which have been extensively discussed in machine learning [Bishop, 2006]. A common
example is nearest neighbor algorithms: we store context representations in a datastore, and try
to find the most similar stored representations to match a given query. The retrieved context
representations are then used to improve attention for this query.

Here, we consider the k-nearest neighbors (k-NN) method which is one of the most
popular memory-based methods. Since our focus is language modeling in this section, we
define a sample in the datastore as a key-value pair corresponding to some context state. Note
that “context” is a broad concept here, not just a sequence prefix in text generation. One
might, for example, view the entire dataset as the context for predicting tokens. This allows
us to retrieve the closest context situation in a set of sequences, rather than a given sequence
prefix. Although we will restrict ourselves to context modeling for a single sequence, in this
subsection, we discuss a relatively more general case.

Suppose we have a set of keys {kj} with corresponding values {vj}, and suppose we store
these key-value pairs in a vector database12. For each query qi, we find its k nearest neighbours
by growing the radius of the sphere centered as qi until it contains k data points in {kj}. This
results in a set of k keys along with their corresponding values, denoted by Memknn. As before,
we denote Mem as the local memory for the query, such as the KV cache of neighboring
tokens. Our goal is to attend query qi to both the local memory Mem and the long-term
memory Memknn. There are, of course, several ways to incorporate Mem and Memknn into
the attention model. For example, we might simply combine them to form a single KV cache
[Mem,Memknn], and attend qi to [Mem,Memknn] via standard QKV attention. Or we might

12A vector database, or vector store, is a database that provides highly optimized retrieval interfaces for finding
stored vectors that closely match a query vector.
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Figure 8.6: Illustrations of fixed-size KV caches in LLMs. Blue boxes represent the keys and
values generated during LLM inference, green boxes represent the keys and values stored or
encoded in the primary memory, and orange boxes represent the keys and values stored or
encoded in the compressed memory.
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use Mem and Memknn in separate attention steps. An example of such approaches is the
model developed by Wu et al. [2021]. It linearly combines the two types of attention, given by

Att(qi,Mem,Memknn) = g⊙Attlocal+(1−g)⊙Attknn (8.64)

Attlocal = Att(qi,Mem) (8.65)

Attknn = Att(qi,Memknn) (8.66)

Here g ∈ Rd is the coefficient vector, which can be the output of a learned gate.

Given the k-NN-based memory model described above, the remaining task is to determine
which key-value pairs are retained in the datastore. For standard language modeling tasks, we
consider the previously seen tokens in a sequence as the context, so we can add the keys and
values of all these tokens into the datastore. In this case, the resulting k-NN-based attention
model is essentially equivalent to a sparse attention model [Gupta et al., 2021].

Alternatively, we can extend the context from one sequence to a collection of sequences.
For example, we might collect all key-value pairs across the sequences in a training dataset
and add them to the datastore to model a larger context. Thus, LLMs can predict tokens based
on a generalized context. A problem with this approach is that the computational cost would
be large if many sequences are involved. Since these sequences are part of our training data,
we can build and optimize an index for the vectors in the datastore before running the LLMs.
As a result, the retrieval of similar vectors can be very efficient, as in most vector databases.

In fact, all the above-mentioned methods can be viewed as instances of a retrieval-based
approach. Instead of using retrieval results to improve attention, we can apply this approach
in other ways as well. One application of k-NN-based search is k-NN language modeling
(or k-NN LM) [Khandelwal et al., 2020]. The idea is that, although it is attempting to
extend the context used in self-attention by incorporating nearest neighbors in representation
learning, in practice, similar hidden states in Transformers are often highly predictive of
similar tokens in subsequent positions. In k-NN LM, each item in the datastore is a key-value
tuple (z,w), where z represents a hidden state of the LLM at a position, and w represents
the corresponding prediction. A typical way to create the datastore is to collect the output
vector of the Transformer layer stack and the corresponding next token for each position of
each sequence in a training dataset. During inference, we have a representation hi given a
prefix. Given this representation, we first search the datastore for k closest matching data items
{(z1,w1), ...,(zk,wk)}. Here {w1, ...,wk} are thought of as reference tokens for prediction,
and thus can be used to guide the token prediction based on hi. One common way to make use
of reference tokens is to define a distribution over the vocabulary V ,

Prknn(·|hi) = Softmax(
[
−d0 · · · −d|V |

]
) (8.67)

where dv equals the distance between hi and zj if wj equals the v-th entry of V , and equals
0 otherwise. We use a linear function with a coefficient λ that interpolates between the
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retrieval-based distribution Prknn(·|hi) and the LLM output distribution Prlm(·|hi)

Pr(·|hi) = λ ·Prknn(·|hi)+(1−λ) ·Prlm(·|hi) (8.68)

Then, as usual, we can choose the next token y by maximizing the probability Pr(y|hi).
As with information retrieval (IR) systems, the datastore can also manage texts and provide

access to relevant texts for a query. For example, we can store a collection of text documents
in a search engine with full-text indexing, and then search it for documents that match a
given text-based query. Applying IR techniques to LLMs leads to a general framework called
retrieval-augmented generation (RAG). The RAG framework works as follows. We use
the context x as the query and find the k most relevant document pieces {c1, ...,ck} from the
datastore via efficient IR techniques13. These search results are combined with the original
context via a prompting template g(·)14, resulting in an augmented input for the LLM

x′ = g(c1, ...,ck,x) (8.69)

Then, we use x′ as the context and predict the following text using the model Pr(y|x′). One
advantage of RAG is that we need not modify the architecture of LLMs, but instead augment
the input to LLMs via an additional IR system. Figure 8.7 shows a comparison of the use of
different external memories in LLMs.

3. Memory Capacity

A memory model in LLMs, in the form of a simple key-value cache or a datastore, can broadly
be seen as an encoder of contextual information. Ideally, before we say that a memory model
is representative of the entire context in token prediction, we need to make sure that the model
can accurately represent any part of the context. The standard KV cache is one such model
that completely stores all past history. In this case, the model is said to have adequate capacity
for memorizing the context. In many practical applications, however, complete memorization
is not required. Instead, the goal is to enable LLMs to access important contextual information.
As a result, efficient and compressed memory models are developed, as described in this
section. Note that, the longer the sequence, the more difficult it becomes for a low-capacity
memory model to capture important contextual information. It is therefore common practice to
simply increase the model capacity when processing long contexts.

While high-capacity models are generally favorable, they are difficult to train and deploy.
A challenging scenario is that the tokens arrive in a stream and the context continuously grows.

13In piratical applications, queries are typically generated using a query generation system, which may expand it
with variations of tokens and query intent.

14For example, the template could be:

message = {*c1*} ... {*ck*}

input: {*x*}

output:
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Figure 8.7: Illustrations of external memories (or datastores) for language modeling.
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Developing LLMs for such tasks is difficult as we need to train Transformers on extremely long
sequences. A possible way to address this difficulty is to use non-parametric methods, such
as retrieval-based methods. For example, as discussed above, we can use a vector database
to store previously generated key-value pairs, and thus represent the context by this external
memory model. Although this approach side-steps the challenge of representing long context in
Transformers, building and updating external memory models are computationally expensive.
These models are more often used in problems where the context is given in advance and fixed
during inference, and hence unsuitable for streaming context modeling.

In cases where the size of the context continuously grows, applying fixed-size memory
models is a commonly used approach. For example, in recurrent models, a sequence of arbitrary
length can be summarized into a set of hidden states by which we have a fixed computational
cost per step. While recurrent models were initially found to be not very good at handling
long-distance dependencies in sequence modeling in early applications of deep learning to NLP,
recent advancements have shown that their variants are now effective in modeling extremely
long sequences. [Bulatov et al., 2022; Hutchins et al., 2022; Munkhdalai et al., 2024; Ma et al.,
2024].

There is no general definition of memory capacity in LLMs. A simple approach might
consider how much storage is used to retain contextual information. For example, memory
capacity could be defined by the size of the KV cache in Transformers or the vector database
used in retrieval-based methods. A related concept is model complexity. In machine learning,
there are several ways to define the model complexity of a model. One of the simplest
methods is by counting the number of parameters. However, it should be emphasized that the
memory models discussed here primarily serve to store information, rather than add trainable
parameters. Therefore, a model with a large memory capacity is not necessarily more complex.
Nevertheless, in practice determining the capacity of a memory model is not straightforward. In
general, we need to control the trade-off between maximizing the performance and controlling
the memory footprint.

8.3.4 Sharing across Heads and Layers
In Transformers, the KV cache is a data structure that can be dynamically adjusted along
multiple dimensions, such as heads, layers, and sequence length. For example, consider
an LLM with L layers. Each layer has τ attention heads, and each head produces a dh-
dimensional output. During inference, we store the keys and values for up to m tokens. The
space complexity of this caching mechanism is O(L · τ ·dh ·m). As we have seen previously,
this complexity can be reduced by caching the keys and values for fewer tokens. For example,
in sliding window attention, a fixed-size window is used to cache the keys and values in local
context. And this model has a space complexity of O(L · τ ·dh ·mw), with mw being the size
of the window.

In addition to reducing m, we can also decrease the size of the KV cache along other
dimensions. A widely-used approach is to enable sharing across heads in multi-head self-
attention. Recall from Section 8.1.1 that multi-head self-attention uses multiple sets of queries,
keys, and values (each set is called a head), each performing the QKV attention mechanism as
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usual. This can be expressed as

Output = Merge(head1, ...,headτ )W
head (8.70)

where headj ∈ Rdh is computed using the standard QKV attention function

headj =Attqkv(q
[j]
i ,K

[j]
≤i,V

[j]
≤i) (8.71)

Here, q[j]
i , K[j]

≤i, and V
[j]
≤i are the query, keys, and values that are projected onto the j-th feature

sub-space. So this model can be interpreted as performing attention on a group of feature
sub-spaces in parallel (see Figure 8.8 (b)). The KV cache needs to retain the keys and values
for all these heads, that is, {(K[1]

≤i,V
[1]
≤i), ...,(K

[τ ]
≤i,V

[τ ]
≤i)}.

One refinement to the multi-head attention model, called multi-query attention (MQA),
is to share keys and values across heads, while allowing queries to be unique for each head
[Shazeer, 2019]. In MQA, there is a single set of keys and values (K≤i,V≤i). In addition,
there are τ queries {q[1]

i , ...,q
[τ ]
i }, each corresponding to a different head. For each head, we

have

headj =Attqkv(q
[j]
i ,K≤i,V≤i) (8.72)

Figure 8.8 (c) illustrates this model. By sharing keys and values, the size of the KV cache
would be O(L ·dh ·m).

Grouped query attention (GQA) is a natural extension to multi-head attention and MQA
[Ainslie et al., 2023]. In GQA, heads are divided into ng groups, each corresponding to a shared
set of keys and values. Hence we have ng sets of keys and values {(K[1]

≤i,V
[1]
≤i), ...,(K

[ng ]
≤i ,V

[ng ]
≤i )}.

See Figure 8.8 (d) for an illustration. Let g(j) be the group id for the j-th head. The GQA
model can be expressed as

headj =Attqkv(q
[j]
i ,K

[g(j)]
≤i ,V

[g(j)]
≤i ) (8.73)

The size of the KV cache of GQA is O(L ·ng ·dh ·m). One benefit of GQA is that we can
trade-off between computational efficiency and model expressiveness by adjusting ng. When
ng = τ , the model becomes the standard multi-head attention model. By contrast, when ng = 1,
it becomes the GQA model.

Sharing can also be performed across layers. Such a method falls into the family of shared
weight and shared activation methods, which have been extensively used in Transformers
[Dehghani et al., 2018; Lan et al., 2020]. For example, one can share KV activations or
attention weights across layers to reduce both computation and memory footprints [Xiao et al.,
2019; Brandon et al., 2024]. Figure 8.8 (e) shows an illustration of this method, where a query
in a layer directly accesses the KV cache of a lower-level layer.
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querykeyvalue

(a) Single-head Attention
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(c) Multi-query Attention
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Layer l

Layer l−1

Sharing

(e) Cross-layer Multi-head Attention

Figure 8.8: Illustration of QKV attention based on different multi-head and sharing mechanisms.
(a) = single-head attention, and (b-e) = attention with multiple heads.

8.3.5 Position Extrapolation and Interpolation

Since Transformer layers are order-insensitive to input, we need some way to encode positional
information in the input tokens. To do this, it is common to add positional embeddings to token
embeddings, and then feed these combined embeddings into the Transformer layer stack as
input. In this case, the embedding at position i can be expressed as

ei = xi+PE(i) (8.74)

where xi ∈Rd denotes the token embedding, and PE(i)∈Rd denotes the positional embedding.
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In general, the token embedding xi is a position-independent vector, and so the positional
embedding PE(i) is used to encode the positional context. A straightforward approach is
to treat PE(i) as a learnable variable and train it alongside other model parameters. In this
way, we can learn a unique representation for each position, and thus distinguish the tokens
appearing at different positions of a sequence.

Representations of positions using learned vectors can work well in tasks where the
sequences at training and test times are of similar lengths. In practice, however, we often
impose length restrictions on sequences during training to prevent excessive computational
costs, but wish to apply the trained models to much longer sequences during inference. In
this case, using learned positional embeddings has obvious drawbacks, as there are no trained
embeddings for positions that are not observed in the training phase.

An alternative approach to modeling positional information is to develop positional embed-
dings that can generalize: once trained, the embedding model can be used to handle longer
sequences. Suppose that we train a positional embedding model on sequences with a maximum
length of ml, and we wish to apply the trained model to a sequence of length m (m>>ml).
If the embedding model is limited in the range of positions that we can observe from training
data, then this model will simply fail to deal with new data outside that range. See Figure 8.9
(a) for an illustration where the learned embedding model cannot model data points outside the
training domain if it lacks the ability to extrapolate.

There are several approaches to making positional embedding models generalize. They
can be grouped into two classes.

• Extrapolation. The model learned on observed data points (i.e., positions) can be
directly employed to assign meaningful values to data points beyond the original range.
For example, suppose we have a series of numbers 1,2, ...,10, and we want to understand
the meaning of a new number, 15. Knowing that these numbers are natural numbers
used for ordering, we can easily infer that 15 is a number that follows 10, even though
15 has not been observed before. Figure 8.9 (b) shows an example of this approach,
where a function is learned to fit the data points within a specific range and then applied
to estimate the values of data points outside that range.

• Interpolation. This approach maps a larger range of data points into the original
observation range. For example, suppose we have a model designed for numbers in the
range [1,10]. When given a new range of [1,20], we can scale this down by dividing
every number by 2, thereby fitting all numbers into [1,10]. This scaling allows us to use
the model trained on the range [1,10] to describe data points in the expanded range of
[1,20]. See Figure 8.9 (c) for an illustration of this approach.

In fact, positional embeddings in many systems have achieved some level of generalization.
For example, sinusoidal encoding, the most common positional embedding method, employs
sine and cosine functions that can naturally extend to sequences of any length. Although this
approach might seem direct and simple, it does not perform well when we significantly extend
the sequences for processing. In this subsection, we will discuss several alternative methods
based on either extrapolation or interpolation.
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Figure 8.9: Illustrations of different positional embedding methods for a range of positions.
Blue points represent the positions that have been observed during training, and red points
represent the positions that are newly observed at test time. In sub-figure (a), the encoding
model only memorizes the points seen during training, and cannot generalize. In sub-figures
(b) and (c), the model can generalize through extrapolation and interpolation.

1. Attention with Learnable Biases

One problem with Eq. (8.74) is that the embedding model treats each token independently
and therefore ignores the distance between different tokens. A common improvement to this
model, called relative positional embedding, is to consider the pairwise relationship between
tokens [Shaw et al., 2018]. The general idea behind this is to obtain the offset between any
pair of positions and incorporate it into the self-attention model. One of the simplest forms of
self-attention with relative positional embedding is given by

Attqkv(qi,K≤i,V≤i) =
i∑

j=0

α(i, j)vj (8.75)

α(i, j) = Softmax(
qik

T
j +PE(i, j)
√
d

+Mask(i, j)) (8.76)
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The only difference between this model and the original self-attention model is that a bias
term PE(i, j) is added to the query-key product in this new model. Intuitively, PE(i, j) can be
interpreted as a distance penalty for the pair of positions i and j. As i moves away from j, the
value of PE(i, j) decreases.

PE(i, j) can be defined in several different ways. Here, we consider the T5 version of
relative positional embedding, called the T5 bias [Raffel et al., 2020]. For each pair of query
qi and key kj , the offset between them is defined to be15

d(i, j) = i− j (8.77)

A simple design for the bias PE(i, j) is to share the same learnable variable for all query-
key pairs with the same offset, i.e., PE(i, j) = ui−j , where ui−j is the variable corresponding
to the offset i− j. However, simply assigning a unique value to each offset will restrict this
model to observed offsets. When i− j is larger than the maximum trained offset, the model
cannot generalize.

The T5 bias instead adopts a generalization of this model. Rather than assigning each query-
key offset a unique bias term, it groups difference offsets into “buckets”, each corresponding
to one learnable parameter. More specifically, the bias terms for nb+1 buckets are given as
follows.

• For buckets 0 to nb+1
2 − 1, each bucket corresponds to one offset, that is, bucket 0

↔ offset 0, bucket 1↔ offset 1, bucket 2↔ offset 2, and so on. We express this as
b(i− j) = i− j.

• For buckets nb+1
2 to nb, the size of each bucket increases logarithmically. For example,

the bucket number for a given offset i− j ≥ nb+1
2 can be defined as

b(i− j) =
nb+1

2
+ ⌊

log(i− j)− log(nb+1
2 )

log(distmax)− log(nb+1
2 )
· nb+1

2
⌋ (8.78)

where the parameter distmax is typically set to a relatively large number to indicate the
maximum offset we may encounter.

• When i− j > distmax, we place i− j in the last bucket. In other words, bucket nb
contains all the offsets that are not assigned to the previous buckets.

Together, these can be expressed as the function

b(i− j)

=

i− j 0≤ i− j < nb+1
2

min(nb,
nb+1
2 + ⌊ log(i−j)−log(

nb+1

2
)

log(distmax)−log(
nb+1

2
)
· nb+1

2 ⌋) i− j ≥ nb+1
2

(8.79)

Figure 8.10 shows an illustration of these buckets. We see that in the first half of the

15For language modeling, a query is only allowed to attend to its left-context, and so we have i− j ≥ 0. In the
more general case of self-attention, where a token can attend to all tokens in the sequence, we may have negative
offsets when i < j.
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Figure 8.10: Illustration of distributing query-key offsets into buckets in the T5 model (nb = 32
and distmax = 1024). Boxes represent buckets. In the first half of the buckets, we use a fixed
bucket size. In the second half of the buckets, we increase the bucket size logarithmically. The
last bucket contains all the query-key offsets that are not covered by previous buckets.

buckets, each bucket is associated with only one value of i− j, while in the second half,
the bucket size increases as i− j grows. The last bucket is designed to handle sequences of
arbitrarily long lengths.

All PE(i, j)s in a bucket share the same bias term ub(i−j). Substituting PE(i, j) = ub(i−j)
into Eq. (8.76), the attention weight for qi and kj becomes16

α(i, j) = Softmax(
qik

T
j +ub(i−j)√

d
+Mask(i, j)) (8.81)

The parameters {u0, ...,unb
} are learned as common parameters during training. It should

be emphasized that this model can generalize to long sequences. This is because PE(i, j)s with
similar query-key offsets share the same parameter, and this sharing strategy is particularly
important for achieving good generalization, given that large query-key offsets are rare in
training. In practice, we often set nb to a moderate number, and thus it can help control the
overfitting of positional embedding models.

2. Attention with Non-learned Biases

Relative positional embedding models are based on a set of learned biases for the query-key
product in self-attention. An alternative approach is to give these biases fixed values via
heuristics, rather than training them on a particular dataset. One benefit of this heuristics-based
approach is that it does not rely on a training process and thus can be directly applied to any
sequences once the biases are set.

One example of such an approach is Press et al. [2022]’s approach, called attention with
linear biases or ALiBi for short. In the ALiBi approach, the bias term is defined as the negative

16Note that, in Raffel et al. [2020]’s T5 model, the rescaling operation for the query-key product is removed.
The attention weight α(i, j) is then given by

α(i, j) = Softmax(qik
T
j +ub(i−j)+Mask(i, j)) (8.80)
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Entry Query-Key Bias (PE(i, j))

T5 [Raffel et al., 2020] ub(i−j)

ALiBi [Press et al., 2022] −β · ( i− j )
Kerple [Chi et al., 2022] −β1( i− j )β2 (power)

−β1 log(1+β2( i− j )) (logarithmic)

Sandwich [Chi et al., 2023]
∑d̄/2

k=1 cos
(
( i− j )/100002k/d̄

)
FIRE [Li et al., 2024b] f

(
ψ( i− j )/ψ(max(mlen, i))

)
Table 8.4: Query-key biases as relative positional embeddings. β, β1, β2, d̄, and mlen are
hyper-parameters. In the T5 model, b(i− j) denotes the bucket assigned to i− j. In the FIRE
model, ψ(·) is a monotonically increasing function such as ψ(x) = log(cx+1), and f(·) is an
FFN.

scaled query-key offset

PE(i, j) = −β · (i− j)
= β · (j− i) (8.82)

where β is the scaling factor. Adding this term to the query-key product, we obtain a new form
of attention weights

α(i, j) = Softmax(
qik

T
j +β · (j− i)√

d
+Mask(i, j)) (8.83)

This model can be interpreted as adding a fixed penalty to qik
T
j whenever j moves one

step away from i. So we do not need to adapt it to a range of sequence lengths, and can employ
it to model arbitrarily long sequences. See Figure 8.11 for a comparison of the T5 bias and the
ALiBi bias.

In general, the scalar β should be tuned on a validation dataset. However, Press et al.
[2022] found that setting β to values decreasing geometrically by a factor of 1

2a for multi-
head attention performs well on a variety of tasks. Specifically, for a self-attention sub-layer
involving nhead heads, the scalar for the k-th head is given by

βk =
1

2
8
k

(8.84)

The ALiBi approach provides a simple form of relative positional embeddings. There are
other similar methods for designing query-key biases using the offset i− j. Table 8.4 shows
a comparison of such biases. As an aside it is worth noting that the form of the right-hand
side of Eq. (8.82) is very similar to length features used in conventional feature-based systems.
For example, in statistical machine translation systems, such features are widely used to
model word reordering problems, resulting in models that can generalize well across different
translation tasks [Koehn, 2010].
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Figure 8.11: Query-key products with biases (above = the T5 bias and below = the ALiBi bias).
The color scale of the biases ranges from light blue denoting small absolute values to deep
blue denoting large absolute values.

3. Rotary Positional Embedding

As with sinusoidal embeddings, rotary positional embeddings are based on hard-coded values
for all dimensions of an embedding [Su et al., 2024]. Recall that in the sinusoidal embedding
model, positions are represented as combinations of sine and cosine functions with different
frequencies. These embeddings are then added to token embeddings to form the inputs to the
Transformer layer stack. Rotary positional embeddings instead model positional context as
rotations to token embeddings in a complex space. This leads to a model expressed in the form
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of multiplicative embeddings

ei = xiR(i) (8.85)

where R(i) ∈ Rd×d is the rotation matrix representing the rotations performed on the token
embedding xi ∈ Rd.

For simplicity, we will first consider embeddings with only two dimensions and return to
a discussion of the more general formulation later. Suppose we have a 2-dimensional token
embedding x=

[
x1 x2

]
. We can represent it as a vector in a plane, originating at the origin

(0,0) and terminating at (x1,x2). A counterclockwise rotation of this vector refers to an
operation of moving the vector around the origin while maintaining its magnitude, as shown in
Figure 8.12 (a). The degree of rotation is usually defined by a specific angle, denoted by θ.
The rotation can be expressed mathematically in the form

Ro(x,θ) = xRθ

=
[
x1 x2

][ cosθ sinθ

−sinθ cosθ

]
=

[
cosθ ·x1− sinθ ·x2 sinθ ·x1+cosθ ·x2

]
(8.86)

where Rθ =

[
cosθ sinθ

−sinθ cosθ

]
is the rotation matrix. If two or more rotations are performed

on the same vector, we can rotate the vector further. This follows from the fact that the
composition of successive rotations is itself a rotation. More formally, rotating a vector by an
angle θ for t times can be expressed as

Ro(x, tθ) = xRtθ

=
[
cos tθ ·x1− sin tθ ·x2 sin tθ ·x1+cos tθ ·x2

]
(8.87)

If we interpret t as the position of a token represented by x in a sequence, then we will
find that the above equation defines a simple positional embedding model. As shown in Figure
8.12 (b), we start moving the token from position 0. Each time we move one step forward, the
vector is rotated by the angle θ. Upon arriving at the position t, the representation of the token
with positional context is given by Ro(x, iθ). As the rotations do not change the magnitude of
the embedding, the original “meaning” of the token is retained. The positional information is
injected into the embedding, when it gets rotated.

A popular way to understand vector rotation is to define it in complex spaces. It is easy
to transform each vector x=

[
x1 x2

]
in the 2D Euclidean space R2 to a complex number

x′ = x1+ix2 in the complex space C via a bijective linear map. Then, the rotation of x with
the angle tθ corresponds to the multiplication by eitθ. Given that eitθ = cos tθ+isin tθ, the



460 Chapter 8. Generative Models

x1

x2

θ

vector x

xRθ

rotated vector

(a) Single-step Rotation

x1

x2

θ

θ

θ

x
xRθ

xR2θ

xR3θ

(b) Multi-step Rotation

x1

x2

7θ

7θ

sleeping4

sleeping11

cat2

cat9

The1 cat2 is3 sleeping4 peacefully5
in6 the7 warm8 sunlight9 .10

Every1 afternoon2 ,3 you4 ’ll5 find6 that7
the8 cat9 is10 sleeping11 on12 my13 bed14 .15

(c) Angles between embeddings of two tokens at different positions

Figure 8.12: Illustrations of vector rotations in a plane. Sub-figures (a) and (b) show rotations of
a vector in a single step and multiple steps, respectively. Sub-figure (c) shows the embeddings
of tokens cat and sleeping in two different sentences. We show these sentences with a subscript
affixed to each token to indicate its position. If we represent tokens as vectors, we can
add positional information by rotating these vectors. This rotation preserves the “distances”
between the vectors. For example, given that the distance between cat and sleeping is the same
in both sentences, the angle between their embeddings also remains the same during rotation.

rotation operation can be re-expressed in the form

xRtθ 7→ x′eitθ

= (x1+ix2)(cos tθ+isin tθ)

= cos tθ ·x1− sin tθ ·x2+i(sin tθ ·x1+cos tθ ·x2) (8.88)

Here we denote the token representation x′eitθ by C(x, tθ). The inner product of the represen-
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tations of the tokens at positions t and s can be written as

⟨C(x, tθ),C(y,sθ)⟩ = (x′y′)ei(t−s)θ (8.89)

where y′ is the complex conjugate of y′. As can be seen, the result of this inner product
involves a term t−s, and so it can model the offset between the two tokens.

Now we go back to representations in the 2D Euclidean space. The dot-product of Ro(x, tθ)
and Ro(y,sθ) is can be written as a function of (t−s)θ

Ro(x, tθ)[Ro(y,sθ)]T = xRtθ[yRsθ]
T

= xRtθ[Rsθ]
TyT

= xR(t−s)θy
T (8.90)

Given this result, if we consider Ro(x, tθ) and Ro(y,sθ) as the query and the key, then the
self-attention operation will implicitly involve the modeling of relative positional context.

This rotary positional embedding can be extended to multi-dimensional embeddings. For a
d-dimensional token embedding x=

[
x1 x2 ... xd

]
, we can treat it as a d

2 -dimensional

complex vector x′ =
[
x′1 x′2 ... x′d/2

]
=
[
x1+ix2 x3+ix4 ... xd−1+ixd

]
, where

each consecutive pair of items forms a complex number. Then, the rotary positional embedding
in the complex space is given by

C(x, tθ) =

d/2∑
k=1

x′ke
itθk e⃗k (8.91)

where e⃗k is the standard basis vector with a single non-zero value in the k-th coordinate and
0’s elsewhere [Biderman et al., 2021].

Although this formula involves a complicated expression, its equivalent form in the d-
dimensional Euclidean space is relatively easy to understand. We can write it as

Ro(x, tθ) =
[
x1 x2 ... xd

]

Rtθ1

Rtθ2
. . .

Rtθd/2

 (8.92)

where Rtθk =

[
cos tθk sin tθk
−sin tθk cos tθk

]
. θ =

[
θ1, ...,θd/2

]
are the parameters for controlling the

angles of rotations in different dimensions. Typically, θk is set to 10000−
2(k−1)

d , which is
analogous to the setting in sinusoidal embeddings.

In a practical implementation, Eq. (8.92) can be rewritten into a form that relies solely on
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the element-wise product and addition of vectors.

Ro(x, tθ) =


x1
x2
...

xd−1

xd



T

⊙


cos tθ1
cos tθ1

...
cos tθd/2
cos tθd/2



T

+


−x2
x1
...
−xd
xd−1



T

⊙


sin tθ1
sin tθ1

...
sin tθd/2
sin tθd/2



T

(8.93)

Finally, we rewrite Eq. (8.85) to obtain the form of the embedding at position i

ei = Ro(xi, iθ) (8.94)

4. Position Interpolation

In position interpolation, our goal is to map the positions in the new sequence to match the
observed range in training. Suppose the sequence length for training ranges from 0 to ml.
When m>ml at test time, we represent the positions in [0,m] such that our representations fit
[0,ml].

To illustrate, consider the rotary positional embedding model described above. The
embedding of each token is described by a model Ro(xi, iθ) in which θ =

[
θ1, ...,θd/2

]
are

the parameters. Ro(xi, iθ) can be cast in the form of a linear combination of two periodic
functions (see Eq. (8.93))

cos iθ =
[
cos iθ1 ... cos iθd/2

]
(8.95)

sin iθ =
[
sin iθ1 ... sin iθd/2

]
(8.96)

θk is a exponential function of k and takes the form

θk = b−
2(k−1)

d (8.97)

where b is the base. The period of cos iθk and sin iθk is

Tk = 2π · b
2(k−1)

d (8.98)

The key idea behind position interpolation is to adjust this period so that the new positions
can be encoded within the range [0,ml]. One way to achieve this is to scale up Tk by m

ml
, given

by

T ′
k =

m

ml
·2π · b

2(k−1)
d (8.99)

Hence all points in [0,m] are compressed into [0,ml]. This linear scaling can be easily realized
by modifying the input to the embedding model [Chen et al., 2023c]. The new model with



8.3 Long Sequence Modeling 463

linear positional interpolation is given by

Ro′(xi, iθ) = Ro(xi,
ml

m
iθ) (8.100)

Another method of positional interpolation is to scale the base17. Suppose that the base b is
scaled by λ. We wish the period of this new model in the last dimension of θ (i.e., dimension
d
2 ) to be equal to that of the linear positional interpolation model. This can be expressed as

2π · (λb)
2( d2−1)

d =
m

ml
·2π · b

2( d2−1)

d (8.101)

Solving this equation, we obtain

λ =
(m
ml

) d

2( d2−1)

=
(m
ml

) d
d−2 (8.102)

This gives an embedding model

Ro′(xi, iθ) = Ro(xi, iθ
′) (8.103)

where

θ′ =
[
(λb)−

0
d ,(λb)−

2
d , ...,(λb)−

d−2
d

]
(8.104)

Note that scaling the base provides a non-uniform method for scaling the periods across
different dimensions of θ. This method has been found to be helpful for extending LLMs to
longer sequences, and several improvements have been developed [Peng et al., 2024; Ding
et al., 2024].

8.3.6 Remarks
In this section, we have presented a variety of methods for long-context language modeling.
We close this section by discussing some interesting issues related to these methods.

1. Need for Long Context

One of the ultimate goals of long-context LLMs is that these models can precisely encode
infinite context. The so-called infinite context refers more to the fact that an LLM can contin-
uously read words. This motivates LLMs that can handle extremely long context or stream
data. As discussed in Section 8.3.3, it is common to use fixed-size memory models to process
continuously expanding context. Many such systems are based on recurrent architectures
or their variants, because they are inherently suited to model time series problems where

17This method was first proposed in https://www.reddit.com/r/LocalLLaMA/comments/
14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntka ware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntka ware_scaled_rope_allows_llama_models_to_have/
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the effects of past inputs continue indefinitely. Another way to achieve infinite memory is
to develop alternatives to self-attention models, for example, one can use continuous-space
attention models to encode context, which removes the dependency on context length [Martins
et al., 2022].

When studying long-context LLMs, it is natural to wonder what mechanisms may explain
the use of long context in language modeling. Can we compress the representation of infinite
context into a relatively small-sized model? Are all context tokens useful for predicting next
tokens? How do LLMs prepare for token prediction when they see the context? Can we know
in advance which contextual information will be critical for prediction? General answers to
all these questions are not obvious, but they inspire follow-on research of explainable models,
and some interesting results have been found. For example, Deletang et al. [2024] conducted
extensive experiments to show that LLMs are powerful in-context compressors. Although
viewing predictive models as compression models has long been studied in machine learning,
it also provides insights into our understanding of the LLM scaling laws. Pal et al. [2023]
and Wu et al. [2024] investigated whether the features learned up to the current step, though
not intentionally, are already sufficient for predicting tokens at the following steps. Note that
the need for long-context in language modeling is highly dependent on the problem that we
address. A related issue is where to apply LLMs and how to evaluate them. For example,
in summarization tasks we may only need to distill and focus on a few key aspects of the
text, while in retrieval-like tasks we need to “memorize” the entire context so that the relevant
information can be accessed. We will discuss the evaluation issue later in this subsection.

2. Pre-training or Adapting LLMs?

Training LLMs requires significant computational costs. Although it is straightforward to train
LLMs on long sequence data, the training becomes computationally unwieldy for large data
sets. It is common practice to pre-train LLMs on general datasets, and then adapt them with
modest fine-tuning effort. For example, LLMs with relative or rotary positional embeddings
can be directly trained on large-scale data in the pre-training phase. While the resulting
models may exhibit some abilities to extrapolate lengths in the inference phase, it may be more
effective to fine-tune them on longer sequences.

Ideally, we would like to pre-train LLMs with standard Transformer architectures and
adapt them to new tasks. This allows us to use many off-the-shelf LLMs and efficiently
adapt them to handle long sequences. However, when new architectures are adopted, it seems
inevitable that we need to train these models from scratch. This poses practical difficulties for
developing long-context LLMs, as we cannot leverage well-developed, pre-trained models and
must instead train them ourselves. On the other hand, fine-tuning is still an effective way to
adapt LLMs with certain architectures that are different from those in pre-training. An example
is models augmented with external memories. In these models, the pre-trained LLMs are fixed,
and the focus is on how to make these LLMs collaborate with the memory models. In RAG, for
instance, it is common to fine-tune LLMs to improve their use of retrieval-augmented inputs.
Another example of fine-tuning LLMs for long-context modeling is that we train an LLM with
full attention models, and then replace them with sparse attention models in the fine-tuning
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phase. The pre-trained LLM provides initial values of model parameters used in a different
model, and this model is then fine-tuned as usual.

3. Evaluating Long-context LLMs

Evaluating long-context LLMs is important, but it is a new issue in NLP. The general idea is
that, if we input a long context to an LLM, then we can check from the output of the LLM
whether it understands the entire context and makes use of it in predicting following tokens.
In conventional research of NLP, such evaluations are often aimed at examining the ability
of NLP models in handling long-range dependencies. However, the size of contexts used in
recent LLMs is much larger than that used in NLP systems a few years ago. This motivates
researchers to develop new evaluation benchmarks and metrics for long-context LLMs.

One approach is to use the perplexity metric. However, in spite of its apparent simplicity,
this method tends to reflect more on the LLMs’ ability to make use of local context rather
than global context. It is therefore tempting to develop evaluation methods that are specific
to long-context LLMs. Popular methods include various synthetic tasks where artificially
generated or modified data is used to evaluate specific capabilities of long-context LLMs.
In needle-in-a-haystack18 and passkey retrieval tasks [Mohtashami and Jaggi, 2024; Chen
et al., 2023c], for instance, LLMs are required to identify and extract a small, relevant piece
of information from a large volume of given text. The assumption here is that an LLM with
sufficient memory should remember earlier parts of the text as it processes new information.
This LLM can thus pick out the relevant details, which might be sparse and hidden among
much irrelevant information, from the text. Alternatively, in copy memory tasks (or copy tasks
for short), LLMs are used to repeat the input text or a specific segment multiple times. These
tasks were initially proposed to test the extent to which recurrent models can retain and recall
previously seen tokens [Hochreiter and Schmidhuber, 1997; Arjovsky et al., 2016], and have
been adopted in evaluating recent LLMs [Bulatov et al., 2022; Gu and Dao, 2023].

Another approach to evaluating long-context LLMs is to test them on NLP tasks that
involve very long input sequences. Examples include long-document or multi-document
summarization, long-document question answering, code completion, and so on. A benefit of
this approach is that it can align evaluations with user expectations.

Although many methods have been developed, there is still no general way to evaluate
long-context LLMs [Liu et al., 2024c]. One problem is that most of these methods focus on
specific aspects of LLMs, rather than their fundamental ability to model very long contexts.
Even though an LLM can pick out the appropriate piece of text from the input, we cannot say
that it truly understands the entire context. Instead, it might just remember some important parts
of the context, or even simply recall the answer via the model learned in pre-training. Moreover,
the data used in many tasks is small-scale and relatively preliminary, leading to discrepancies
between evaluation results and actual application performance. A more interesting issue is that
the results of LLMs are influenced by many other factors and experimental setups, for example,
using different prompts can lead to very different outcomes. This makes evaluation even more

18https://github.com/gkamradt/LLMTest_NeedleInAHaystack

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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challenging because improvements may not solely result from better modeling of long contexts,
and there is a risk of overclaiming our results. Nevertheless, many open questions remain in
the development and evaluation of long-context LLMs. For example, these models still suffer
from limitations such as restricted context length and high latency. Studying these issues is
likely to prove valuable future directions.

8.4 Summary
In this chapter, we have discussed the concept of LLMs and related techniques. This can be
considered a general, though not comprehensive, introduction to LLMs, laying the foundation
for further discussions on more advanced topics in subsequent chapters. Furthermore, we have
explored two ways to scale up LLMs. The first focuses on the large-scale pre-training of LLMs,
which is crucial for developing state-of-the-art models. The second focuses on methods for
adapting LLMs to long inputs, including optimizing attention models, designing more efficient
and compressed KV caches, incorporating memory models, and exploring better positional
embeddings.

The strength of LLMs lies in their ability to break the constraints of training NLP models
for a limited number of specific tasks. Instead, LLMs learn from large amounts of text through
the simple task of token prediction — we predict the next token in a sentence given its prior
tokens. A general view is that, by repeating this token prediction task a large number of times,
LLMs can acquire some knowledge of the world and language, which can then be applied to
new tasks. As a result, LLMs can be prompted to perform any task by framing it as a task
of predicting subsequent tokens given prompts. This emergent ability in language models
comes from several dimensions, such as scaling up training, model size, and context size. It is
undeniable that scaling laws are currently the fundamental principle adopted in developing
large language models, although simply increasing model size has yet to prove sufficient for
achieving AGI. These continuously scaled LLMs have been found to show capabilities in
general-purpose language understanding, generation, and reasoning. More recently, it has been
found that scaling up the compute at inference time can also lead to significant improvements
in complex reasoning tasks [OpenAI, 2024].

Given their amazing power, LLMs have attracted considerable interest, both in terms of
techniques and applications. As a result, the explosion of research interest in LLMs has also
led to a vast number of new techniques and models. However, we do not attempt to provide a
comprehensive literature review on all aspects of LLMs, given the rapid evolution of the field.
Nevertheless, one can still gain knowledge about LLMs from general reviews [Zhao et al.,
2023; Minaee et al., 2024] or more focused discussions on specific topics [Ruan et al., 2024].
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Chapter 9

Prompting

In the context of LLMs, prompting refers to the method of providing an LLM with a specific
input or cue to generate a desired output or perform a task. For example, if we want the LLM
to translate a sentence from English to Chinese, we can prompt it like this

Translate the text from English to Chinese.

Text: The early bird catches the worm.

Translation:

Prompting is crucial for LLMs because it directly influences how effectively these models
understand and respond to user queries. A well-crafted prompt can guide an LLM to generate
more accurate, relevant, and contextually appropriate responses. Furthermore, this process can
be iteratively refined. By analyzing the responses of the LLM, users can adjust their prompts
to align more closely with their specific needs. Given the importance of prompting in applying
LLMs, prompt design has become an essential skill for users and developers working with
LLMs. This leads to an active research area, called prompt engineering, in which we design
effective prompts to make better use of LLMs and enhance their practical utility in real-world
applications.

An important concept related to prompting is in-context learning. When prompting an
LLM, we can add new information to the context, such as demonstrations of problem-solving.
This allows the LLM to learn from this context how to solve the problem. Here is an example
of prompting LLMs with a few demonstrations of how to classify text based on sentiment
polarity.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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Here are some examples of text classification.

Example 1: We had a delightful dinner together. → Label: Positive

Example 2: I’m frustrated with the delays. → Label: Negative

What is the label for “That comment was quite hurtful.”?

Label:

In-context learning is often seen as an emergent ability of LLMs that arises after pre-
training. Though LLMs can be trained or tuned to perform new tasks, in-context learning
provides a very efficient way to adapt these models without any training or tuning effort.
Perhaps this is one of the most notable features of LLMs: they indeed learn general knowledge
about the world and language during pre-training, which we can easily apply to new chal-
lenges. Moreover, in-context learning reflects the broader trend of making AI systems more
generalizable and user-friendly. Instead of requiring specialized engineers to fine-tune models
for every unique task, users can interact with LLMs in a more intuitive way, simply providing
examples or adjusting the context as needed.

In this chapter, we focus on prompting techniques in LLMs. We begin by considering
several interesting prompt designs commonly used in prompt engineering. Then, we discuss a
series of refinements to these methods. Finally, we explore approaches for automating prompt
design.

9.1 General Prompt Design

This section presents basic concepts in prompt design, along with examples of how to prompt
LLMs for various NLP tasks. Since the effectiveness of prompting is highly dependent on the
LLMs being used, prompts often vary across different LLMs, making it difficult to provide a
comprehensive list of prompts for all LLMs and downstream tasks. Therefore, this discussion
is not focused on any specific LLM. Instead, the goal is to provide guiding principles for
prompt design.

9.1.1 Basics

The term prompt is used in many different ways. In this chapter we define a prompt as the input
text to an LLM, denoted by x. The LLM generates a text y by maximizing the probability
Pr(y|x). In this generation process, the prompt acts as the condition on which we make
predictions, and it can contain any information that helps describe and solve the problem.

A prompt can be obtained using a prompt template (or template for short) [Liu et al., 2023b].
A template is a piece of text containing placeholders or variables, where each placeholder can
be filled with specific information. Here are two templates for asking the LLM for weekend
suggestions.
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Please give me some suggestions for a fun weekend.

If {∗premise∗}, what are your suggestions for a fun weekend.

In the first template, we simply instruct the LLM to return some suggestions. So the tem-
plate is just a piece of text with no variables. In the second template, the variable {∗premise∗}
needs to be specified by the users to provide a premise for making suggestions. For example,
if we input

premise = the weather is nice this weekend

then we can generate a prompt

If the weather is nice this weekend,
what are your suggestions for a fun weekend.

We can also design a template with multiple variables. Here is an example in which we
compare the two sentences in terms of their semantic similarity.

Here is a sentence
{∗sentence1∗}
Here is another sentence
{∗sentence2∗}
Compute the semantic similarity between the two sentences

A popular way to format prompts is to write each input or output in a “name:content” style.
For example, we can describe a conversation between two people, named John and David, and
use the LLM to continue the conversation. A template of such prompts is given by
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John: {∗utterance1∗}
David: {∗utterance2∗}
John: {∗utterance3∗}
David: {∗utterance4∗}
John: {∗utterance5∗}
David: {∗utterance6∗}
John: {∗utterance7∗}
David:

The “name:content” format can be used to define the task that we want the LLM to perform.
For example, given that “Q” and “A” are commonly used abbreviations for “Question” and
“Answer”, respectively, we can use the following template to do question-answering.

Q: {∗question∗}
A:

This format can be used to describe more complex tasks. For example, the following is an
example of providing a specification for a translation task

Task: Translation
Source language: English
Target language: Chinese
Style: Formal text
Template: Translate the following sentence: {∗sentence∗}

In practical systems, it is common to represent and store such data in key-value pairs, such as
the JSON format1.

When the problem is difficult to describe in an attribute-based manner, it is more common
to instruct LLMs with a clear and detailed description. There are many ways to do this. One

1The JSON representation is

{
"Task": "Translation"
"Source language": "English"
"Target language": "Chinese"
"Style": "Formal text"
"Template": "Translate the following sentence: {∗sentence∗}"

}
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example is to assign a role to LLMs and provide sufficient context. The following is a template
that instructs an LLM to act as an expert and answer questions from children.

You are a computer scientist with extensive knowledge in the field
of deep learning.

Please explain the following computer-related concept to a child
around 10 years old, using simple examples whenever possible.

{∗concept∗}

Here the text “You are a computer scientist ... deep learning. ” is sometimes called system
information, and is provided to help the LLM understand the context or constraints of the task
it is being asked to perform.

9.1.2 In-context Learning
Learning can occur during inference. In-context learning is one such method, where prompts
involve demonstrations of problem-solving, and LLMs can learn from these demonstrations
how to solve new problems. Since we do not update model parameters in this process, in-
context learning can be viewed as a way to efficiently activate and reorganize the knowledge
learned in pre-training without additional training or fine-tuning. This enables quick adaptation
of LLMs to new problems, pushing the boundaries of what pre-trained LLMs can achieve
without task-specific adjustments.

In-context learning can be illustrated by comparing three methods: zero-shot learning, one-
shot learning and few-shot learning. Zero-shot learning, as its name implies, does not involve
a traditional “learning” process. It instead directly applies LLMs to address new problems that
were not observed during training. In practice, we can repetitively adjust prompts to guide
the LLMs in generating better responses, without demonstrating problem-solving steps or
providing examples. Consider the following example. Suppose we want to use an LLM as an
assistant that can help correct English sentences. A zero-shot learning prompt is given by

SYSTEM You are a helpful assistant, and are great at grammar correction.

USER You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: She don’t like going to the park.
Output:

Here the gray words are used to indicate different fields of the prompt.
In one-shot learning, we extend this prompt by adding a demonstration of how to correct

sentences, thereby allowing the LLM to learn from this newly-added experience.
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SYSTEM You are a helpful assistant, and are great at grammar correction.

DEMO You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: There is many reasons to celebrate.
Output: There are many reasons to celebrate.

USER You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: She don’t like going to the park.
Output:

Furthermore, we can add more demonstrations to enable few-shot learning.

SYSTEM You are a helpful assistant, and are great at grammar correction.

DEMO1 You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: There is many reasons to celebrate.
Output: There are many reasons to celebrate.

DEMO2 You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: Me and my friend goes to the gym every day.
Output: My friend and I go to the gym every day.

USER You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: She don’t like going to the park.
Output:

In few-shot learning, we essentially provide a pattern that maps some inputs to the corre-
sponding outputs. The LLM attempts to follow this pattern in making predictions, provided
that the prompt includes a sufficient number of demonstrations, although generally small. It is
also possible to use simpler patterns to achieve this. For example, one can use the following
few-shot learning prompt for translating words from Chinese to English.
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DEMO 现在 → now
来 → come
去 → go
男孩 → boy

USER 女孩 →

If the LLM is powerful enough, few-shot learning can enable it to address complex
problems, such as mathematical reasoning. For example, consider the following task of
summing two numbers and then dividing the sum by their product.

DEMO 12 5 → (12+5)/(12×5) = 0.283

3 1 → (3+1)/(3×1) = 1.33

−9 4 → (−9+4)/(−9×4) = 0.138

15 15 → (15+15)/(15×15) = 0.133

USER 19 73 →

In many practical applications, the effectiveness of in-context learning relies heavily on the
quality of prompts and the fundamental abilities of pre-trained LLMs. On one hand, we need
a significant prompt engineering effort to develop appropriate prompts that help LLMs learn
more effectively from demonstrations. On the other hand, stronger LLMs can make better use
of in-context learning for performing new tasks. For example, suppose we wish to use an LLM
to translate words from Inuktitut to English. If the LLM lacks pre-training on Inuktitut data, its
understanding of Inuktitut will be weak, and it will be difficult for the model to perform well
in translation regardless of how we prompt it. In this case, we need to continue training the
LLM with more Inuktitut data, rather than trying to find better prompts.

It might be interesting to explore how in-context learning emerges during pre-training and
why it works during inference. One simple understanding is that LLMs have gained some
knowledge of problem-solving, but there are many possible predictions, which are hard to
distinguish when the models confront new problems. Providing demonstrations can guide the
LLMs to follow the “correct” paths. Furthermore, some researchers have tried to interpret
in-context learning from several different perspectives, including Bayesian inference [Xie et al.,
2022], gradient descent [Dai et al., 2023; Von Oswald et al., 2023], linear regression [Akyürek
et al., 2023], meta learning [Garg et al., 2022], and so on.

9.1.3 Prompt Engineering Strategies

Designing prompts is highly empirical. In general, there are many ways to prompt an LLM for
performing the same task, and we need to perform a number of trial-and-error runs to find a
satisfactory prompt. To write good prompts more efficiently, one can follow certain strategies.
Examples of common prompting principles include
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• Describing the task as clearly as possible. When we apply an LLM to solve a problem,
we need to provide a precise, specific, and clear description of the problem and instruct
the LLM to perform as we expect. This is particularly important when we want the
output of the LLM to meet certain expectations. For example, suppose we are curious
about climate change. A simple prompt for asking the LLM to provide some information
is

Tell me about climate change.

Since this instruction is too general, the LLM may generate a response that addresses
any aspect of climate change, which may not align with our specific interests. In this
case, we can instead use prompts that are specific and detailed. One such example is

Provide a detailed explanation of the causes and effects of climate
change, including the impact on global temperatures, weather patterns,
and sea levels. Also, discuss possible solutions and actions being taken
to mitigate these effects.

Now suppose we intend to explain climate change to a 10-year-old child. We can adjust
the above prompt further.

Explain the causes and effects of climate change to a 10-year-old child.
Talk about how it affects the weather, sea levels, and temperatures.
Also, mention some things people are doing to help. Try to explain in
simple terms and do not exceed 500 words.

• Guiding LLMs to think. LLMs have exhibited surprisingly good capabilities to “think”.
A common example is that well-developed LLMs have achieved impressive performance
in mathematical reasoning tasks, which are considered challenging. In prompt engineer-
ing, the “thinking” ability of LLMs needs to be activated through appropriate prompting,
especially for problems that require significant reasoning efforts. In many cases, an
LLM that is instructed to “think” can produce completely different results compared
with the same LLM that is instructed to perform the task straightforwardly. For example,
Kojima et al. [2022] found that simply appending “Let’s think step by step” to the end of
each prompt can improve the performance of LLMs on several reasoning tasks. LLMs
can be prompted to “think” in a number of ways. One method is to instruct LLMs to
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generate steps for reasoning about the problem before reaching the final answer. For
example, consider a task of solving mathematical problems. See below for a simple
prompt for this task.

You are a mathematician. You will be provided with a math problem.
Please solve the problem.

Since solving math problems requires a detailed reasoning process, LLMs would proba-
bly make mistakes if they attempted to work out the answer directly. So we can explicitly
ask LLMs to follow a given reasoning process before coming to a conclusion.

You are a mathematician. You will follow these detailed reasoning
steps when solving math problems.

Step 1: Problem Interpretation.
The mathematician carefully listens to your query and understands the
intricate details of the mathematical challenge you have presented.

Step 2: Strategy Formulation.
Drawing upon their extensive knowledge, the mathematician chooses
the most effective strategy tailored to the type of math problem, whether
it is algebra, calculus, or geometry.

Step 3: Detailed Calculation.
With precision and expertise, the mathematician performs the necessary
calculations step by step, adhering to all mathematical principles.

Step 4: Solution Review.
Before providing the final answer, the mathematician meticulously
checks the calculations for accuracy and offers a concise explanation
or rationale for the solution.

You will be provided with a math problem. Please solve the problem.

{∗problem∗}

Another method to guide LLMs to “think” is through multiple rounds of interaction with
LLMs. For example, as a first step, we can instruct LLMs to solve the problem directly
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You will be provided with a math problem. Please solve the problem.

{∗problem∗}

Now we have an initial answer to the problem. As a second step, we prompt LLMs
to evaluate the correctness of the answer and, if necessary, rework it to find a better
solution.

You will be provided with a math problem, along with a solution.
Evaluate the correctness of this solution, and identify any errors if
present. Then, work out your own solution.

Problem: {∗problem∗}

Solution: {∗solution∗}

The prompts presented here are closely related to a long line of research on reasoning
problems in LLMs. It is impossible to provide a complete discussion of all related issues
because this topic covers a large family of methods. But we will see a relatively more
detailed discussion on how to improve prompting through more reasoning in Section
9.2.

• Providing reference information. As discussed in the previous section, we can include
demonstrations in prompts and allow LLMs to in-context learn from these demon-
strations how to perform the task. In fact, given the remarkable ability of language
understanding of LLMs, we can add any type of text into the prompts and so these
models can predict based on enriched contexts. In many applications, we have various in-
formation that is relevant to user queries. Instead of using LLMs to make unconstrained
predictions, we often want LLMs to produce outputs that are confined to the relevant
text. One such example is RAG, where the relevant text for the user query is provided by
calling an IR system, and we prompt LLMs to generate responses based on this provided
relevant text. The following prompt shows an example.
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You are an expert that can generate answers to input queries. You have
now been provided with a query and the corresponding context infor-
mation. Please generate an answer based on this context information.
Note that you need to provide the answer in your own words, not just
copy from the context provided.

Context information: {∗IR-result∗}
Query: {∗query∗}

If the context information is highly reliable, we can even restrict LLMs to answering
using only the provided text. An example prompt is shown as follows

You are an expert tasked with generating answers from input queries.
You have been provided with a query and corresponding context infor-
mation, organized in a table where each row represents a useful record.
Please generate an answer using only this context information. Ensure
that you provide the answer in your own words.

Context information: {∗table∗}
Query: {∗query∗}

When dealing with real-world problems, we often have prior knowledge and additional
information about the problems that help produce better answers. Considering such
information in prompting is generally helpful in improving the result.

• Paying attention to prompt formats. In general, the performance of LLMs is highly
sensitive to the prompts we input. Sometimes a small modification to a prompt can
lead to a big change in model output. An interesting example is that changing the
order of sentences in a prompt may cause LLMs to generate different results. To make
prompts easy to read and reduce ambiguity, it is common to format them in a way that
ensures clarity. One example is that we define several fields for prompts and fill different
information in each field. Another example is we can use code-style prompts for LLMs
which can understand and generate both natural language and code. See the following
for a code-style prompt that performs translation where one demonstration is presented.
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[English] = [I have an apple.]

[German] = [Ich habe einen Apfel.]

[English] = [I have an orange.]

[German] =

LLMs can receive text in various formats. This allows us to use control characters, XML
tags, and specific formatting to represent complex data. And it is useful to specify how
the input and output should be formatted or structured. For example, we can delimit
sections of text using quotes and prompt LLMs accordingly (e.g., adding a sentence like
“the input text is delimited by double quotes” to the prompt).

Above, we have discussed only a few strategies for writing good prompts. There are, of
course, many such methods, and one needs to develop their own through practice. Interested
readers can refer to various online documents for more information, such as OpenAI’s manual
on the GPT series models2.

9.1.4 More Examples

In this subsection, we consider more examples of prompting LLMs to perform various NLP
tasks. The motivation here is not to give standard prompts for these tasks, but rather to use
simple examples to illustrate how LLMs can be prompted to deal with NLP problems.

1. Text Classification

Text classification is perhaps one of the most common problems in NLP. Many tasks can
be broadly categorized as assigning pre-defined labels to a given text. Here we consider the
polarity classification problem in sentiment analysis. We choose polarity classification for
illustration because it is one of the most popular and well-defined text classification tasks. In a
general setup of polarity classification, we are required to categorize a given text into one of
three categories: negative, positive, or neutral. Below is a simple prompt for doing this (for
easy reading, we highlight the task description in the prompt).

Analyze the polarity of the following text and classify it as positive, negative,
or neutral.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

The polarity of the text can be classified as negative.

2See https://platform.openai.com/docs/guides/prompt-engineering/
six-strategies-for-getting-better-results.

https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
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To make the example complete, we show the response generated by the LLM (underlined text).

Although the answer is correct, the LLM gives this answer not in labels but in text
describing the result. The problem is that LLMs are designed to generate text but not to assign
labels to text and treat classification problems as text generation problems. As a result, we need
another system to map the LLM’s output to the label space (call it label mapping), that is, we
extract “negative” from “The polarity of the text can be classified as negative”. This is trivial
in most cases because we can identify label words via simple heuristics. But occasionally,
LLMs may not express the classification results using these label words. In this case, the
problem becomes more complicated, as we need some way to map the generated text or words
to predefined label words.

One method to induce output labels from LLMs is to reframe the problem as a cloze task.
For example, the following shows a cloze-like prompt for polarity classification.

Analyze the polarity of the following text and classify it as positive, negative,
or neutral.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

The polarity of the text is negative

We can use LLMs to complete the text and fill the blank with the most appropriate word.
Ideally, we wish the filled word would be positive, negative, or neutral. However, LLMs
are not guaranteed to generate these label words. One method to address this problem is to
constrain the prediction to the set of label words and select the one with the highest probability.
Then, the output label is given by

label = argmax
y∈Y

Pr(y|x) (9.1)

where y denotes the word filled in the blank, and Y denotes the set of label words
{positive,negative,neutral}.

Another method of using LLMs to generate labels is to constrain the output with prompts.
For example, we can prompt LLMs to predict within a controlled set of words. Here is an
example.
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Analyze the polarity of the following text and classify it as positive, negative,
or neutral.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

What is the polarity of the text?

Just answer: positive, negative, or neutral.

Negative

Sentiment analysis is a common NLP problem that has probably been well understood by
LLMs through pre-training or fine-tuning. Thus we can prompt LLMs using simple instructions
to perform the task. However, for new classification problems, it may be necessary to provide
additional details about the task, such as the classification standards, so that the LLMs can
perform correctly. To do this, we can add a more detailed description of the task and/or
demonstrate classification examples in the prompts. To illustrate, consider the following
example.

Analyze the polarity of the following text and classify it as positive, negative,
or neutral. Here’s what each category represents:

Positive: This indicates that the text conveys a positive emotion or attitude. For
example, texts expressing happiness, satisfaction, excitement, or admiration
are considered positive.

Negative: This refers to a text that expresses a negative emotion or attitude. It
encompasses feelings of sadness, anger, frustration, or criticism.

Neutral: Neutral sentiment is used to describe texts that do not exhibit clear
positive or negative emotions but instead convey informational, factual, or
indifferent tones.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

What is the polarity of the text?

Negative

While it seems straightforward to use LLMs for classification problems, there are still
issues that have not been well addressed. For example, when dealing with a large number of
categories, it remains challenging to effectively prompt LLMs. Note that if we face a very
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difficult classification problem and have a certain amount of labeled data, fine-tuning LLMs or
adopting “BERT + classifier”-like architectures is also desirable.

2. Information Extraction

Many NLP problems can be regarded as information extraction problems, involving the
identification or extraction of specific pieces of information from unstructured text. This
information can include named entities, relationships, events, and other relevant data points.
The goal of information extraction is to transform raw data into a format that can be easily
analyzed and used in various downstream applications.

As information extraction covers a wide range of problems, we cannot discuss them all
here. Instead, we start with the task of named entity recognition — a task that has long
been a concern in NLP. Named entity recognition is a process that detects and classifies key
information in text into specific groups. These key pieces of information, known as named
entities, typically include proper names and are categorized into distinct classes such as people,
locations, organizations, dates, monetary values, and percentages. Consider first a simple
example of extracting person names from a text3.

Identify all person names in the provided text.

Text:
Is the UK really doing that badly or have travel trends shifted, post-pandemic?
For Tom Jenkins, CEO of the European Tourism Organisation, it’s the latter.
“I think the UK is doing perfectly well but we’ll see more people going to
Europe,” he says of 2024, adding that there’s “allegedly a slight plateau of
American demand for the UK.”

The person name identified in the provided text is:

Tom Jenkins

Then, we can extract all named entities.

3The text is from https://edition.cnn.com/travel

https://edition.cnn.com/travel
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Identify and classify all named entities in the provided text into categories
such as person names, locations, dates, and organizations. List each entity
with its type on one line.

Text:
Is the UK really doing that badly or have travel trends shifted, post-pandemic?
For Tom Jenkins, CEO of the European Tourism Organisation, it’s the latter.
“I think the UK is doing perfectly well but we’ll see more people going to
Europe,” he says of 2024, adding that there’s “allegedly a slight plateau of
American demand for the UK.”

1. Tom Jenkins - Person Name

2. European Tourism Organisation - Organization

3. UK - Location

4. Europe - Location

5. 2024 - Date

Given these identified named entities, we can further process the text using other infor-
mation extraction tasks. For example, we can identify the relationships between these named
entities (call it relation extraction). The corresponding prompt is shown as follows.

Given a text and a list of named entities identified within it, analyze and
describe the relationships between these entities. Explain how each entity is
contextually related to others.

Text:
Is the UK really doing that badly or have travel trends shifted, post-pandemic?
For Tom Jenkins, CEO of the European Tourism Organisation, it’s the latter.
“I think the UK is doing perfectly well but we’ll see more people going to
Europe,” he says of 2024, adding that there’s “allegedly a slight plateau of
American demand for the UK.”

Named Entity:
Tom Jenkins, European Tourism Organisation, UK, Europe, 2024

Tom Jenkins - European Tourism Organisation: Tom Jenkins is the CEO
of the European Tourism Organisation. This indicates a professional
association where Tom Jenkins likely has a significant role in directing the
organization’s activities, especially those related to tourism in Europe.

...
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If LLMs have been fine-tuned with instruction following for information extraction tasks,
it is relatively easy to perform various information extraction tasks. For example, the following
is a prompt template for information extraction.

You will be provided with a text. Your task is to {∗task-description∗}

Text: {∗text∗}

Here task-description is the instruction for the task. Examples of the instruction include

extract the keywords from the text.

extract the key events from the text.

detect the coreference and anaphoric links between entities from the text.

and so on. Of course, we can provide a more detailed description of the task to prompt LLMs
more accurately.

3. Text Generation

In NLP, the term text generation is used broadly to cover a wide range of different problems,
many of which focus on generating text based on given text. These problems can be roughly
categorized into two classes: 1) continual writing based on the input text (call it text comple-
tion), and 2) transformation of the input text into another text (call it text transformation).
Here, we illustrate the prompts for the former and consider the prompts for the latter in the
following discussion.

A simple example of text completion is continuing to write a story starting with a few
given sentences.

You are a writer who is great at writing stories. You are provided with a few
sentences to start with. Please continue the story from the provided sentences.

Start of the story:
One sunny afternoon, Lily discovered a tiny, golden key hidden under a rock
in her backyard. Curious, she picked it up and wondered what it might unlock.
Just then, her cat, Whiskers, began to meow excitedly, leading her towards
the old oak tree at the edge of the garden.

Lily followed Whiskers, her heart pounding with excitement and a touch
of nervousness. The old oak tree had always seemed mysterious to her, its
gnarled branches casting long shadows even on the brightest days. As they
reached the tree, Whiskers darted ahead and started pawing at something
buried beneath a pile of autumn leaves ...
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Likewise, we can create a conversation given the conversational context.

You are provided with a conversation between a tourist and a taxi driver.
Please complete the conversation.

Tourist: Could you take me to the downtown museum, please?

Taxi Driver: Of course! First time in the city?

Tourist: Yes, any must-see places around?

Taxi Driver: Definitely check out the botanical gardens after the museum.
They’re nearby and quite beautiful.

Tourist: Great, thanks for the tip!

Taxi Driver: No problem. Enjoy your visit!

Another application of text completion is generating text based on user requirements. The
requirements can include style, tone, length, and any specific content that the text should con-
tain. For example, users may need a formal report, a creative story, or a piece of programming
code. Here is a prompt for generating a five-character regulated Chinese poem.

You are a poet. Please write a traditional Chinese poem. Here is the require-
ment.

Theme: Spring’s rejuvenation

Structure: Five-character regulated poem

Emotion: Convey a sense of happiness and renewal through vivid spring
imagery.

春意盎然

翠柳风中舞，

红花雨后新。

山明水又绿，

天宽鸟自频。

If the LLM is trained to generate language and code, we can prompt it to perform code
completion tasks. Here is an example.
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Please write a Python function to calculate the average of a list of numbers.

def calculate_average(numbers):
if numbers: # Check if the list is not empty
return sum(numbers) / len(numbers)
else:
return 0 # Return 0 if the list is empty

4. Text Transformation

Typical text transformation tasks include machine translation, summarization, text style transfer,
and so on. The prompts used to perform these tasks are not significantly different from the
ones presented previously. Here, we present a few examples to showcase these prompts.

Translate the following text from English to Spanish.

Text:

The quick brown fox jumps over the lazy dog.

El rápido zorro marrón salta sobre el perro perezoso.

Summarize the following article in no more than 50 words:

Article:

In recent years, urban areas have been facing significant challenges related to
sustainability and environmental management. Cities are experiencing higher
rates of pollution, increased traffic congestion, and greater demands on infras-
tructure. This growth has led to numerous environmental issues, including
elevated levels of air and water pollution, increased waste production, and
strained public services ...

Urban areas are grappling with sustainability challenges, such as rising
pollution, traffic congestion, and infrastructure demands ...
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Rewrite this text in a formal tone.

Text:

Hey, what’s up? Long time no see!

Hello, how have you been? It has been quite some time since we last met!

5. Question Answering

The question-answering format is inherently simple. For a given question, there is an answer
that corresponds to it. For example, in open-domain question answering, we expect the
system to return an answer in response to a user-submitted question. Prompt templates for
general-purpose question answering can be:

{∗question∗}

Question: {∗question∗}
Answer:

Q: {∗question∗}
A:

Question answering is important in NLP because many problems can be framed as question-
answering tasks. In particular, many recent reasoning tasks are defined in the form of question
answering. For example, in the MMLU benchmark [Hendrycks et al., 2021], each example
consists of a multiple-choice question, and LLMs are required to select the correct answer. See
the following for an example prompt for answering a question in this dataset.
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(Z,∗) is a group with a∗ b= a+ b+1 for all a, b in Z. The inverse of a is

(A) 0

(B) −2
(C) a−2

(D) (2+a)∗−1

D

Another widely-used benchmark is the GSM8K dataset [Cobbe et al., 2021]. It consists of
thousands of grade school math word problems. For each problem, we use LLMs to return
a solution in natural language. For example, the following is a prompt used for solving a
problem in GSM8K.
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DEMO Q: Jerry’s two daughters play softball on different teams. They each
have 8 games this season. Each team practices 4 hours for every game
they play. If each game lasts for 2 hours, how many hours will Jerry
spend at the field watching his daughters play and practice altogether?

A: Jerry will spend 8 games * 2 hours per game =≪ 8∗2 = 16≫ 16

hours watching one daughter play her games. He will spend 16∗2=≪
16 ∗ 2 = 32≫ 32 hours watching both daughters play their games.
He will spend 8 games * 4 hours of practice = ≪ 8 ∗ 4 = 32≫ 32

hours watching one daughter practice. He will spend 32 ∗ 2 =≪
32 ∗ 2 = 64≫ 64 hours watching both daughters practice. He will
spend a total of 32 hours watching games + 64 hours watching practice
=≪ 32+64 = 96≫ 96 hours. #### 96

Q: Mary bought six apples from the store. From the apples she bought,
for each that Mary ate, she planted two trees from the remaining ones.
How many apples did Mary eat?

A: She planted eight trees. This means she used half of that amount of
apples, which is 8 trees /2 trees/apple =≪ 8/2 = 4≫ 4 apples. That
means that she planted four of the six apples she bought, leaving only
6 apples − 4 apples =≪ 6−4 = 2≫ 2 apples to be eaten. #### 2

USER Q: Boris has 100 apples. Beck has 23 fewer apples than Boris. If
Boris gives Beck 10 apples, how many fewer apples does Beck have
than Boris now?

A: Boris starts with 100 apples and gives Beck 10 apples, leaving
him with 100 apples −10 apples =≪ 100−10 = 90≫ 90 apples.
Initially, Beck has 23 fewer apples than Boris, giving him a
starting count of 100−23 =≪ 100−23 = 77≫ 77 apples. After
receiving 10 apples from Boris, Beck’s total comes to 77 apples +10

apples =≪ 77+10 = 87≫ 87 apples. Consequently, Beck now has
90−87 =≪ 90−87 = 3≫ 3 fewer apples than Boris. #### 3

Here a few-shot prompt is adopted. The LLM learns from these demonstrations of problem-
solution pairs not only the way of problem-solving but also the way of formatting the output.
For example, the final result of calculation follows the #### token, and≪ ...≫ annotates the
detailed calculation steps (called calculation annotation)4.

4During prediction, a calculator is used when we see≪ ...≫. More specifically, once the LLM encounters “=”
in a≪ ...≫, then the calculator calculates the expression on the left-hand side of “=”. This method helps reduce
the calculation errors made by LLMs.
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9.2 Advanced Prompting Methods

So far in this chapter, we have introduced the basic concepts related to LLM prompting
and presented a number of prompts for NLP tasks. We now consider several techniques for
enhancing the effectiveness of prompting.

9.2.1 Chain of Thought

We have encountered the concept of chain of thought (CoT) several times in this chapter
and previous ones [Wei et al., 2022c; Chowdhery et al., 2022]. CoT methods provide a
simple way to prompt LLMs to generate step-by-step reasoning for complex problems, thereby
approaching tasks in a more human-like manner. Rather than coming to a conclusion directly,
the CoT methods instruct LLMs to generate reasoning steps or to learn from demonstrations
of detailed reasoning processes provided in the prompts. To illustrate CoT, we consider the
problem of algebraic calculation, as commonly described in the literature. Suppose we are
given an algebraic problem

Calculate the average of the numbers 2, 4, and 6.

We can consider it as the question and prompt an LLM to answer it.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: The answer is 6.

It seems difficult for the LLM to directly give a correct answer. A simple improvement is
to add demonstrations of similar problems in the prompt, and thus the LLM can learn from
these demonstrations.

Q: Please calculate the average of the numbers 1, 3, 5, and 7.

A: The answer is 4.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: The answer is 7.

The problem here is that, although we have shown a similar question-answer pair, it remains
difficult for the LLM to reason out the correct answer. In CoT, not only can LLMs learn from
the correspondence between questions and answers but they may gain more from detailed
problem-solving steps that are used to derive the answers. To do this, we can incorporate some
reasoning steps into the prompt to obtain a CoT prompt.
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Q: Please calculate the mean square of the numbers 1, 3, 5, and 7.

A: Calculate the square of each number: 12 = 1, 32 = 9, 52 = 25, and 72 = 49.
Sum the squares, 1+9+25+49 = 84. There are 4 numbers in total. Divide
the sum by the number of items, 84/4 = 21. The answer is 21.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: Calculate 2+4+9, which equals 15. There are three numbers. Divide the
total sum by the count, resulting in 15/3 = 5. The answer is 5.

Here we highlight the reasoning steps in green. By providing a detailed reasoning process for
a similar problem, the LLM learns to reason and thereby generates a problem-solving path that
leads to the correct answer.

There are several benefits of using CoT prompting. First, CoT allows LLMs to decompose
complex problems into smaller, sequential reasoning steps. This somewhat mirrors human
problem-solving behaviors, making it particularly effective for tasks requiring detailed, multi-
step reasoning. Second, CoT makes the reasoning process more transparent and interpretable.
Since all reasoning steps are visible, we can understand and interpret how a conclusion was
reached. Third, if users can follow the logic behind the reasoning process, they will be more
likely to trust the predictions of an LLM. This is particularly important when applying LLMs
in fields like medicine, education, and finance. Fourth, CoT is an in-context learning approach,
and thus, it is applicable to most well-trained, off-the-shelf LLMs. Moreover, CoT provides
efficient ways to adapt LLMs to different types of problems. It can even inspire more creative
solutions by exploring various alternative reasoning paths, which might not be obvious when
arriving at a conclusion directly.

The method described above requires providing one or more examples of CoT reasoning,
typically called the few-shot CoT method. By contrast, the zero-shot CoT method does not
require such examples. It instead prompts LLMs to reason step-by-step by incorporating
specific instructions in prompts. For example, below is a zero-shot CoT prompt.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: Let’s think step-by-step.

We have three numbers: 2, 4, and 9. Add these numbers together,
2+4+9 = 15. Determine how many numbers there are, which in this case
is three. The average is calculated by dividing the total sum by the number
of elements. Completing the division gives 15/3 = 5. So the answer is 5.

Following the instruction “Let’s think step by step”, the LLM is prompted to generate
detailed reasoning steps. As discussed in Kojima et al. [2022]’s work, prompting with such
instructions may result in LLMs generating only the reasoning steps without a clear conclusion.
In this case, a second round of prompting can be used to extract the answer from these reasoning
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steps. For example, Kojima et al. [2022] create a second prompt which combines both the
input and output in the first round of prompting. Using this combined input, the LLM can
continue its reasoning process and then generate the correct answer. Furthermore, it is possible
to prompt LLMs to reason using instructions other than “Let’s think step by step”, such as
“Let’s think logically” and “Please show me your thinking steps first”.

While we have illustrated CoT methods using an algebraic reasoning problem, these
methods can be applied to a variety of different problems. Typical problem-solving scenarios
for CoT include mathematical reasoning, logical reasoning, commonsense reasoning, symbolic
reasoning, code generation, and so on. See Figure 9.1 for more examples of applying CoT in
various tasks.

CoT today is one of the most active fields of prompt engineering. This has not only led
to improved performance for LLM prompting but has opened the door to a wide range of
methods for studying and verifying reasoning capabilities of LLMs. Although we have focused
on the basic idea of CoT in this section, it can be improved in several ways. For example,
we can consider the reasoning process as a problem of searching through many possible
paths, each of which may consist of multiple intermediate states (i.e., reasoning steps). In
general, we wish the search space to be well-defined and sufficiently large, so that we are
more likely to find the optimal result. For this reason, an area of current LLM research is
aimed at designing better structures for representing reasoning processes, allowing LLMs to
tackle more complex reasoning challenges. These structures include tree-based structures [Yao
et al., 2024], graph-based structures [Besta et al., 2024], and so on. By using these compact
representations of reasoning paths, LLMs can explore a wider range of decision-making paths,
analogous to System 2 thinking5. Another line of research focuses on prompting LLMs with
multi-round interactions. This involves decomposing complex problems into sub-problems,
verifying and refining model outputs, employing model ensembling, and so on. Note that these
methods and the issues involved are not limited to CoT. In fact, they are often used as more
general approaches to improving LLMs, while CoT can be seen as a way to test the capabilities
of LLMs. We will see discussions of some of these issues in the following subsections.

Before leaving our discussion of CoT, we should consider its practical limitations. One of
them is the need for detailed, multi-step reasoning demonstrations in few-shot CoT scenarios,
which may be difficult to obtain, either automatically or manually. Also, there is no standard
method for breaking down complex problems into simpler problem-solving steps. This often
heavily depends on the user’s experience. In addition, errors in intermediate steps can also
affect the accuracy of the final conclusion. For further discussion on the pros and cons of CoT,
the interested reader can refer to recent surveys on this topic [Chu et al., 2023; Yu et al., 2023b;
Zhang et al., 2023a].

5System 1 and System 2 thinking, as described by Kahneman [2011], represent two different modes of cognitive
processing. System 1 is fast, automatic, intuitive, and emotional. This mode of thinking operates effortlessly and
quickly, and is often what guides our daily decisions, judgments, and impressions. System 2 is slow, deliberate,
and analytical. It is activated when we need to perform complex computations.
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Q: What home entertainment equipment
requires cable?
Answer Choices: (a) radio shack (b) sub-
station (c) television (d) cabinet
A: The answer must require cable. Of the
above choices, only television requires ca-
ble. So the answer is (c).

Q: What type of person typically contracts
illness?
Answer Choices: (a) hospital (b) head (c)
sick person (d) elderly person (e) doctor’s
office
A: The answer must be a person suscepti-
ble to illness. Of the choices, "elderly per
son" is correct because they typically have
weaker immune systems.
So the answer is (d).

Q: Do hamsters provide food for any ani-
mals?
A: Hamsters are prey animals. Prey are
food for predators. Thus, hamsters provide
food for some animals. So the answer is
yes.

Q: Can you use Microsoft Office without
internet?
A: Yes, you can use Microsoft Office appli-
cations , although features like cloud stor-
age and online collaboration require inter-
net. So the answer is yes.

(a) CSQA (b) StrategyQA

Q: Complete the rest of the sequence, mak-
ing sure that the parentheses are closed
properly. Input: [ {
A: Let’s think step by step.
0: empty stack
1: [ ; stack: [
2: { ; stack: [ {
So the answer is } ].

Q: Complete the rest of the sequence, mak-
ing sure that the parentheses are closed
properly. Input: < [ [

A: Let’s think step by step.
0: empty stack
1: < ; stack: <
2: [ ; stack: < [

3: [ ; stack: < [ [

So the answer is ] ] >.

Q: Take the last letters of the words in
"Elon Musk" and concatenate them.
A: The last letter of "Elon" is "n". The last
letter of "Musk" is "k". Concatenating them
is "nk". The answer is nk.

Q: Take the last letters of each word in
"Renata Mariela Mona Kristin" and con-
catenate them.
A: The last letter of "Renata" is "a". The
last letter of "Mariela" is "a". The last let-
ter of "Mona" is "a". The last letter of
"Kristin" is "n". Concatenating them is
"aaan". The answer is aaan.

(c) Dyck languages (d) Last Letter Concatenation

Figure 9.1: CoT in four different reasoning tasks, including CSQA, StrategyQA, Dyck lan-
guages, and Last Letter Concatenation. The CoT parts are highlighted in green.

9.2.2 Problem Decomposition

We have seen that LLMs can benefit from solving a complex problem by breaking it down
into simpler problem-solving tasks. Such an approach can be seen as an example of a broader
paradigm known as problem decomposition, which has been extensively explored and dis-
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cussed in psychology and computer science. From the psychological perspective, complex
problem-solving refers to a process of addressing a problem using knowledge that helps over-
come the barriers of the problem6. There are generally no standard or clear paths to a solution
for a complex problem. However, it is often advantageous to employ strategies that decompose
the problem, thereby making it easier to tackle the corresponding sub-problems with less effort.
For example, consider writing a blog about the risks of AI. If we simply prompt an LLM with
the instruction “Please write a blog about the risks of AI”, the LLM may generate a blog with
arbitrary structures and writing styles. A better method, instead, could be to outline the blog
and provide more detailed information about each section. Consider the following prompt

You are a blog writer. Please follow the provided outline below to write a
blog about the risks of AI.

• Introduction
Introduce AI, its relevance, and the importance of understanding its risks for
youth.

• Privacy Concerns
Discuss how AI might compromise personal privacy through interactions online.

• Misinformation
Explore AI’s role in spreading misinformation and influencing young people’s
decisions.

• Cyberbullying
Highlight how AI tools can be utilized in cyberbullying and the impact on mental
health.

• Tips for Safe AI Use
Offer guidelines for responsible AI usage and promote critical thinking.

• Conclusion
Recap main points and encourage proactive engagement with AI ethics.

Here we give the title and major points for each section. Then, the LLM can use this structure
to break down the writing task by filling in content for these sections. Note that the way to
structure the blog can be provided by humans or even generated automatically. For example,
we can use the LLM to first generate the outline, and then ask it to follow this outline to
complete the writing.

In computer science, decomposing complex problems is a commonly used strategy in soft-
ware and hardware system design. A well-known example is the divide-and-conquer paradigm,
which is often used to design algorithms for computation problems that can be reduced to
simpler, more manageable problems. For example, consider a problem of determining whether

6A relatively formal definition can be found in Frensch and Funke [2014]’s book: complex problem-solving
occurs to overcome barriers between a given state and a desired goal state by means of behavioral and/or cognitive,
multi-step activities.
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a document discusses the risks of AI. We can instruct the LLM with the following prompt.

You are provided with a text. Please determine whether it discusses the risks
of AI.

{∗document∗}

If the document is long, the computation will be expensive. Alternatively, we can divide
the document into relatively short segments and perform the same task on each segment. These
segments can be processed in parallel to further reduce the computational cost. Next, we
determine the relevancy of each segment to the topic of AI risks. The final output is then
generated using another prompt.

Your task is to determine whether a text discusses the risks of AI. This text
has been divided into segments, and you have obtained the relevancy of each
segment to the topic of AI risks. Based on this, please provide your final
result.

Segment 1: {∗relevancy-to-the-topic1∗}
Segment 2: {∗relevancy-to-the-topic2∗}
Segment 3: {∗relevancy-to-the-topic3∗}
...

Now let us return to a more general discussion of problem decomposition in prompting.
While problem decomposition can be applied to various NLP problems, it has been more
extensively discussed and tested in reasoning tasks recently. For complex reasoning tasks,
we often need a multi-step reasoning path to reach a correct conclusion. We can use LLMs
to achieve this in three different ways. First, LLMs can directly reach the conclusion. In
other words, they can predict without explicit reasoning processes, and there is a hidden and
uninterpretable reasoning mechanism. Second, LLMs are prompted to generate a multi-step
reasoning path that leads to the conclusion, like CoT. However, we run LLMs just once, and all
intermediate steps in reasoning are generated in a single prediction. Third, we break down the
original problem into a number of sub-problems, which are either addressed in separate runs
of LLMs or tackled using other systems. Here we focus our attention on the third approach,
which is closely related to problem decomposition. Note, however, that a more comprehensive
discussion could cover all these approaches, while the first two have been discussed to some
extent in this chapter.

A general framework for problem decomposition involves two elements.
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• Sub-problem Generation. This involves decomposing the input problem into a number
of sub-problems.

• Sub-problem Solving. This involves solving each sub-problem and deriving intermedi-
ate and final conclusions through reasoning.

These two issues can be modeled in different ways, leading to various problem decom-
position methods. One approach is to treat them as separate steps in a two-step process. For
example, consider the blog writing task described at the beginning of this subsection. In the
first step, we decompose the entire problem into sub-problems all at once (i.e., outline the
blog). In the second step, we solve the sub-problems either sequentially or in another order
(i.e., fill in content for each section as needed). The final output of this process combines the
results from solving each sub-problem. While this method is simple and straightforward, it
assumes that the problem is compositional, making it more suitable for tasks like writing and
code generation.

However, many real-world problems require complex reasoning. One key characteristic
of these problems is that the reasoning steps may not be fixed. The reasoning path can vary
for different problems, and each step of reasoning may depend on the outcomes of prior
steps. In such cases, it is undesirable to use fixed sub-problem generation in advance. Instead,
sub-problems should be generated dynamically based on the input problem, and, if possible,
generated on the fly during the reasoning process. This makes problem decomposition more
challenging compared with designing divide-and-conquer algorithms. Ideally, we would like
to jointly design both the systems for sub-problem generation and sub-problem solving. But
a more practical and widely used approach is to adopt separate models for these tasks. A
straightforward way to achieve this is to adapt an LLM for these tasks by either prompting or
tuning the model.

Here we consider a method based on the above idea, called least-to-most prompting
[Zhou et al., 2023b]. The motivation for this method arises from the challenges of solving
difficult reasoning problems — those that cannot be addressed by simply generalizing from
a few examples. For these problems, a more effective problem-solving strategy is to follow
a progressive sequence of sub-problems that systematically lead to the conclusion. More
specifically, in the least-to-most prompting method, sub-problem generation is performed by
prompting an LLM with instructions and/or demonstrations. For example, below is a 2-shot
prompt for sub-problem generation in least-to-most prompting.
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TASK Your task is to decompose a problem into several sub-problems. You
will be given a few examples to illustrate how to achieve this.

DEMO Q: In a community, 5% of the population are infants, 15% are children,
40% are adults, and 40% are seniors. Which group makes up the largest
portion of the population?

A: To answer the question “Which group makes up the largest portion of
the population?”, we need to know: “How many percent are infants?”,
“How many percent are children?”, “How many percent are adults?”,
“How many percent are seniors?”.

Q: Alice, Bob, and Charlie brought beads for their group project in their
craft class. Alice has twice as many beads as Bob, and Bob has five
times as many beads as Charlie. If Charlie has 6 beads, how many beads
can they use for their craft project?

A: To answer the question “How many beads can they use for their craft
project?”, we need to know: “How many beads does Bob have?”, “How
many beads does Alice have?”.

USER Q: The environmental study conducted from 2015 to 2020 revealed that
the average temperature in the region increased by 2.3 degrees Celsius.
What was the duration of the environmental study?

A: To answer the question “What was the duration of the environmental
study?”, we need to know: “When did the environmental study start?”,
“When did the environmental study end?”.

By learning from the examples, the LLM can generate two sub-problems for answering
the new problem “What was the duration of the environmental study?” (highlighted in blue
and orange). Given these sub-problems, we solve them sequentially. For each sub-problem,
we take all previously-generated QA pairs as context, and then produce the answer. For the
example above, we need to answer the first sub-problem by prompting the LLM, like this

The environmental study conducted from 2015 to 2020 revealed
that the average temperature in the region increased by 2.3 degrees
Celsius.

SUB-PROB1 Q: When did the environmental study start?

A: The environmental study started in 2015.

Once we have the answer to the first sub-problem, we proceed to the second one. This
time, we include both the first sub-problem and its corresponding answer in the input.
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The environmental study conducted from 2015 to 2020 revealed
that the average temperature in the region increased by 2.3 degrees
Celsius.

SUB-PROB1 Q: When did the environmental study start?

A: The environmental study started in 2015.

SUB-PROB2 Q: When did the environmental study end?

A: The environmental study ended in 2020.

Finally, we use the LLM to solve the original problem given the answers to all the sub-
problems.

The environmental study conducted from 2015 to 2020 revealed
that the average temperature in the region increased by 2.3 degrees
Celsius.

SUB-PROB1 Q: When did the environmental study start?

A: The environmental study started in 2015.

SUB-PROB2 Q: When did the environmental study end?

A: The environmental study ended in 2020.

FINAL Q: What was the duration of the environmental study?

A: The duration of the environmental study was 5 years.

The least-to-most method offers a basic approach to prompting LLMs to generate and
solve sub-problems separately. We can improve it in several ways. One simple improvement
is to apply various advanced prompting techniques, which do not require changes to the
problem decomposition framework. For example, we can incorporate CoT into the prompting
to enhance the reasoning performance of sub-problem generation and solving.

Another improvement is to explore methods for better decomposing problems and organiz-
ing problem-solving paths. To describe these approaches, we will use the symbol p0 to denote
the input problem, and use the symbols {p1, ...,pn} to denote the sub-problems corresponding
to p0. For least-to-most prompting, we decompose p0 into {p1, ...,pn}, given by

{p1, ...,pn} = G(p0) (9.2)

where G(·) denotes the function of sub-problem generation. Then, we solve the sub-problems
{p1, ...,pn} sequentially, resulting in a sequence of answers {a1, ...,an}. For answering the
i-th sub-problem pi, we include both the original problem p0 and all previously-seen problem-
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answer pairs in the context for prediction. The answer ai is given by

ai = Si(pi,{p0,p<i,a<i}) (9.3)

where p<i = {p1, ...,pi−1} and a<i = {a1, ...,ai−1}. Si(·) denotes the function that solves the
sub-problem pi given the context {p0,p<i,a<i}. The last step is to generate the answer to the
original problem p0, which can be expressed in a similar manner to Eq. (9.3).

a0 = S0(p0,{p≤n,a≤n}) (9.4)

One way to refine this model is to modify the G(·) function so that the model can dynami-
cally generate answers. Instead of generating all sub-problems at one time, we can generate
each of them during problem-solving [Dua et al., 2022]. To do this, we can replace Eq. (9.2)
with

pi = Gi(p0,{p<i,a<i}) (9.5)

Hence we obtain a sub-problem generation model that operates in a step-by-step manner. At
each step i, we first generate the sub-problem pi by prompting an LLM with the original
problem p0 and the problem-solving history {p<i,a<i}. We then generate the answer ai for
this sub-problem using the same or a different LLM, based on the same contextual information
(see Eq. (9.3)). This method effectively expands the reasoning capacity of LLMs by allowing
them to dynamically generate and solve sub-problems in intermediate reasoning steps. As a
result, the reasoning paths are not fixed in advance, and the models can choose and adapt their
reasoning strategies during problem-solving.

Another way to improve the above model is to focus on developing better sub-problem
solvers. In our previous discussion, we restricted Si(·) to LLMs that are prompted to solve the
sub-problem pi. In fact, we can expand this function to any system that is capable of addressing
the sub-problem. For example, Si(·) could make calls to IR systems, thereby allowing us
to access a broader range of data for problem-solving. Another example is using Si(·) as a
calculator to accurately compute results in mathematical problem-solving. If the sub-problem
pi is complex and requires multiple intermediate problem-solving steps, it is also possible
to further decompose pi into smaller sub-problems. For example, Si(·) can be defined as a
recursive program that generates and solves sub-problems. This incorporates recursion into
problem-solving and allows us to address problems by iteratively decomposing them. As a
result, we can define a hierarchical structure for problem-solving [Khot et al., 2023].

If we generalize the above formulation a bit further, we can consider it as a reinforcement
learning problem. A typical method is to model a problem-solving process as a decision
making process. In each step of this process, an action is taken based on the current state.
These actions can include all functions for sub-problem generation and solving (i.e., Gi(·) and
Si(·)). Thus, the action sequence corresponds to a problem-solving path. Since the discussion
of reinforcement learning problems is beyond the scope of this chapter, we skip the precise
description of this learning task. Nevertheless, developing an agent or controller to determine
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when and how to generate and solve a sub-problem is also a natural choice.
In NLP, problem decomposition is related to a long line of research on multi-hop question

answering [Mavi et al., 2024]. This task requires the system to gather and combine information
from multiple pieces of text to provide an accurate answer to a complex question. For example,
to answer the question “What is the capital of the country where Albert Einstein was born?”,
we need to know “Where Albert Einstein was born?” and “What’s the capital of Germany?”.
Earlier work in this area and related ones has investigated the issue of problem decomposition,
though the methods might not be based on LLMs. For example, a popular method is to develop
an additional neural model to generate simpler questions that address different aspects of the
original question [Andreas et al., 2016; Talmor and Berant, 2018; Min et al., 2019]. This
question generator can create questions in a batch or sequential manner.

Broadly speaking, problem decomposition is also related to the compositionality issue in
NLP [Drozdov et al., 2022; Press et al., 2023]. For example, in semantic parsing, we map
natural language sentences into structured meaning representations by breaking them down
into constituent parts and understanding the sentences based on the meanings of these parts and
the rules used to combine them. In early studies of this field, highly compositional sentences
were considered easier for testing systems, as it is relatively straightforward to decompose
such sentences and compose the meanings of their parts. However, the task becomes much
more difficult when more generalization is required for modeling compositionality in new data.
In this case, we want systems to have improved abilities of compositional generalization.
In more recent research on LLMs, this issue has been frequently discussed in compositional
reasoning tasks, such as SCAN7, as it is considered an important aspect of testing the language
understanding and reasoning abilities of LLMs. This also presents new tasks for developing
and examining problem decomposition methods.

In LLMs, one interesting application of problem decomposition is tool use. In some cases,
it is necessary to integrate external tools into LLMs to access accurate data not available during
training or fine-tuning. For example, LLMs can integrate with APIs to fetch real-time data such
as weather updates, stock market prices, or news feeds, enabling them to provide up-to-date
responses to user queries. When using tools, LLM predictions might include markers that
indicate where and how to call external APIs. This requires decomposing the problem into
sub-problems, with some handled by the LLMs and others by external tools. More detailed
discussions on this topic will be presented in Section 9.2.5.

9.2.3 Self-refinement

In many cases, predictions of LLMs can be inaccurate or incorrect. Given that current LLMs
can perform tasks like refinement and correction, it makes sense to explore methods for these
models to self-refine their outputs. Self-refinement is a common phenomenon in human
psychological activities and daily behavior. For example, when designing a product, a designer

7The SCAN tasks (Simplified versions of the CommAI Navigation tasks) are designed to evaluate the ability of
LLMs to perform compositional generalization [Lake and Baroni, 2018]. They involve translating natural language
commands into a sequence of actions. For example, a command “jump opposite left and walk thrice” can be
translated into the action sequence “LTURN LTURN JUMP WALK WALK WALK”.
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might first create a basic prototype, then refine the design after evaluation and testing to
enhance user experience and functionality. The refinement can be iterated several times until
the design is satisfactory. The idea of predict-then-refine can also be found in NLP. One early
example is Brill’s tagger [Brill, 1992], where an initial POS tagging result of a sentence can be
iteratively refined using a rule-based system. In the era of deep learning, a good deal of work
on sequence-to-sequence problems, such as grammar correction and text rewriting, can also be
seen as examples on this theme.

We can prompt LLMs to do self-refinement. Consider a simple example where we first use
an LLM to translate a text from Chinese to English and then use the same model to refine the
translation. Here is how we can prompt the model to translate:

Translate the following text from Chinese to English:

Chinese:

一系列考古发现奠定红山文化在中华文明起源研究中的重要地位。最

新公布的研究成果认为，大约从距今5800年开始，中华大地上各个区
域相继出现较为明显的社会分化，进入文明起源的加速阶段。

English:

A series of discoveries have cemented the significant role of the Hongshan
culture in studies on the origins of Chinese civilization. The latest research
findings suggest that, starting from around 5800 years ago, many regions
across China began to experience noticeable social differentiations, entering
an accelerated phase in the origin of civilization.

Then, we can prompt it to refine the translation:

NiuTrans
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You are provided with a Chinese text along with its English translation. Please
refine the translation to improve its accuracy and fluency if necessary.

Chinese:

一系列考古发现奠定红山文化在中华文明起源研究中的重要地位。最

新公布的研究成果认为，大约从距今5800年开始，中华大地上各个区
域相继出现较为明显的社会分化，进入文明起源的加速阶段。

English:

A series of discoveries have cemented the significant role of the Hongshan
culture in studies on the origins of Chinese civilization. The latest research
findings suggests that, starting from around 5800 years ago, many regions
across China began to experience noticeable social differentiations, entering
an accelerated phase in the origin of civilization.

Refinement:

A series of archaeological discoveries have cemented the significant role
of the Hongshan culture in studies on the origins of Chinese civilization.
The latest research findings suggest that, starting from around 5800 years
ago, various regions across China began to experience noticeable social
differentiations, entering an accelerated phase in the origin of civilization.

Here modifications to the input translation are highlighted in green. This process can be
iterative: at each step, we use the translation from the previous step as input, and prompt the
LLM to produce a potentially better translation.

In the above example, the refinement of the initial model output was achieved by prompting
the LLM with a simple instruction like “Please refine it!”. However, the refinement is based
solely on the instruction-following ability of the LLM, and there is no guidance or supervision
on how and where to improve the model output. A more effective approach would be to
consider feedback on specific aspects that need refinement. For example, we can prompt the
LLM with “Please correct all the grammatical errors in the translation”, so that the model can
focus more on grammatical error correction during refinement.

A general framework of self-refinement with LLMs involves three steps [Madaan et al.,
2024].

• Prediction. We use an LLM to produce the initial model output.

• Feedback Collection. We obtain feedback on the model output.

• Refinement. We use the LLM to refine the model output based on the feedback.

The last two steps can be repeated multiple times, which leads to an iterative self-refinement
process. In this framework, receiving accurate and detailed feedback is critical as it guides the
subsequent refinement step. In general, feedback can be obtained in various ways [Fernandes
et al., 2023; Pan et al., 2024]. We can manually examine the model’s predictions to identify



502 Chapter 9. Prompting

issues. Also, we can use a feedback model to automatically generate feedback. For instance, a
reward model trained on some labeled data can help evaluate the model output and return a
score indicating its quality.

Since the focus of this chapter is on LLM prompting, we consider using LLMs to provide
feedback. To illustrate, let us consider an example of generating good responses to user
questions:

• First, we prompt an LLM to answer the input question, as usual.

Generate a response to the question: “What are some major environ-
mental concerns today?”

Response:

Major environmental concerns today include climate change, air
and water pollution, deforestation, loss of biodiversity, and ocean
degradation.

• Then, using the following prompt, we prompt the same LLM again to get feedback on
the generated response.

You will be provided with a question and its corresponding response.
Evaluate the accuracy and depth of this response, and identify any
factual inaccuracies or areas where additional details could enhance
understanding.

Question:

What are some major environmental concerns today?

Response:

Major environmental concerns today include climate change, air and
water pollution, deforestation, loss of biodiversity, and ocean degrada-
tion.

Feedback:

The response provided is accurate and highlights key environmental
concerns. However, it would benefit from more specific and detailed
descriptions of these concerns. Here are suggestions for improvement:

1. Include specific examples of environmental issues.
2. Add information about major pollutants.
3. Specify the regions most affected.

• Given the feedback the LLM produces, we prompt it to refine the response.
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You will be provided with a question, its corresponding response, and
some feedback on this response.

Question:

What are some major environmental concerns today?

Response:

Major environmental concerns today include climate change, air and
water pollution, deforestation, loss of biodiversity, and ocean degrada-
tion.

Feedback:

The response provided is accurate and highlights key environmental
concerns. However, it would benefit from more specific and detailed
descriptions of these concerns. Here are suggestions for improvement:

1. Include specific examples of environmental issues.
2. Add information about major pollutants.
3. Specify the regions most affected.

Now refine the response based on the provided feedback.

Refined Response:

Key environmental concerns include climate change, evidenced by
rising global temperatures and severe weather patterns; significant
air and water pollution in urban and industrial areas; rampant
deforestation in regions like the Amazon, causing biodiversity loss;
and ocean degradation, highlighted by coral reef bleaching and
widespread overfishing.

Ideally, if a strong LLM is adopted, we would like to have it perform all three steps without
extra training. On the other hand, if we have enough labeled data for the task of interest, we can
enhance the performance of the LLM using supervised learning. For example, we can fine-tune
the LLM to better adapt it to refinement tasks, or alternatively, use task-specific models, which
may not necessarily be based on LLMs [Welleck et al., 2023; Schick et al., 2023]. In a broader
sense, improving LLMs for self-refinement tasks can be seen as an alignment issue. For
example, it has been found that some self-correction abilities can be activated through RLHF
[Ganguli et al., 2023]. However, discussing these issues is beyond the scope of this chapter.
Further discussion can be found in Chapter 10.

In LLMs, self-refinement is related to several concepts that reveal the psychological aspects
of these models, such as the ability to self-reflect. A view is that if LLMs are capable of
self-reflection, their predictions can become more accurate and even possess self-correcting
capabilities. This self-reflection can be activated in various ways, for example, by prompting
these LLMs to engage in more in-depth and careful thinking, or by providing examples from
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which the models can learn and reflect. To illustrate, we consider here the deliberate-then-
generate (DTG) method presented in Li et al. [2023a]’s work, where LLMs are prompted to
deliberate. In DTG, we are given an initial model output which may contain errors. LLMs are
then prompted to identify the error types of this model output and provide an improved output.
Below is a template of DTG prompting for Chinese-to-English translation tasks.

Given the Chinese sentence: {∗source∗}
The English translation is: {∗target∗}

Please first detect the type of error, and then refine the translation.

Error Type:

We aim to first predict the error type (red), and then produce a refined translation (blue).
This process of deliberation is guided by the instruction “Please first detect the type of error,
and then refine the translation”. It encourages LLMs to initially engage in thoughtful analysis
and then give better results. Since error type prediction and refinement are performed in a
single run of LLMs, this method incorporates both steps of feedback and refinement into one
process.

In the above prompts, we assume that the LLM we use is able to review the input translation
and correctly identify its error types. However, this raises new difficulties as the model may not
be good at finding errors in translations. This will in turn result in extra fine-tuning or prompting
engineering efforts. So a simpler method is to reduce the burden of error identification and use
LLMs for deliberation only. To do this, we can replace the input translation with a random
translation and assign a default error type. An example of such a prompt is shown below.

Given the Chinese sentence:

一系列考古发现奠定红山文化在中华文明起源研究中的重要地位。

The English translation is:

A variety of innovative techniques have redefined the importance of modern
art in contemporary cultural studies.

Please first detect the type of error, and then refine the translation.

Error Type: Incorrect Translation

In this example, the input translation is not generated by LLMs but is instead randomly
sampled from the dataset. So it is simply an incorrect translation for the source sentence, and
we can set the error type accordingly. The LLMs then generate a new translation by taking
both the source sentence and the incorrect translation as input. The design of this prompt
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can also be considered as activating the learning capabilities of LLMs through “negative
evidence” [Marcus, 1993], thereby enabling them to reflect and produce better outcomes
through contrastive analysis. Nevertheless, this method does not rely on any feedback and can
enhance the performance of a single LLM prediction via simple prompting.

Note that while DTG is non-iterative, iterative learning and refinement are commonly used
in NLP. An advantage of these iterative approaches is that they mimic human learning and
problem-solving, where continuous feedback and adjustments lead to progressively improved
outcomes. Iterative methods can be applied to a range of LLM prompting problems. For
example, in problem decomposition, one can incorporate new sub-problems and their solutions
into the context at each step, and thus LLMs can progressively approach the solution of the
original problem. On the other hand, iterative methods raise several issues that are absent in
non-iterative methods, for example, errors in earlier steps may negatively impact subsequent
problem-solving, and determining when to stop iterating often requires additional engineering
effort.

9.2.4 Ensembling
Model ensembling for text generation has been extensively discussed in the NLP literature.
The idea is to combine the predictions of two or more models to generate a better prediction.
This technique can be directly applicable to LLMs. For example, we can collect a set of LLMs
and run each of them on the same input. The final output is a combined prediction from these
models.

For LLM prompting, it is also possible to improve performance by combining predictions
based on different prompts. Suppose we have an LLM and a collection of prompts that address
the same task. We can run this LLM with each of the prompts and then combine the predictions.
For example, below are three different prompt templates for text simplification.

Make this text simpler.

{∗text∗}

Condense and simplify this text.

{∗text∗}

Rewrite for easy reading.

{∗text∗}
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Each of these prompts will lead to a different prediction, and we can consider all three
predictions to generate the final one.

Formally, let {x1, ...,xK} be K prompts for performing the same task. Given an LLM
Pr(·|·), we can find the best prediction for each xi using ŷi = argmaxyi

Pr(yi|xi). These
predictions can be combined to form a “new” prediction:

ŷ = Combine(ŷ1, ..., ŷK) (9.6)

Here Combine(·) is the combination model, which can be designed in several different ways.
For example, we can select the best prediction by voting or by identifying the one that overlaps
the most with others. Another method for model combination is to perform model averaging
during token prediction. Let ŷj be the predicted token at the j-th step for model combination.
The probability of predicting ŷj is given by

ŷj = argmax
yj

K∑
k=1

logPr(yj |xk, ŷ1, ..., ŷj−1) (9.7)

The interested reader can refer to Chapter 5 for more details of these methods.

In ensembling for LLM prompting, it is generally advantageous to use diverse prompts
so that the combination can capture a broader range of potential responses. This practice is
common in ensemble learning, as diversity helps average out biases and errors that may be
specific to any single model or configuration. From the Bayesian viewpoint, we can treat
the prompt x as a latent variable, given the problem of interest, p. This allows the predictive
distribution of y given p to be written as the distribution Pr(y|x) marginalized over all possible
prompts

Pr(y|p) =

∫
Pr(y|x)Pr(x|p)dx (9.8)

The integral computes the total probability of y by considering all possible values of x,
weighted by their likelihoods given p. Here Pr(y|x) is given by the LLM, and Pr(x|p) is
the prior distribution of prompts for the problem. This is a good model because the integral
effectively accounts for the uncertainty in the choice of x, ensuring that the final predictive
distribution Pr(y|p) is robust and encompasses all potential variations and biases in the
prompts. However, computing this integral directly can be computationally infeasible due to
the potentially infinite space of x. One approach to addressing this issue is to employ methods
like Monte Carlo sampling, which approximate the integral using a manageable, finite number
of prompts.

While the Bayesian treatment is mathematically well-defined, it is common practice in NLP
to assume a non-informative or uniform prior and focus instead on constructing a set of diverse
prompts. Consequently, the output can be computed using a straightforward combination
model, as described in Eq. (9.6). The issue of creating high-quality, diverse prompts has
been studied in CoT and other in-context learning areas. Most of the research focuses on
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incorporating a variety of demonstration examples across different prompts. Here, we list some
of these methods.

• Given a problem, we manually create a number of demonstrations and use different ones
for different prompts.

• Given a problem, we use LLMs to automatically generate demonstrations and prompts.

• Given a prompt, we create different prompts by changing the order of demonstrations in
the prompt.

• Given a prompt, we use LLMs to generate a number of similar prompts.

• Given a prompt, we transform it into other forms, e.g., translating it into other languages.

Of course, in practice, we can combine these methods to achieve greater diversity. An
underlying assumption here is that diverse prompts can lead to diverse model outputs. This
is particularly the case when the problem we deal with is relatively new and difficult. For
stronger and more robust LLMs, the variance in output for similar prompts might not be large.
In this case, the benefit of involving multiple prompts can be modest.

In addition to providing diverse prompts for LLMs, another approach is to make use of
the inherent variance in the outputs of LLMs. One simple way to generate multiple outputs
is to sample outputs from the hypothesis space. This is straightforward for LLMs because
their search algorithms are naturally suited to producing multiple results. For example, if
beam search is used, we can easily collect all the complete hypotheses in the beam to generate
multiple output candidates. Also, we can modify the search algorithms to implement more
powerful sampling methods and explore a wider range of high-quality hypotheses.

The next question is how to combine diverse model predictions. This leads us back to the
model combination issue as described in Eq. (9.6). Here we consider the self-consistency
method, which outputs not the prediction with the highest probability, but rather the one that
best aligns with other predictions [Wang et al., 2022d; 2023c]. First, an LLM is prompted with
CoT as usual and generates multiple reasoning paths by sampling. Then, the frequency of each
answer is counted across these reasoning paths. The final output is the answer that has the
highest count. Below shows three different predictions by prompting an LLM with CoT.

Prediction 1 (Correct):

Q: Three friends play a game where they flip a fair coin. Each friend flips the
coin once. What is the probability that exactly one of them flips heads?

A: Let’s think step by step.

Each coin flip is an independent event with a 50% chance of landing heads
(H) and 50% tails (T). Consider the possible outcomes for three flips: HHH,
HHT, HTH, HTT, THH, THT, TTH, TTT. Out of these, only HHH, HHT,
HTH, and THH are relevant. We are only interested in scenarios with exactly
one head: HTT, THT, and TTH. There are 3 such outcomes out of 8 total,
giving a probability of 3/8.
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Prediction 2 (Correct):

Q: Three friends play a game where they flip a fair coin. Each friend flips the
coin once. What is the probability that exactly one of them flips heads?

A: Let’s think step by step.

Using a binomial probability formula, where p (success or heads) is 0.5, and
each of the 3 trials (flips) is independent, we look for exactly one success
(head). The formula for exactly k successes in n trials is given by the
binomial coefficient formula

(
n
k

)
pk(1−p)n−k. Plugging in the values, we

get
(
3
1

)
(0.5)1(0.5)3−1 = 3 ·0.5 ·0.25 = 0.375.

Prediction 3 (Wrong):

Q: Three friends play a game where they flip a fair coin. Each friend flips the
coin once. What is the probability that exactly one of them flips heads?

A: Let’s think step by step.

Since each coin flip has a 50% chance of landing heads and a 50% chance of
landing tails, and we are looking for the case where only one of the three flips
results in heads, we might initially think this is simply a matter of picking
which flip is the heads. There are three flips, so one might incorrectly assume
that the chance of picking one specific outcome like this would be 1 out of
3. Thus, they might conclude that the probability of exactly one head is
1/3 = 33.3%.

Predictions 1 and 2 correctly identify the three cases where exactly one head is flipped,
both obtaining a probability of 37.5%. The reasoning in Prediction 3 fails to account for the
total number of outcomes possible with three coin flips, thus giving a wrong answer of 33.3%.
Therefore, we select 37.5% as the final answer because it is the consensus.

Self-consistency provides a criterion for determining the best prediction in a pool of
candidates. Since the prompt and the model are fixed in this method, it is not strictly a prompt
ensembling method. Instead, it can be seen as an instance of output ensembling methods, also
known as hypothesis selection methods, which have long been explored in NLP, particularly for
text generation problems [Xiao et al., 2013]. In these methods, multiple outputs are generated
by varying model architectures or parameters. Each output is then assigned a score by some
criterion, and the outputs are re-ranked based on these scores. There are various ways to define
the scoring function, such as measuring the agreement between an output and others, and
using a stronger model to rescore each output8. Figure 9.2 shows a comparison of different

8An interpretation of self-consistency is to view it as a minimum Bayes risk search process. It searches for the
best output by minimizing the Bayes risk. More specifically, a risk function R(y,yr) is defined on each pair of
outputs (denoted by (y,yr)), representing the cost of replacing y with yr . Given a set of outputs Ω, the risk of an
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ensembling methods for LLMs.
Now, let us briefly review the methods we have discussed so far in this section, such

as problem decomposition and self-refinement. It is apparent that these methods enhance
decision-making by introducing more “choices” into the reasoning process. To some extent,
they all involve evaluating and providing feedback on the results of LLMs. For example, in
self-refinement, we need to offer suggestions for improving the prediction of LLMs, and in
output ensembling, we select the optimal output from a pool of candidates. In this sense, these
methods fall under the broader category of predict-then-verify approaches, where predictions
are initially made, then verified and refined. The fundamental problem here involves verifying
and evaluating the reasoning results or intermediate steps. This issue is somewhat related to
the problem of training reward models in RLHF, although RLHF addresses a different aspect.
In fact, the development of verifiers has been explored and implemented in reasoning with
LLMs. Most work, rather than developing heuristic-based inference-time algorithms, focuses
on learning verifiers in a supervised manner. A straightforward method is to train verifiers as
binary classifiers, such as classifying an answer as correct or incorrect, although these verifiers
are typically used as scoring models. Given a reasoning path for a problem, the verifiers
can be used to score either the entire path (called outcome-based approaches) [Cobbe et al.,
2021], or each individual reasoning step (called process-based approaches) [Uesato et al., 2022;
Lightman et al., 2024].

9.2.5 RAG and Tool Use
RAG is generally employed when standard LLMs, which rely solely on pre-trained knowledge,
lack accuracy and depth in the generated text. By drawing from external databases and
documents, RAG can significantly improve the quality of responses, ensuring they are both
contextually relevant and factually correct. Such an approach is particularly useful in scenarios
that require high factual accuracy and up-to-date information, such as complex question
answering.

The concept of RAG has been mentioned several times in the previous sections and chapters.
For completeness, we outline the key steps involved in RAG here.

• We prepare a collection of texts which are treated as an additional source of knowledge
we can access.

• We retrieve relevant texts for a given query.

• We input both the retrieved texts and the query into an LLM, which is then prompted to
produce the final prediction.

Steps 1 and 2 can be implemented by using an external information retrieval system. For
example, we can store the collection of texts in a vector database and then retrieve the most
similar texts through vector-based search techniques. Since information retrieval is not the

output y ∈Ω is given by

Risk(y) = Eyr∼Pr(yr|x)R(y,yr)

=
∑

yr∈Ω

R(y,yr) ·Pr(yr|x) (9.9)
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Figure 9.2: Ensembling methods for LLMs. In standard model ensembling (a), multiple
LLMs varying in architectures or parameters are used. Each LLM receives the same prompt
and produces a prediction. These predictions are combined to generate the final prediction.
In prompt ensembling (b), we have one LLM and multiple prompts. The LLM produces a
prediction for each prompt, and these predictions are combined as usual. In output ensembling
(c), the LLM samples multiple predictions over the prediction space given a prompt. It can
be seen as a method to boost the performance of the LLM itself. Note that these ensembling
methods can be combined to increase the diversity of predictions. For example, we can use
both prompt ensembling and output ensembling to obtain more diverse predictions.

focus of this chapter, we will assume that such systems are available off-the-shelf and use them
directly.

Here we present how to prompt LLMs to make use of retrieved texts. To illustrate, consider
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an example of using LLMs to answer the following question.

Where will the 2028 Olympics be held?

We can simply input this question into an online search engine. It will then return the
relevant pieces of text found on the internet, for example,

(Wikipedia)
The 2028 Summer Olympics, officially the Games of the XXXIV Olympiad and
commonly known as Los Angeles 2028 or LA28, is an upcoming international multi-
sport event scheduled to take place from July 14-30, 2028, in the United States. ...

(The Sporting News)
In 2028, Los Angeles will become the third city, following London and Paris respec-
tively, to host three Olympics after hosting the Summer Games in 1932 and 1984. It
will also be the first time the United States has hosted an Olympic Games since the
2002 Winter Games in Salt Lake City. ...

...

We can use these retrieved texts as additional context, and prompt an LLM to generate a
response based on these texts. Below is an example RAG prompt.

Your task is to answer the following question. To help you with this, relevant
texts are provided. Please base your answer on these texts.

Question:

Where will the 2028 Olympics be held?

Relevant Text 1:

The 2028 Summer Olympics, officially the Games of the XXXIV Olympiad
and commonly known as Los Angeles 2028 or LA28 ...

Relevant Text 2:
In 2028, Los Angeles will become the third city, following London and Paris
respectively, to host three Olympics after ...

...

The 2028 Olympics will be held in Los Angeles.

This prompt assumes that the provided texts are relevant to the question and expects the
LLM to generate a faithful response using these texts. However, the information retrieval
system may sometimes provide irrelevant or incorrect texts, which may lead the LLM to
produce an incorrect answer. One straightforward way to address this issue is to improve the
accuracy of the information retrieval system. Nevertheless, as with most AI systems, errors
may still occur. Therefore, it is also necessary to enhance the robustness of the LLM, so that it
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can make reasonable predictions even when the input is inaccurate. Below is a new prompt
that enables the LLM to be more faithful to the facts, and allows it to choose not to answer
questions when the information provided is inaccurate.

Your task is to answer the following question. To help you with this, relevant
texts are provided. Please base your answer on these texts.

Please note that your answers need to be as accurate as possible and faithful to
the facts. If the information provided is insufficient for an accurate response,
you may simply output "No answer!".

Question:

Where will the 2028 Olympics be held?

Relevant Text 1:

The 2024 Summer Olympics, officially the Games of the XXXIII Olympiad
and branded as Paris 2024, were an international multi-sport event ...

...

No answer!

In this example, the LLM refuses to answer because the provided information is insufficient
and irrelevant to the question.

Both RAG and fine-tuning are common methods for adapting LLMs using task-specific
data. Standard RAG is training-free and can be directly applied to LLMs. To further improve
RAG, it is also possible to fine-tune LLMs, though this will require some training effort. For
example, we can fine-tune LLMs using human-labelled data to supervise them in learning
to refuse to answer. Note that, while the examples shown above seem simple, RAG is not
trivial. From the prompt engineering perspective, different use cases may require different
prompts, though our somewhat “greedy” goal is to develop a universal prompting strategy
that can adapt to different tasks. In many cases, we need to control how much we depend on
the retrieved context to make predictions. Sometimes, LLMs must derive responses strictly
from the provided texts, while at other times, they may need to generate responses using their
pre-trained knowledge if the provided texts are insufficient. There are many aspects of RAG,
such as improvements to the retrieval systems, that cannot be covered in this chapter. Interested
readers can refer to surveys of RAG techniques for more information [Li et al., 2022d; Gao
et al., 2023c].

One reason we discuss RAG here is that it can be broadly regarded as an instance of the
general problem decomposition framework (see Section 9.2.2). RAG divides problem-solving
into two steps. In the first step, we collect relevant and supporting information for a given
query from various knowledge sources. In the second step, we use LLMs to generate responses
based on the collected information. If we extend the concept of problem decomposition further,
we will find that many tasks requiring the use of external systems or tools can be treated as



9.2 Advanced Prompting Methods 513

similar problems. One such example is tool use in LLMs. In many applications, LLMs need to
employ external databases, APIs, and even simulation tools to generate accurate responses.
For example, LLMs can access real-time data from financial markets to provide up-to-date
investment advice or integrate with healthcare databases to offer personalized medical insights.
This integration extends the capabilities of LLMs by allowing them to interact with, and in
some contexts, influence or control external systems. Consequently, LLMs function more as
autonomous agents rather than mere text generators [Franklin and Graesser, 1996].

The issue of tool use is broad and vast. Here we narrow our discussion to tasks that can be
facilitated by calling external APIs to solve some of the sub-problems [Parisi et al., 2022; Gao
et al., 2023b]. Consider again the example of asking an LLM to answer “Where will the 2028
Olympics be held?”. Suppose the LLM can access a web search tool. We can then prompt the
LLM to answer the question with web search, like this

Your task is to answer the following question. You may use external tools,
such as web search, to assist you.

Question:

Where will the 2028 Olympics be held?

The information regarding this question is given as follows:

{tool: web-search, query: "2028 Olympics"}

So the answer is: Los Angeles

Here {tool: web-search, query: "2028 Olympics"} indicates a request to
the web search system using the query “2028 Olympics”. When the LLM sees this string, it
executes a web search and uses the result to replace the string. Then, in subsequent steps of
prediction, the LLM uses this web search result as context to produce the correct answer.

Consider another example where we ask the LLM to solve a mathematical problem.
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Problem:

A swimming pool needs to be filled with water. The pool measures 10 meters
in length, 4 meters in width, and 2 meters in depth. Calculate the volume
of the pool in cubic meters and then determine how many liters of water are
needed to fill it (considering 1 cubic meter equals 1000 liters).

Solution:
To solve this problem, the LLM needs to first calculate the volume of the
pool by using the formula for the volume of a rectangular prism: Length×
Width×Depth. Therefore, The volume is 10m×4m×2m = {tool:

calculator, expression: 10 * 4 * 2} m3. Next, to find out how
many liters of water are needed, the LLM multiplies the volume in cubic
meters by 1000 (since 1 cubic meter equals 1000 liters). Thus, 80 ×1000
= {tool: calculator, expression: 80*1000} liters.

Here the string {tool: calculator, expression: 10 * 4 * 2} triggers the
invocation of a mathematical interpreter to calculate the result of the expression. Note that
the result (i.e., 80) will replace {tool: calculator, expression: 10 * 4 *
2} and can be referred to in the following token predictions. For example, in the last step of
problem-solving, 80 is used instead of {tool: calculator, expression: 10

* 4 * 2}.

A key difference between the tool use examples here and the previously discussed RAG
examples is that in tool use, external functions can be called during inference. In contrast, in
RAG, the retrieved texts are provided before the prediction process begins. However, from the
language modeling perspective, they are actually doing the same thing: before generating the
final result, we use external tools, either manually or automatically, to obtain sufficient and
relevant context. A high-level interpretation of these approaches is that they both rely on an
“agent” that can determine where and how to call external functions to generate the context
necessary for prediction.

An issue with tool use is that the original LLMs are not trained to generate the necessary
markers for tool use. Therefore, we need to fine-tune the LLMs to adapt them for these tasks
[Schick et al., 2024]. As this chapter focuses on prompting, we will not present the details of
this fine-tuning process. To put it simply, we first need to annotate data. For each fine-tuning
example, we replace parts of the output that require the use of external tools with predefined
commands or markers. Then, we use this labeled data to fine-tune the parameters of the LLM
as usual. As a result, the LLM can gain the ability to generate commands for calling external
tools. During inference, we can execute these tool use commands in the model outputs to get
assistance from external tools.
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9.3 Learning to Prompt
So far in this chapter, we have considered several basic prompting strategies and various
refinements to them. However, all the prompts we have discussed were designed manually.
This leads to a number of problems: First, designing high-quality prompts is inherently difficult
and requires substantial manual effort. For example, extensive experimentation with different
prompts is often needed to identify the most effective ones. Since different LLMs may respond
better to certain types of prompts, developing universally effective prompts can be even more
resource-intensive. Second, manual prompt design relies heavily on human expertise, which
can limit the diversity of approaches and overlook potentially effective prompts that are not
immediately obvious to humans. Third, prompts created by humans can be complex and
redundant, leading to longer inputs for LLMs and higher computational costs.

In this section, we discuss techniques for automated prompting. These methods aim to
automatically create, optimize, and represent prompts so that the downstream tasks can be
addressed more effectively and efficiently. In particular, we consider three issues here.

• How can we automate the process of designing and optimizing prompts for LLMs?

• Are there other forms of representing prompts beyond strings, and how can we learn
such representations?

• How can we make prompts more concise and compact, thereby reducing their complexity
and length?

Note that there are many settings in which we can investigate these issues. For example,
we might specify that prompts are developed specifically for a particular LLM, or that the
development is independent of the LLM used. These settings can lead to different methods
and application scenarios, but these methods may overlap in some ways. In the following
discussion, we will cover several different scenarios and discuss the connections between
various methods.

9.3.1 Prompt Optimization
Given that prompt design is difficult and labor-intensive, it is desirable to use machine learning
models to discover the optimal prompt for a specific task (call it automatic prompt design or
prompt optimization). This approach can broadly be regarded as an instance of automated
machine learning (AutoML), which aims to reduce or eliminate the need for expert-driven
manual design of machine learning models. Although our focus here is on the design of
prompts, prompts themselves are discrete structures. Therefore, designing prompts is very
similar to designing machine learning models, such as discrete model architectures. Perhaps
one of the most related fields is neural architecture search (NAS), where the most optimal
neural networks are identified by exploring a space of possible neural networks [Zoph and Le,
2016; Elsken et al., 2019a]. If we consider prompt optimization as a search process, then we
can describe a general prompt optimization framework involving the following components:

• Prompt Search Space. This defines all possible prompts that the algorithms can explore.
For example, one can edit some seed prompts to generate a set of diverse candidate
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prompts.

• Performance Estimation. Once a prompt is chosen, it needs to be evaluated. For
example, a straightforward way is to input it to an LLM and measure its performance on
a validation set.

• Search Strategy. The search process is generally the same as that used in many AI
systems. At each step, the system explores a set of promising prompts in the search
space and evaluates them. This process continues as more prompts are explored. The
outcome of the search is the best-performing prompt observed until the search stops.

This is a very general framework, and different prompt optimization systems can vary
in their design of each component. A widely-used approach is to use LLMs as the basis to
develop these components. Initially, a few prompts are provided. Then, the following process
is iterated until a stopping criterion is met: 1) the prompts are evaluated on a validation set;
2) a candidate pool is maintained by keeping only the most promising prompts; and 3) new
prompts are created by employing LLMs to infer similar prompts from this candidate pool.
One benefit of this approach is that it allows us to use off-the-shelf LLMs to perform the tasks
mentioned above without the need for substantial system development. To achieve this, we can
prompt or fine-tune LLMs to adapt them to these tasks. Here we consider Zhou et al. [2023c]’s
method for illustrating LLM-based prompt optimization. It involves the following steps.

• Initialization. Let C represent the pool of the candidate prompts we intend to explore.
The first step is to add initial prompts into C. We can do this in several ways. A simple
method is to create such prompts by hand for a given task. However, in many cases
where humans have limited knowledge about how to write effective prompts for the task,
developing prompts becomes challenging. In these cases, it is desirable to use LLMs
to generate prompts. For example, we can directly instruct LLMs to produce prompts,
providing them with a description of the task.

You are given a task to complete using LLMs. Please write a prompt to
guide the LLMs.

{∗task-description∗}

This method is straightforward, but it still requires a human-provided description of the
task. An alternative method is to use LLMs to generate prompts given examples of the
input and output of the task. Here is a prompt template.
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You are provided with several input-output pairs for a task. Please
write an instruction for performing this task.

Input: {∗input1∗} Output: {∗output1∗}
Input: {∗input2∗} Output: {∗output2∗}
...

As such, LLMs can infer the corresponding instruction for the task from the provided
inputs and outputs.

• Evaluation. Once we obtain the candidate pool C, we need to evaluate the prompts
in C. One method is to feed each prompt into an LLM and assess the results on the
downstream task. For example, we can evaluate the output of the LLM given an input
using a pre-defined metric, or alternatively, use the log-likelihood of the output as a
measure of the quality of the prompt.

• Pruning. If C contains a large number of prompts, it is reasonable to prune the
unpromising prompts within it, thus reducing the computational burden in subsequent
steps. This is a standard pruning problem. Given the evaluation score for each prompt, a
simple method is to keep only a certain percentage of the prompts and discard the rest.

• Expansion. Expansion is a key operation in search algorithms used to explore different
states in the search space. The expansion operation here can be defined as a function

C ′ = Expand(C,f) (9.10)

where C ′ is the set of new prompts generated from C using the model f . If we consider
f as an LLM, we can perform the expansion operation by instructing f to generate new
and relevant prompts based on C. Below is an example.

Below is a prompt for an LLM. Please provide some new prompts to
perform the same task.

Input: {∗prompt∗}

Then, we replace C with C ′. The steps of evaluation, pruning and expansion can be
repeated, and so we can gradually explore a wider range of prompts.

In prompt optimization, the expansion step plays a key role, as it defines how we explore
the search space, and our goal is to find optimal results with minimal effort. One improvement
to this step is to treat the problem as a paraphrasing task. A simple method is to apply off-the-
shelf paraphrasing systems, either based on LLMs or other models, to transform input prompts
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into semantically equivalent forms [Jiang et al., 2020]. Alternatively, we can define specific edit
operations, such as insertions and modifications, for each token. A given prompt can be edited
into new prompts by applying these operations [Prasad et al., 2023]. Also, further evaluation
and pruning can be applied to filter out low-quality prompts. In addition to framing prompt
generation as a paraphrasing problem, we can improve the quality of prompts during expansion
by learning from feedback [Pryzant et al., 2023]. This approach is somewhat related to the
self-refinement issue discussed in Section 9.2.3. An LLM can be used to generate feedback on
an input prompt, which is then revised based on this feedback. This feedback-and-revision
cycle can be repeated multiple times until the result converges or the desired outcome is
achieved.

Another approach to prompt optimization is to apply classic optimization techniques. For
example, the problem can be framed as an evolutionary computation problem, where prompts
are treated as candidates that evolve generation by generation as the optimization progresses
[Guo et al., 2024]. Since many powerful optimization algorithms have been developed in
related fields, they can be directly applied to this problem.

In practice, we might be tempted to use existing LLM APIs to implement the steps
described above. Such an approach, however, would be strongly dependent on the inference
and in-context learning abilities of the LLMs. If these LLMs are not strong and lack adaptation
to the tasks, they may introduce errors into search, for example, generating incorrect prompts
during expansion. In such cases, it is preferable to train models that are better suited to the
tasks. One approach in this research direction appeals to reinforcement learning, which has
been widely used in solving discrete decision making and optimization problems. For example,
Deng et al. [2022] developed a prompt generator by integrating an FFN-based adaptor into an
LLM. The prompt generator is trained as a typical policy network, but only the parameters
of the adaptor are updated while the remaining parameters of the model are kept unchanged.
During training, the reward is obtained by testing the generated prompts using another LLM,
similar to the evaluation method as discussed above. Once the training is complete, the prompt
generator is then employed to generate new prompts.

Note that, in our discussion here, prompts are simply seen as sequences of tokens, and
the output of prompt optimization is such a sequence. However, in a strict sense, prompts
have complex structures and include different fields such as user input, instruction, and
demonstration. While our discussed approaches are mostly general, much work in prompt
optimization has focused on learning better instructions for prompting. Specifically, the goal
is to generate instructions that effectively guide LLMs based on a given task. Of course,
the concept of prompt optimization can also be extended to learning other parts of prompts.
For example, there has been substantial research interest in learning to select or generate
demonstrations in CoT [Liu et al., 2022; Rubin et al., 2022; Zhang et al., 2023b]. One of the
differences between learning instructions and learning demonstrations is that generating high-
quality demonstrations using LLMs is relatively easy and the focus of learning demonstrations
is typically on how to sample appropriate demonstrations from a pool of candidates. In
contrast, the difficulty in learning instructions is partly because pre-trained LLMs are not
suited to predict the quality of instructions, and testing these instructions on downstream
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tasks is computationally expensive. This makes the optimization methods costly to apply, and
exploring a wide variety of instructions poses significant challenges.

9.3.2 Soft Prompts

Although developing natural language prompts, either manually or automatically, is a straight-
forward and widely applied approach, it presents some problems. One problem is that natural
language prompts can be complex and lengthy, resulting in significant computational burdens
when processed via LLMs. In many applications, users may need to perform a task repeatedly,
and inputting the same long prompt into the LLMs a large number of times is clearly inefficient.
Another problem is that while prompts are typically represented as discrete token sequences
(call them hard prompts) in regular LLM input, the LLMs encode them as low-dimensional
real-valued vectors. This raises the question of whether there are more compact and efficient
ways to represent prompts.

In this subsection, we introduce the concept of soft prompts, which can be viewed as
hidden, distributed representations of prompts. When prompting LLMs, we are concerned with
communicating tasks or questions to elicit the desired responses. We can define hard prompts
as explicit, predefined text sequences that users input directly into LLMs to guide the responses.
In contrast, we can think of soft prompts as implicit, adaptable prompting patterns embedded
within LLMs. Unlike hard prompts, which are expressed in natural language and should be
understandable for humans, soft prompts are encoded in a format that is more comprehensible
to the model rather than to humans. To illustrate, consider a simple prompt

Translate the sentence into Chinese.

Consider it done!

Here, the instruction “Translate the sentence into Chinese” can be seen as a hard prompt,
denoted by the token sequence c1...c5. By feeding these tokens into an LLM, they are
transformed into a sequence of real-valued vectors h1...h5, each corresponding to a token. We
can roughly think of h1...h5 as a soft prompt, as illustrated in Figure 9.3.

While the above example shows that soft prompts can be generated by transforming hard
prompts, there is not necessarily a direct correspondence between them. In fact, we do not
even need to interpret soft prompts using meaningful text. They are instead simply hidden
states in LLMs and can be learned as standard parameters of the models through continuous
optimization. Such a treatment allows us to explore prompting methods beyond text. As
another benefit, soft prompts provide dense, low-dimensional, and learnable representations
for encoding how we guide LLMs to generate specific outputs. The training and application
of these representations require significantly lower computational costs than those required
for processing long hard prompts. This approach would be of great practical value in LLM
inference applications where the same prompt is repeatedly used.
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... Translate this into Chinese . I have a cat . ...

Transformer

... hj hj+1 hj+2 hj+3 hj+4 hj+5 hj+6 hj+7 hj+8 hj+9 ...

... ... ... ... ... ... ... ... ... ... ... ...

Hard Prompt (Instruction)

Soft Prompt

Figure 9.3: Illustration of hard and soft prompts. Here the hard prompt is the instruction we
input to the LLM for performing the task. The LLM encodes this instruction as usual, and the
intermediate representations corresponding to the instruction can be viewed as some sort of
soft prompt.

1. Adapting LLMs with Less Prompting

One obvious way to adapt an LLM for a particular task is to simply fine-tune the model using
labeled data. This leads to a variety of LLM alignment methods, such as supervised fine-tuning,
which update the model parameters by aligning the responses to given prompts with supervision
signals. Fine-tuned LLMs embed task-related information in model parameters, and thus these
models can respond correctly when dealing with similar prompts with those in fine-tuning.

If we take this idea further, we can expect LLMs to absorb the knowledge about prompting
of a task as much as possible during fine-tuning. Consequently, the prompting information
is partially captured in the model parameters, and the fine-tuned LLMs can perform the task
with less prompting. Here we consider a simple form of prompt, where only an instruction
(denoted by c) and a user input (denoted by z) are included. A prompt can be expressed using
the following tuple

x = (c,z) (9.11)

Given a set of prompt-response pairs D = {(x,y)}, the objective of fine-tuning is to
minimize the total loss incurred over this set. A popular method is to minimize the negative
log-likelihood (i.e., maximize the log-likelihood) with respect to the model parameters θ:

θ̂ = argmax
θ

∑
(x,y)∈D

logPrθ(y|x)

= argmax
θ

∑
(x,y)∈D

logPrθ(y|c,z) (9.12)
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where Prθ(·|·) is the probability predicted by an LLM with the parameters θ9.

In general, the instruction in each fine-tuning example should follow the guideline of
prompt design, for example, a good instruction should be as clear as possible and provide a
detailed description of the task. However, the method described in the above equation does not
restrict the instruction to any particular form. This flexibility allows us to instruct LLMs in
any way that we want. Consider an example where we intend to instruct LLMs to translate an
English sentence into Chinese. Of course, as mentioned earlier in this chapter, we can prompt
LLMs using the instruction

Translate the following sentence from English to Chinese.

If we want the instruction to be simpler, we may rephrase it into a simpler form

Translate this into Chinese.

Even, we can define the instruction as a single phrase

Translate!

With certain fine-tuning effort, we can adapt LLMs to follow any of these instructions.
From an efficient prompting perspective, there are computational advantages in simplifying
instructions in prompting. For example, we can use simple instructions like “Translate!” to
perform tasks that would typically require more complex and detailed instructions. This can
make subsequent prompting during inference much easier. On the other hand, fine-tuning
LLMs with overly simplified instructions may be harmful to the generalization of the models.
Since simplified instructions can lead to a loss of information, it is more likely that the LLMs
will overfit the fine-tuning data and fail to generalize beyond those instructions. In scenarios
involving both complex and simplified instructions for fine-tuning, this problem is more severe
because the labeled data available for fine-tuning is usually limited, and accommodating a
variety of instructions is costly.

An alternative way to adapt LLMs for simplified instructions is through knowledge distilla-
tion. As an example, we consider the context distillation method [Snell et al., 2022]. The goal
of this method is to learn a student model that can make use of simplified instructions from
a well-trained instruction-following teacher model. Figure 9.4 shows an illustration of this
approach. Building the teacher model follows a standard fine-tuning process: we first collect a
certain amount of data that includes instructions, user inputs, and correct responses, and then
we continue to train a pre-trained model with this dataset. For building the student model, we
need to construct a new dataset D′ where each sample is a tuple consisting of an instruction, a
corresponding simplified instruction, and a user input, denoted by x′ = (c,c′,z). Knowledge
distillation is performed by minimizing a loss function defined on the outputs of the teacher

9In practice, we initialize θ with the parameters obtained from pre-training, and then adjust θ moderately to
ensure that the results after fine-tuning do not deviate too much from the pre-trained results.
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Full Context User Input+ Prt(y|c,z)

c z y

Teacher Model:

Simplified Context User Input+ Prs(y|c′,z)

c′ z y

Student Model:

Loss

Figure 9.4: Illustration of context distillation [Snell et al., 2022]. The teacher model is a
standard LLM, which takes both the context and the user input as model input and produces a
prediction as model output. Then, we simplify the context (e.g., simplifying the instruction in
prompting) and use the student model to make predictions based on the simplified context and
the user input. The student model is trained by minimizing the loss between the predictions
produced by the two models.

and student models

θ̂ = argmin
θ

∑
x′∈D′

Loss(Prt(·|·), Prsθ(·|·), x′) (9.13)

where Prt(·|·) denotes the pre-trained teacher model, and Prsθ(·|·) denotes the student model
with the parameters θ. To keep the notation simple we will write Loss(Prt(·|·), Prsθ(·|·), x)
as Loss for short. A commonly-used loss is the sequence-level loss, which has the basic form:

Loss =
∑
y

Prt(y|c,z) logPrsθ(y|c′,z) (9.14)

But this function is computationally infeasible because it requires summing over an
exponentially large number of outputs. A variant of this method is to train the student model
using outputs generated by the teacher model. For each sample, we use the teacher model to
produce an output ŷ= argmaxy logPr

t(y|c,z). Then we consider ŷ as the target for learning,
and the loss function is given by

Loss = logPrsθ(ŷ|c′,z) (9.15)

Alternatively, we can minimize the distances between the probability distributions outputted
by the two models [Askell et al., 2021]. For example, the loss function can be defined as the
KL divergence between the two output distributions

Loss = KL(Pt || Psθ) (9.16)
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where

Pt = Prt(·|c,z) (9.17)

Psθ = Prsθ(·|c′,z) (9.18)

Although we have restricted ourselves to knowledge distillation for instructions, the
approaches discussed here are general. By learning from the outputs of the teacher model, the
knowledge in prompting can be distilled into the parameters of the student model. Therefore,
the distilled model can be considered as encoding some sort of soft prompt. This method can
be applied to many other problems in prompt learning, such as compressing long contexts and
learning soft prompts as specific components of LLMs.

2. Learning Soft Prompts for Parameter-efficient Fine-tuning

Updating all parameters is a common method for adapting LLMs to tasks of interest. Although
fine-tuning is considered computationally cheaper than pre-training, it is still costly to apply
in practice. This issue motivates the development of parameter-efficient fine-tuning methods,
which aim to minimize the number of parameters that need to be updated.

One approach, known as prefix fine-tuning, is to append a series of trainable vectors, or
prefixes, at the beginning of the input of each Transformer layer [Li and Liang, 2021]. These
prefixes can be thought of as soft prompts that serve as additional context to guide the behavior
of the model under specific tasks. During fine-tuning, we need only to learn the prefixes for
embedding task-specific knowledge. Thus, this method is efficient because it only modifies a
small part of the model rather than adjusting the entire set of model parameters.

Specifically, let the input of a layer at depth l be denoted by Hl = hl0h
l
1...h

l
m. The output

of the layer can be expressed as

Hl+1 = Layer(Hl) (9.19)

In prefix fine-tuning, we extend the sequence hl0h
l
1...h

l
m by adding a few vectors at the

beginning, which we denote as pl0p
l
1...p

l
n. Hence Hl can be written in the form

Hl = pl0 p
l
1 ... p

l
n︸ ︷︷ ︸

trainable

hl0 h
l
1 ... h

l
m︸ ︷︷ ︸

previous layer output

(9.20)

The output of the layer is the last m+1 representations.

H
l+1

= Layer(Hl)[−m−1 :]

= hl+1
0 hl+1

1 ... hl+1
m (9.21)

where [−m− 1 :] denotes the slicing operation that extracts the last m+1 elements of a
sequence. Given H

l+1, the input of the next layer can be expressed in the same form of Eq.
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(9.20):

Hl+1 = pl+1
0 pl+1

1 ... pl+1
n H

l+1

= pl+1
0 pl+1

1 ... pl+1
n hl+1

0 hl+1
1 ... hl+1

m (9.22)

Here each pi ∈Rd can be seen as a learnable parameter. During training, pl0p
l
1...p

l
n are trained

as usual, and the parameters of the original Transformer model are kept fixed.
Figure 9.5 shows an illustration of prefix fine-tuning for a translation task. Here, only the

prefix vectors pl0 and pl1 are updated by receiving the error gradients from the output (i.e.,
the Chinese translation). By adjusting these vectors for the translation task, the model adapts
accordingly. This makes pl0 and pl1 serve as prompts which activate the LLM to perform
the task without needing explicit input prompts like “Translate the following sentence from
English to Chinese”. At test time, we prepend the optimized pl0 and pl1 to the layer, and the
LLM will then translate the input sentence. Note that prefix fine-tuning introduces additional
L×n×d parameters, where L is the number of layers, n is the number of prefixes, and d is
the dimensionality of each prefix. However, this number is much smaller compared to the total
number of parameters in the LLM, making the fine-tuning process highly efficient.

While prefix fine-tuning is simple, it still requires modifications to LLMs. Alternatively,
separating soft prompts from the LLMs allows us to preserve the original model architecture,
making it more efficient for deployment across different tasks without the need to adjust the
core model. One such method is prompt tuning [Lester et al., 2021]. Like prefix fine-tuning,
prompt tuning incorporates trainable vectors so that LLMs can adapt to given tasks by adjusting
these vectors. However, prompt tuning differs in that it modifies only the embedding layer.

Recall that in LLMs each input token zi is represented by an embedding ei. These
embeddings are generally learned through a token embedding model and are then used as the
real inputs to the LLMs, replacing the symbolically represented tokens. In prompt tuning, a
number of pseudo embeddings p0...pn are added at the beginning of the token embedding
sequence. So the actual input to the LLMs can be expressed as

p0 p1 ... pn︸ ︷︷ ︸
trainable

e0 e1 ... em︸ ︷︷ ︸
token embeddings

Note that a pseudo embedding needs not to correspond to any token in natural language. Instead
these embeddings can be seen as “soft prompt embeddings” that serve to condition the LLMs.
By training soft prompt embeddings on task-specific data, they learn to interact adaptively with
the token embeddings e0...em and guide the behavior of LLMs. Since prompt tuning does
not change the underlying parameters of pre-trained LLMs, it is considered a lightweight and
efficient method of fine-tuning, improving task-specific performance while maintaining their
generalization capabilities. See Figure 9.6 for an illustration of prompt tuning.

Since p0 p1 ... pn is itself a sequence, we can employ sequence models to better represent
it. For example, a Transformer model can encode this sequence, and the resulting representation
can then be used as the input to the LLM. In other words, we can develop an additional model
for encoding soft prompts. Another way to improve prompting is by combining soft and
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Loss Loss

· · · · · · · · · · · · · · ·

Look out ! 小心 !

trainable prefixes

User Input LLM PredictionSoft Prompt

Figure 9.5: Illustration of prefix fine-tuning for a translation task (Look out! → 小心!). For
each layer, we add two prefixes pl0 and pl1 at the beginning. The LLM is trained to minimize
the loss on the predictions given the input. During this process, only the prefixes are optimized
while the rest of the parameters remain fixed. Therefore, the model can adapt to the given task
in a very efficient manner. At inference time, the LLM works with optimized prefixes, and can
perform the task without the need of explicit hard prompts.

hard prompts, thereby taking advantage of both types [Liu et al., 2023c]. In the embedding
sequence, we can arrange or intersperse these prompts. This would result in different prompt
patterns. For example, a simple pattern that uses both two types of prompt is

p0 p1 · · · pn q0 q1 · · · qm′ e0 e1 · · · em

c0 c1 · · · cm′ z0 z1 · · · zm

Soft Prompt Hard Prompt User Input and Response

where c0...cm′ denotes the hard prompt and q0...qm′ denotes the corresponding embedding
sequence.

Here we have considered methods for inserting soft prompts in LLMs. But we skip the
details of training these soft prompts and assume that the reader is familiar with the standard
supervised learning process, that is, maximizing the likelihood of the correct model output
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Layer l−1

Layer l

Layer l+1

· · · · · · · · · · · · · · · · · · · · ·

p0 p1 e0 e1 e2 e3 e4

· · · · · · · · · · · · · · · · · · · · ·

Loss Loss

Look out ! 小心 !

trainable prompt
embeddings

User Input LLM PredictionSoft Prompt

Figure 9.6: Illustration of prompt tuning for a translation task (Look out! → 小心!). Instead
of using fixed textual prompts, soft prompts are learnable embeddings that are added at the
beginning of the embedding sequence. During fine-tuning, only these prompt embeddings
are optimized to efficiently adapt the LLM to the given task. Once optimized, the prompt
embeddings are used to instruct the LLM to perform the task as new data arrives.

given the model input. In fact, learning soft prompts can be related to many issues in LLM
fine-tuning. For example, if we consider it as a context compression problem, we can apply
the knowledge distillation methods described previously. In Mu et al. [2024]’s work, prompts
are compressed and represented as a few pseudo tokens, which are appended to each input
sequence. The embeddings of these pseudo tokens are optimized to mimic the predictions of a
standard-prompted model. In other words, the prompting knowledge is distilled from a teacher
model into the pseudo tokens.

Broadly speaking, many parameter-efficient fine-tuning methods can be thought of as
learning some sort of soft prompt [Lialin et al., 2023]. When we fine-tune a part of an LLM
for a task, this process can essentially be seen as injecting task-related prompting information
into that specific part of the model. Another widely-used approach to parameter-efficient fine-
tuning is to add an adaptor layer between the existing model layers. This approach allows us to
fine-tune only the adaptor layer on specific tasks without altering the underlying architecture
or retraining the entire model. In this sense, adaptor layers can be viewed as soft prompts that
encode prompting and task-related information and interact with the original LLM to help
it adapt. To summarize, Figure 9.7 shows a comparison of different methods of using soft
prompts in LLMs.
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LLM

(a) Soft Prompts as Prefixes

LLM

(b) Soft Prompts as Inputs (Embeddings)

LLM
Layer

(c) Fine-tuning Parts of the Model
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Figure 9.7: Illustrations of using soft prompts in LLMs. Here tunable soft prompts are shown
in blue, and components whose parameters are fixed during fine-tuning are shown in gray. In
sub-figure (a), soft prompts are prefixes appended to each layer of the LLM. In sub-figure
(b), soft prompts are used as input embeddings for the LLM. In sub-figures (c) and (d), soft
prompts are broadly treated as components of the model that are fine-tuned for task adaptation.

3. Learning Soft Prompts with Compression

Another approach to learning soft prompts is from the perspective of compression. As a
simple example, consider the problem of approximating a long context using a continuous
representation [Wingate et al., 2022]. Suppose we have a user input z and its context c (such as
long instructions and demonstrations). Now we want to develop a compressed representation
of the context, denoted by σ, such that the prediction based on z and σ is as close as possible
to the prediction based on z and c. This goal can be expressed in the form

σ̂ = argmin
σ

s(ŷ, ŷσ) (9.23)

where ŷ = argmaxyPr(y|c,z) and ŷσ = argmaxyσ
Pr(y|σ,z) are the LLM predictions

given the full context and the compressed context, respectively. The function s(·, ·) typically
represents a loss or similarity measure, aiming to minimize the difference in predictions
between the two context representations.

One general framework for achieving this is knowledge distillation, where ŷ and ŷσ can
be seen as the predictions of the teacher model and the student model, respectively. This
formalization links our discussion to the context distillation problem discussed earlier. The
training objective can be obtained by analogy with Eqs. (9.15) and (9.16). For example, a
simple training objective is given by

σ̂ = argmax
σ

logPr(ŷ|σ,z) (9.24)
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Alternatively, we can minimize the KL divergence between the output distributions, giving

σ̂ = argmin
σ

KL(Pr(·|c,z) || Pr(·|σ,z)) (9.25)

The difference with the models in Eqs. (9.15) and (9.16) is that here the compressed context
is represented as real-valued vectors (call them prompt embeddings), rather than as normal
tokens. By applying the above methods, we distill the context from the token sequence c into
the embeddings σ. Note that the teacher model Pr(·|c,z) and the student model Pr(·|σ,z)
may not share the same architecture or model settings. In practice, we generally wish for the
teacher model to be stronger, while the student model should be smaller and more efficient.

While compressing full context into continuous representations is a straightforward ap-
proach to learning soft prompts, it requires a teacher model that can deal with long input
sequences. In many cases, however, the context is so long that applying an LLM is too costly or
infeasible. Modeling long input sequences can fall under the broad family of efficient methods
for long-context LLMs. Many techniques have been developed to address this issue. For
example, one can use a fixed-size KV cache to store the past information at each step during
inference. Efficient Transformer architectures and long-context LLMs have been intensively
discussed in this book. For more detailed discussions of these topics, interested readers can
refer to Chapters 6 and 8.

There are also methods specifically designed to compress long context into soft prompts.
Here we consider Chevalier et al. [2023]’s method as an example. The basic idea is that
we learn soft prompts gradually by accumulating the fixed-size context representation over
the context sequence. Given a long context, we first divide it into a number of segments
z1, ...,zK . We then process these segments in sequence, each time generating a representation
of the context we have processed so far, denoted by σ<i+1. To do this, a few summary tokens
⟨g1⟩, ...,⟨gκ⟩ are introduced. At each step, we take a segment zi = zi1...z

i
mi

, along with the
previous context representation σ<i and the summary tokens ⟨g1⟩, ...,⟨gκ⟩ as input, and use
an LLM to produce the corresponding hidden representation sequence at the last Transformer
layer. An example of this process is illustrated in Figure 9.8.

Here σ<i is essentially a memory. The model operates in an RNN fashion. Each time
we take a segment and update this memory by encoding both the previous memory state and
the segment. Therefore, the σ<i produced at the last segment is a representation of the entire
context sequence. The Transformer model for learning these representations can be a standard
LLM but we need to fine-tune it to adapt to this context representation task.

Note that here we simply consider prompt and context as similar terms, even though they
are not the same. Although we are somewhat “misusing” the concept prompt, we can often
view it as a type of context. From this perspective, the methods discussed here can be applied
to general text compression problems.

9.3.3 Prompt Length Reduction
While soft prompts provide dense, hidden representations, they are not directly interpretable.
The lack of interpretability can be a significant barrier for users trying to understand how their
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Figure 9.8: Illustration of compressing a context segment into soft prompts (κ= 2 and mi = 4).
The input to the LLM includes the soft prompts from the previous step (σ<i1 and σ<i2 ), the
tokens of the segment (z1,z2,z3, and z4), and the summary tokens (⟨g1⟩ and ⟨g2⟩). Given
these, the LLM operates as usual. We then extract the outputs at the last Transformer layer
that correspond to the summary tokens. These outputs can be viewed as the soft prompts that
accumulated up to this segment.

inputs influence LLM outputs. Moreover, although soft prompts are efficient for fine-tuning
and deployment, they are inflexible and do not allow for easy adjustments without extensive
fine-tuning or modification. This inflexibility can limit their utility in dynamic environments
where prompt changes are frequently needed.

One alternative way to develop efficient prompts is to simplify the text used for prompting.
For example, below is a prompt for answering questions on healthcare and finance.

The task involves developing a language model capable of understanding
and responding to user inquiries across various domains, with a particular
emphasis on healthcare and finance. Considering the broad range of potential
queries, from the specifics of medical diagnoses to the nuances of finan-
cial regulations, the model must ensure a comprehensive understanding and
accurate responses.

Question:

What are the best practices for using artificial intelligence in diagnosing
cardiovascular diseases?

We can simplify the task description by deleting the unimportant parts.
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The task involves developing a language model capable of understanding
and responding to user inquiries across various domains, with a particular
emphasis on healthcare and finance. Considering the broad range of
potential queries, from the specifics of medical diagnoses to the nuances
of financial regulations, The model must ensure a comprehensive under-
standing and accurate responses.

We can also paraphrase it as a shorter text.

The task involves developing a language model focused on healthcare and
finance, capable of understanding and accurately responding to a wide
range of user inquiries.

This problem can be viewed as a classic NLP issue — text simplification. So the methods
used can be general and not restricted to the problem of simplifying prompts. There are
many ways to achieve this. One simple method is to define some heuristics and identify
redundant words that can be eliminated without losing essential information. For example,
we can examine each token in a sequence in terms of its contribution to the overall meaning
and remove those that provide minimal value [Li et al., 2023c; Jiang et al., 2023b]. Another
method involves framing the problem as a sequence-to-sequence task. With labeled data for
text simplification, we can train an encoder-decoder model to transform each input text into
its simplified form. In addition, given that many LLMs have been fine-tuned and aligned to
perform text simplification tasks, it is straightforward to use these models to simplify prompts.
For example, we can prompt an LLM to simplify a text under certain constraints, such as
limiting the length of the simplified text.

9.4 Summary
In this chapter, we have discussed a variety of issues related to LLM prompting. Our discussion
has focused mainly on two aspects:

• How to design basic prompts to guide the predictions of LLMs and refine these prompts
for more effective and efficient problem-solving?

• How to automate the design and representation of prompts?

Solutions to these issues involve both general prompt designs and more advanced techniques,
such as CoT and prompt learning, which have been explored extensively in recent research.

In NLP, prompting can be viewed as a technology that has evolved along with LLMs, and
in a sense, it has opened the door to the practical application of these models in an impressive
range of problem domains. In fact, if we expand the concept of prompts to some extent, it can
be traced back to the early days of machine learning and NLP. For example, many NLP systems
use hand-crafted features and templates to “prompt” specific tasks. Imagine developing a
feature to indicate whether a text is formal or informal. We can feed this feature into a machine
translation system to condition the translation on the type of the input text.
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The widespread use of the modern concept of prompts began with the rise of large pre-
trained models in the field of NLP. Initially, these models, such as BERT, were adapted to
specific downstream tasks mainly through fine-tuning. However, researchers soon discovered
that by designing specific "prompts" — adding certain words or sentences to the input — the
models could be triggered to respond to specific tasks without extensive fine-tuning. This
motivated the NLP community to develop and apply universal foundation models that can
be prompted to address various tasks without changing the underlying architecture and the
pre-training procedure.

Prompting approaches were first experimented with smaller models and later demonstrated
impressive capabilities with large models like GPT-3, which could generate high-quality text
in response to simple prompts across various tasks. As prompting technology evolved, prompt
engineering emerged as a critical area of research. As discussed in this chapter, it broadly
involves designing effective prompts to maximize model performance, encompassing both
hand-crafted and automatically generated prompts. More recent research has explored how to
enhance the effectiveness of prompting through techniques like few-shot learning, zero-shot
learning, and CoT reasoning, enabling LLMs to work effectively across a wide range of
scenarios. A general discussion of prompting can be very broad, and we cannot cover all
details in this chapter. For more advanced techniques of prompting, the reader can refer to
recent surveys. Topics include in-context learning [Li, 2023; Dong et al., 2022], CoT [Chu
et al., 2023; Yu et al., 2023b; Zhang et al., 2023a], efficient prompting [Chang et al., 2024],
and general prompt engineering [Liu et al., 2023d; Chen et al., 2023a].

Note that although we would ideally like to develop general prompting methods without
adjusting model architectures and parameters, the results of prompting generally depend heavily
on the quality and size of the given LLMs. For stronger models, such as commercialized online
LLMs, simple prompts may be sufficient to instruct these models to perform tasks correctly. In
this case, prompt engineering is relatively easy, though we still need certain efforts to make
LLMs work properly. By contrast, if the LLMs are not powerful enough, we may need to
carefully design the prompts to achieve the desired results. In many cases, fine-tuning is still
necessary to adapt the models to sophisticated prompting strategies.
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Chapter 10

Alignment

Alignment is not a new concept in NLP, but its meaning varies across different domains
and over time. In traditional NLP, the term alignment typically refers to the tasks that link
corresponding elements in two sets, such as aligning words between a Chinese sentence and
an English sentence. As LLMs become increasingly important in NLP research, this term is
more broadly used to refer to aligning model outputs with human expectations. The problem
that alignment addresses is that the output of a model may not align with the specific goals
or contexts intended by users. For example, pre-trained LLMs may not be able to follow
user instructions because they were not trained to do so. Another example is that LLMs may
generate harmful content or perpetuate biases inherent in their training data. This poses new
challenges in ensuring that LLM outputs are not only accurate and relevant, but also ethically
sound and non-discriminatory.

Simply pre-training LLMs can result in a variety of alignment problems. Our ultimate goal
is to resolve or mitigate all these problems to ensure LLMs are both accurate and safe. There
is an interesting issue here: since large language models are trained on vast amounts of data,
we have reason to believe that if we have sufficient data covering a variety of tasks and aligned
with human preferences, pre-training could make LLMs accurate and safe enough, perhaps
even eliminating the need for alignment. However, the reality is that it is nearly impossible
to gather data that encompasses all tasks or adequately represents human preferences. This
makes it difficult to achieve model alignment through pre-training alone, or at least, at this
stage, alignment remains a very necessary and critical step in the development of LLMs.

In this chapter, we will focus on alignment methods for LLMs. We will begin by discussing
the general alignment tasks. Then we will consider two widely-used approaches, known as
instruction alignment and human preference alignment, respectively. The former resorts to
supervised fine-tuning techniques and guides the LLMs to generate outputs that adhere closely
to user instructions. On the other hand, the latter typically relies on reinforcement learning
techniques, where the LLMs are trained based on feedback from humans. While these methods
are motivated by different goals, they are commonly used together to develop well-aligned
LLMs.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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10.1 An Overview of LLM Alignment

Alignment can be achieved in several different ways. We need different methods for LLM
alignment because this problem is itself complicated and multifaceted, requiring a blend of
technical considerations. Here we consider three widely-used approaches to aligning LLMs.

The first approach is to fine-tune LLMs with labeled data. This approach is straightforward
as it simply extends the pre-existing training of a pre-trained LLM to adapt it to specific tasks.
An example of this is supervised fine-tuning (SFT), in which the LLM is further trained
on a dataset comprising task-specific instructions paired with their expected outputs. The
SFT dataset is generally much smaller compared to the original training set, but this data is
highly specialized. The result of SFT is that the LLM can learn to execute tasks based on
user instructions. These tasks can either be ones previously encountered in SFT, or new tasks
similar to those. For example, by fine-tuning the LLM with a set of question-answer pairs,
the model can respond to specific questions, even if not directly covered in the SFT dataset.
This method proves particularly useful when it is relatively easy to describe the input-output
relationships and straightforward to annotate the data.

The second approach is to fine-tune LLMs using reward models. One difficulty in alignment
is that human values and expectations are complex and hard to describe. In many cases, even
for humans themselves, articulating what is ethically correct or culturally appropriate can be
challenging. As a result, collecting or annotating fine-tuning data is not as straightforward as
it is with SFT. Moreover, aligning LLMs is not just a task of fitting data, or in other words,
the limited samples annotated by humans are often insufficient to comprehensively describe
these behaviors. What we really need here is to teach the model how to determine which
outputs are more in line with human preferences, for example, we not only want the outputs
to be technically accurate but also to align with human expectations and values. One idea
is to develop a reward model analogous to a human expert. This reward model would work
by rewarding the LLM whenever it generates responses that align more closely with human
preferences, much like how a teacher provides feedback to a student. To obtain such a reward
model, we can train a scoring function from human preference data. The trained reward model
is then used as a guide to adjust and refine the LLM. This frames the LLM alignment task as a
reinforcement learning task. The resulting methods, such as reinforcement learning from
human feedback (RLHF), have been demonstrated to be particularly successful in adapting
LLMs to follow the subtleties of human behavior and social norms.

The third approach is to perform alignment during inference rather than during training
or fine-tuning. From this perspective, prompting in LLMs can also be seen as a form of
alignment, but it does not involve training or fine-tuning. So we can dynamically adapt an
LLM to various tasks at minimal cost. Another method to do alignment at inference time is to
rescore the outputs of an LLM. For example, we could develop a scoring system to simulate
human feedback on the outputs of the LLM (like a reward model) and prioritize those that
receive more positive feedback.

The three methods mentioned above are typically used in sequence once the pre-training
is complete: we first perform SFT, then RLHF, and then prompt the LLM in some way
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Pre-training Prompting
Instruction
Alignment
(e.g., SFT)

Human Preference
Alignment
(e.g., RLHF)

Pre-training
Stage

Alignment
Stage

Training & Fine-tuning Inference

Figure 10.1: Schematic illustration of the pre-train-then-align method for developing LLMs.
In the pre-training stage, we train an LLM on vast amounts of data using next token prediction.
Then, in the alignment stage, we align the LLM to user instructions, intents, and preferences.
This includes instruction alignment, human preference alignment, and prompting.

during inference. This roughly divides the development of LLMs into two stages — the
pre-training stage and the alignment stage. Figure 10.1 shows an illustration of this. Since
prompting techniques have been intensively discussed in the previous chapter, we will focus
on fine-tuning-based alignment methods in the rest of this chapter.

10.2 Instruction Alignment
One feature of LLMs is that they can follow the prompts provided by users to perform various
tasks. In many applications, a prompt consists of a simple instruction and user input, and we
want the LLM to follow this instruction to perform the task correctly. This ability of LLMs is
also called the instruction-following ability. For example, below is a prompt where we want
the LLM to extract key points and provide a concise summary for a lengthy article.

Instruction Summarize this text in three sentences.

Input Daylight Savings Time (DST) - the process of moving clocks
forward by one hour in the summer - was started in Germany in
1916. During World War One it was a way to save ...

Output

This task requires the LLM to understand the instruction “Summarize this text in three sen-
tences” and perform the summarization accordingly. However, LLMs are typically trained for
next-token prediction rather than for generating outputs that follow instructions. Applying a
pre-trained LLM to the above example would likely result in the model continuing to write
the input article instead of summarizing the main points. The goal of instruction alignment
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(or instruction fine-tuning) is to tune the LLM to accurately respond to user instructions and
intentions. The rest of this section will discuss some issues related to instruction alignment,
including fine-tuning LLMs to follow instructions, generating or collecting instruction data,
and generalizing instruction alignment.

10.2.1 Supervised Fine-tuning
One straightforward approach to adapting LLMs to follow instructions is to fine-tune these
models using annotated input-output pairs [Ouyang et al., 2022; Wei et al., 2022a]. Unlike
standard language model training, here we do not wish to maximize the probability of gener-
ating a complete sequence, but rather maximize the probability of generating the rest of the
sequence given its prefix (i.e., generating the output given the input). This approach makes
instruction fine-tuning a bit different from pre-training. Let x= x0...xm be an input sequence
(e.g., instruction + user input) and y= y1...yn be the corresponding output sequence. The SFT
data is a collection of such input-output pairs (denoted by S), where each output is the correct
response for the corresponding input instruction. For example, below is an SFT dataset

x (instruction + user input) y (output)
Summarize the following article. {∗summary∗}

Article: In recent years, solar energy has seen
unprecedented growth, becoming the fastest-growing ...
Analyze the sentiment of the following review. Positive

Review: I absolutely loved the new dining experience.
The food was divine and the service was impeccable.
Translate the following sentence into French. La pratique aide

Sentence: practice indeed helps. effectivement.
Extract the main financial figures from the following Revenue: $10 million,
earnings report. Profit Margin: 15%

Report: The company reported a revenue of $10 million
in the first quarter with a profit margin of 15% ...
Classify the following email as spam or not spam. Spam

Text: Congratulations! You’ve won a $500 gift card.
Click here to claim now.
Provide a solution to the following technical issue. First, check for ...

Issue: my computer is running slow and often freezes.

where the instructions are highlighted. This dataset contains instructions and the corresponding
outputs for several different NLP problems, and so we can fine-tune an LLM to handle multiple
tasks simultaneously.

In SFT, we aim to maximize the probability of the correct output given the input. Consider
an LLM with pre-trained parameters θ̂. The fine-tuning objective can then be formulated as:

θ̃ = argmax
θ̂+

∑
(x,y)∈D

logPrθ̂+(y|x) (10.1)
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x0 x1 x2 x3 y1

x1 x2 x3 y1 y2

Input Output

(a) Forward Pass

x0 x1 x2 x3 y1

x1 x2 x3 y1 y2

Loss = 0 Loss ̸= 0

(b) Backward Pass

Figure 10.2: Illustration of supervised fine-tuning for LLMs. We concatenate the input and the
output into a single sequence. During the forward pass, we run the LLM as usual. During the
backward pass, we compute the loss only for the output part and simply set the loss for the
input part to 0.

where θ̃ denotes the parameters optimized via fine-tuning, and θ̂+ represents an adjustment to θ̂.
Here we will omit the superscript + and use θ to represent θ̂+ to keep the notation uncluttered.
But the reader should keep in mind that the fine-tuning starts from the pre-trained parameters
rather than randomly initialized parameters.

The objective function logPrθ(yi|x,y<i) is computed by summing the log-probabilities
of the tokens in y, conditional on the input x and all the previous tokens y<i:

logPrθ(y|x) =
n∑
i=1

logPrθ(yi|x,y<i) (10.2)

This formulation is equivalent to minimizing the cross-entropy loss.

Note that minimizing the conditional log-probability logPrθ(y|x) is not a standard lan-
guage model training problem. If we concatenate x and y as a single sequence, a more general
form of language modeling is based on the joint log-probability logPrθ(x,y), that is, we
minimize the loss over all tokens of the sequence seqx,y = [x,y]. We can write the probability
of this sequence using the chain rule

logPrθ(seqx,y) = logPrθ(x,y)

= logPrθ(x)︸ ︷︷ ︸
set to 0

+logPrθ(y|x)︸ ︷︷ ︸
loss computation

(10.3)

There are two terms on the right-hand side of the equation. We can simply set the first term
logPrθ(x) to 0, focusing solely on the second term logPrθ(y|x) for loss computation. As a
result, the training can be implemented using standard LLMs. For the sequence seqx,y, we first
run the forward pass as usual. Then, during the backward pass, we force the loss corresponding
to x to be zero. Figure 10.2 shows an illustration of this process.

By taking logPrθ(seqx,y) as the objective function, we can describe SFT using a regular
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form of language model training:

θ̃ = argmax
θ

∑
(x,y)∈D

logPrθ(seqx,y) (10.4)

The problem we considered above is fundamentally a single-round prediction problem,
where the LLM generates a response based on a single input without any further interaction or
feedback from the user. The input is processed, and the output is generated in one go. This is
typical in scenarios where a single question is asked, and a single answer is provided, with
no follow-up questions or clarifications. However, in practice, we sometimes have to handle
multi-round prediction problems, for example, an LLM engages in a dialogue over multiple
turns. In this setting, the LLM not only generates responses based on the initial input but also
incorporates subsequent inputs that might refine or expand on earlier interactions. For example,
we can use the LLM to act as a healthcare assistant chatbot and have a conversation with the
user, like this

User I’ve been feeling very tired lately.

Chatbot I’m sorry to hear that. Besides feeling tired, have you noticed any
other symptoms?

User Yes, I’m also experiencing headaches frequently.

Chatbot How long have these symptoms been going on?

User About a week now.

Chatbot It might be good to check in with a healthcare professional. Would
you like help setting up an appointment?

User Yes, please. Can it be after work hours?

Chatbot Sure, I can arrange that. There are slots available next Wednesday

and Thursday after 5 PM. Which day works better for you?

...

In this task, there are several rounds of conversation, each involving the generation of
a response based on the user’s request or question and the conversational history. Suppose
we have K rounds of conversation, denoted by {x1,y1,x2,y2, ...,xK ,yK}. Here xk and yk

denote the user request and the response, respectively, for each round k. The log-probability
of generating the response can be written as logPrθ(y

k|x1,y1, ...,xk). Our goal is then to
maximize the sum of these log-probabilities

θ̃ = argmax
θ

K∑
k=1

logPrθ(y
k|x1,y1, ...,xk) (10.5)
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A straightforward implementation of this involves calculating the conditional probability
for each k. However, it requires running the LLM K times, each time with an increased conver-
sational history to make predictions. A more efficient method is to perform loss computation
of all responses in a single run of the LLM. To do this, we represent the conversation as a
sequence seqx1,y1,...,xK ,yK = [x1,y1, ...,xK ,yK ] (or seq for short). The log-probability of
this sequence is given by

logPrθ(seq) = logPrθ(x
1,y1, ...,xK ,yK)

= logPrθ(x
1)︸ ︷︷ ︸

set to 0

+logPrθ(y
1|x1)︸ ︷︷ ︸

loss computation

+ · · ·+

logPrθ(x
K |x1,y1, ...,yK−1)︸ ︷︷ ︸

set to 0

+

logPrθ(y
K |x1,y1, ...,xK)︸ ︷︷ ︸

loss computation

(10.6)

The trick here is that we ignore the loss for generating user inputs (i.e., logPrθ(x1),...,
logPrθ(x

K |x1,y1, ...,yK−1)), as illustrated in Figure 10.3. Hence we only compute the
probabilities of generating the responses given their conversational histories, in other words,
the value on the right-hand side of Eq. (10.6) is actually equal to the value on the right-hand
side of Eq. (10.5). As with Eq. (10.4), the training of this multi-round prediction model can be
achieved by maximizing the log likelihood over a training dataset D:

θ̃ = argmax
θ

∑
seq∈D

logPrθ(seq) (10.7)

While implementing the SFT methods introduced above seems trivial as they are funda-
mentally the same as regular language model training, there are still issues that need to be
considered in practice. For example,

• SFT requires labeled data. This makes SFT quite different from pre-training, where raw
text is used as training data and is readily available. As in other supervised machine
learning problems, data annotation and selection in SFT are not simple tasks. In general,
we wish to develop SFT data that is both substantial in quantity and high in quality, and
this data should be highly relevant to the tasks the LLM will perform. On the other hand,
there is a need to fine-tune LLMs with less data to minimize computational and data
construction costs. Often, the quality of LLMs is highly dependent on the data used in
SFT. Thus, such data must be carefully developed and examined. As we will see in later
subsections, SFT can be more efficient and effective through more advanced techniques
for data construction.

• SFT is still computationally expensive for LLMs due to their large size. As a result,
maintaining and updating such models is resource-intensive. For example, applying gra-
dient updates to billions of parameters within an LLM requires significant computational
power and memory. This often requires high-performance computing environments,
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User: I’ve been feeling very tired lately.

Chatbot: I’m sorry to hear that. Besides feeling tired,
have you noticed any other symptoms?

User: Yes, I’m also experiencing headaches frequently.

Chatbot: How long have these symptoms been going on?

...

x1 y1 x2 y2 · · ·
Prθ(x

1) Prθ(y
1|x1) Prθ(x

2|x1,y1) Prθ(y
2|x1,y1,x2)

Loss = 0 Loss ̸= 0 Loss = 0 Loss ̸= 0

Figure 10.3: Illustration of supervised fine-tuning for conversational models. Here the LLM
acts as a chatbot to respond to each request based on the conversational history. The conversa-
tion progresses by alternating between the user and the chatbot. In SFT, we treat the entire
conversation as a sequence, just like in standard LLMs, but compute the loss only for the
responses of the LLM.

which are costly to operate. To address these challenges, various optimization strategies,
such as pruning, quantization, and the use of more efficient training algorithms, have
been explored. In particular, there has been significant interest in parameter-efficient
fine-tuning methods which are designed to maintain state-of-the-art performance without
the need for extensive computational resources. We have seen in Chapter 9 that applying
techniques like soft prompts can make the fine-tuning process more efficient. For further
discussion on parameter-efficient methods, the reader can refer to related papers on this
issue [Houlsby et al., 2019; Hu et al., 2022; Han et al., 2024].

• SFT can be regarded as a post-training step following pre-training. It is a separate training
phase designed to preserve the advantages of the initial pre-training while incorporating
new adjustments. This may seem paradoxical because updating a pre-trained LLM
with further data potentially causes the model to forget some of its prior knowledge.
Imagine a scenario where we have a large amount of SFT data and extensively fine-
tune the LLM. In this case, the LLM could overfit the data, which in turn may reduce
generalization performance or cause catastrophic forgetting. A common strategy to
mitigate this issue is to employ regularization and early stopping techniques. Another
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practical approach is to use a smaller learning rate to gently adjust the weights of the
LLM. In addition, fine-tuning with data from diverse sources and problem domains can
also be beneficial. Nevertheless, in practice, the SFT step is often carefully examined
and requires substantial engineering and experimental efforts to optimize.

10.2.2 Fine-tuning Data Acquisition

Fine-tuning data is so important that much recent work in LLM has focused on developing
various datasets for instruction fine-tuning. As with most work in machine learning, there are
generally two approaches to data acquisition — manual data generation and automatic data
generation.

1. Manually Generated Data

One straightforward method is to recruit human annotators to create input-output pairs for the
tasks of interest. Unlike data annotation in conventional NLP, such as text classification, where
annotators simply assign labels to collected texts according to guidelines, creating fine-tuning
data for LLMs requires more steps and effort, making it thus more challenging. Suppose we
want to obtain fine-tuning data for the English-to-Chinese machine translation task. The first
step is to write a prompt template to describe the task and format the problem clearly. For
example,

Instruction Translate the text from English to Chinese.

User Input {∗text∗}

Output {∗translation∗}

Then, we collect pairs of source and target texts (i.e., Chinese texts and the corresponding
translations), and replace the variables {∗text∗} and {∗translation∗} to generate the fine-
tuning samples. For example, given a pair of English and Chinese sentences

How’s the weather today? → 今天天气怎么样？

{∗text∗} {∗translation∗}

we can generate a fine-tuning sample using the prompt template, like this

Instruction Translate the text from English to Chinese.

User Input How’s the weather today?

Output 今天天气怎么样？
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That is,

x = Translate the text from English to Chinese.\n How’s the weather today?

y = 今天天气怎么样？

We can use this (x,y) pair to fine-tune the LLM, as described in the previous subsection.
One difficulty here is that there are many, many different ways to write prompt templates

for the same task, and different people may produce prompt templates with varying qualities
and complexities. Sometimes, we may write prompt templates with overly complex or verbose
instructions. Sometimes, we may not even know exactly what the target task is and how
to describe it. A widely-adopted strategy is to create prompt templates for existing NLP
tasks, given that there have been so many well-established NLP problems and benchmarks
[Bach et al., 2022; Wang et al., 2022e; Mishra et al., 2022]. In this case, annotators can be
given the original task description and many examples. Then, they can use their own ways
to express how to prompt the LLM to perform the tasks. Note that, while such a method
can ease the process of creating and writing prompts, we still need annotation frameworks
and crowdsourcing systems to manage the work and conduct quality control. For example,
we generally need to design annotation guidelines and a unified format for writing prompt
templates, especially when many annotators are contributing to the same task. One advantage
of inducing prompts from existing NLP tasks is that, once the prompt templates have been
developed, it is easy to generate prompts using the annotated samples in the original tasks. For
example, given a bilingual dataset for English-to-Chinese translation, we can easily create a
number of fine-tuning examples by filling the slots in the above template with the sentence
pairs in this dataset.

Another approach is to directly use the naturally existing data available on the internet. A
common example is by collecting question-and-answer pairs from QA websites to fine-tune
LLMs for open-domain QA tasks [Joshi et al., 2017]. Many benchmarks in QA are built in
this way because there are so many types of questions that it is impossible to think of them all
by a small group of people. Instead, using data from those websites can ensure that the LLM
fine-tuning data is at a good or acceptable level in terms of quantity and quality.

In addition to employing existing resources, another straightforward way to develop a
fine-tuning dataset is to crowdsource the data. A simple approach is to allow users to input
any question, after which responses are either manually given or automatically generated by
an LLM and then manually annotated and corrected. It is thus possible to capture real user
behavior and consequently gather inputs and outputs for a large number of “new” problems
that traditional NLP tasks do not cover.

An issue related to the construction of the fine-tuning datasets is that we usually want the
data to be as diverse as possible. Many studies have found that increasing the diversity of
fine-tuning data can improve the robustness and generalization ability of LLMs. For this reason,
there has been considerable interest in involving more diverse prompts and tasks in LLM
fine-tunining datasets. We will provide further discussion on the generalization of fine-tuning
in Section 10.2.4.
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2. Automatically Generated Data
One limitation of manual data generation is that the quality and diversity largely depend on
human experience and creativity. Therefore, if we want LLMs to handle a broad range of
tasks, that is, to effectively execute any instruction, relying on human-annotated data for LLM
fine-tuning is often inefficient. Moreover, the coverage of such data can be limited, and the
data may even contain biases introduced by the annotators themselves. An alternative approach
is to generate data automatically. For example, we can collect a number of questions through
crowdsourcing, and employ a well-tuned LLM to generate answers to the questions. These
question-answer pairs are then used as fine-tuning samples as usual. This method, though very
simple, has been extensively applied to generate large-scale fine-tuning data for LLMs.

The above way of producing synthetic fine-tuning data is similar to those used in data
augmentation for NLP. If we have an LLM, we can produce a prediction in response to any
input. Repeating this process for different inputs allows us to create a sufficient number of
fine-tuning samples. Such a method is particularly useful for fine-tuning new LLMs using a
well-tuned LLM. However, one disadvantage of this approach is that it relies on human-crafted
or collected inputs for data generation, which may turn out to be inappropriate for generalizing
LLMs. In many LLM applications, a significant challenge arises from the broad range of users’
questions and requests, many of which are not covered in existing NLP tasks and datasets.
In these cases, it becomes necessary to generate not only the predictions but also the inputs
themselves.

Here we consider self-instruct as an example to illustrate how to generate LLM fine-tuning
samples [Wang et al., 2023e; Honovich et al., 2023]. The idea is that we can prompt an LLM
to create a new instruction by learning from other instructions. Given this instruction, the LLM
can then fill in other fields (such as the user input) and produce the predictions. Figure 10.4
shows a schematic illustration of self-instruct. Here we give a brief outline of the key steps
involved.

• The self-instruct algorithm maintains a pool of tasks. Initially it contains a number
of seed hand-crafted tasks, each with an instruction and input-output sample. As the
algorithm proceeds, LLM-generated instructions and samples will be added to this pool.

• At each step, a small number of instructions are drawn from the instruction pool. For
example, we can randomly select a few human-written instructions and a few LLM-
generated instructions to ensure diversity.
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Initialization
Initialize the task pool with a number of instructions
and corresponding input-output samples.

Sample 1: (Instruction,User-input,Output)

Sample 2: (Instruction,User-input,Output)

· · ·

Task Pool

Sampling
Draw a few instructions from the pool

Instructiona

Instructionb

Instructionc

Task Pool
sampling

Instruction
Generation

Prompt the LLM to generate a new instruction based on
the drawn instructions.
You are provided several different instructions for performing
some tasks. Please generate an instruction based on these.

Task 1: Instructiona

Task 2: Instructionb

Task 3: Instructionc

New Task: Instructionnew

Sample
Generation

Given the newly-generated instruction and a few
input-output samples, generate a new sample.

You are provided with a set of input-output samples tasks,
each composed of an instruction, a user input, and an output.
Please generate a new sample based on these.

Sample 1: Samplea
Sample 2: Sampleb
New Sample: Instructionnew User-inputnew Outputnew

Filtering
Filter out invalid and low-quality samples.
Add the remaining samples into the pool.

Figure 10.4: Illustration of self-instruct [Wang et al., 2023c]. This method maintains a pool of
instructions and corresponding input-output samples. Initially, the pool contains a number of
hand-crafted instructions and samples. Each time, we draw a few instructions from the pool.
An LLM is then prompted to generate new instructions and samples based on those drawn.
Finally, the newly-generated instructions and samples are filtered and added to the pool.

• The selected instructions are then used as demonstration examples. Thus, the LLM
can in-context learn from these examples and produce a new instruction. Below is an
example template for prompting the LLM.
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You are provided several different instructions for performing some
tasks. Please generate an instruction based on these.

Task 1: {instruction1}

Task 2: {instruction2}

Task 3: {instruction3}

Task 4: {instruction4}

New Task:

• Given the generated instruction, the LLM is then prompted to complete the sample by
filling in the remaining input fields and generating the corresponding output. Below is a
prompt template.

You are provided with a set of input-output samples, each composed
of an instruction, a user input, and an output. Please generate a new
sample based on these.

Sample 1: {instruction1}
Input: {user-input1}
Output: {output1}

Sample 2: {instruction2}
Input: {user-input2}
Output: {output2}

New Sample: {new-instruction}

• This newly-generated sample is examined by some heuristic rules (such as filtering out
samples or instructions that are similar to those already in the pool). If it passes, the
sample and instruction are added to the pool.

This generation process can be repeated many times to obtain a sufficient number of
fine-tuning samples. Note that, above, we just show simple prompt templates for generating
instruction and fine-tuning samples. Of course, we can develop better templates to generate
more diverse and accurate instruction and fine-tuning samples. For example, for certain tasks
like text classification, the LLM may tend to produce biased predictions, for example, most
generated samples belong to a single class. In such cases, we can adjust the order of generation
of different fields. More specifically, we can specify the output (i.e., the class) with some prior,
and prompt the LLM to generate user input given both the instruction and the output. This
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method resembles input inversion, where the LLM generates the input based on the specified
output [Longpre et al., 2023].

Using LLM-generated instructions and fine-tuning samples has been a common method
for developing LLMs, especially given that manually developing such data is so expensive that
most research groups cannot afford it. In several well-tuned LLMs, their fine-tuning datasets
include a certain amount of synthetic data, which has proved useful [Ouyang et al., 2022; Taori
et al., 2023; Chiang et al., 2023b]. There have been further studies on synthetic data generation
for LLM fine-tuning. For example, one can generate more diverse instructions by introducing
evolutionary algorithms [Xu et al., 2024], or use synthetic data as supervision signals in a
more advanced fine-tuning process [Chen et al., 2024b]. More recently, there has also been
considerable interest in using synthetic data in the pre-training stage [Gunasekar et al., 2023;
Allal et al., 2024].

In many applications, a real-world scenario is that, given a task, we can collect or annotate
a relatively small amount of fine-tuning data, for example, we can recruit experts to create
questions for QA tasks in a specific domain. But the quantity and diversity of this data are
in general not sufficient. In this case, we can use self-instruct techniques to generate more
diverse question-answer pairs, and thus augment the fine-tuning data. This provides a way
of bootstrapping the LLM starting from a seed set of fine-tuning samples. Note that using
self-generated data is a common practice and has long been applied in NLP. For example,
this approach has been successfully used in parsing and machine translation [Charniak, 1997;
Sennrich et al., 2016a].

10.2.3 Fine-tuning with Less Data
With the increasing prominence of instruction fine-tuning, there has been a surge in demand for
large-scale, high-quality fine-tuning data. For example, the FLAN fine-tuning dataset, which is
compiled from 1,836 tasks, contains 15 million samples [Longpre et al., 2023]. Fine-tuning
LLMs with such large datasets is typically a computationally expensive task, especially given
that updating the large number of parameters in LLMs is resource-intensive. One approach
for mitigating this issue is to explore efficient model training methods, for example, one can
use parameter-efficient methods to update only a small portion of the model. However, many
fine-tuning datasets contain a large amount of synthetic data, where errors and biases are still
inevitable.

Another approach to efficient fine-tuning is to consider only the most relevant and impactful
examples for fine-tuning. We can thus reduce the amount of data that needs to be processed
while still maintaining the quality of the model updates. There are several methods to achieve
this. For example, Zhou et al. [2023a] built an instruction-following dataset containing only
1,000 samples by carefully crafting the prompts and collecting samples from a variety of
NLP tasks. They showed that the LLaMa 65B model fine-tuned with this dataset could be
competitive with or even better than models with much more fine-tuning effort. This suggests
that LLMs can be adapted to respond to diverse tasks without necessarily needing fine-tuning
on all types of instruction-following data. Chen et al. [2024a] developed a system based on
the GPT-3.5 model to assess the quality of each instruction-following sample. Therefore,
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they could select high-quality samples from existing datasets, showing better fine-tuning
performance with fewer fine-tuning samples. Researchers have also developed methods to
either select or filter out data using heuristics [Zhao et al., 2024; Ge et al., 2024], or to prioritize
data that more significantly influences the fine-tuning process [Xia et al., 2024]. In fact, most
of these methods can be seen as instances of larger families of data selection and filtering
methods. And it is often the case that using higher quality (but maybe less) data is beneficial
for training NLP models.

The discoveries in instruction fine-tuning somewhat differ from traditional views in NLP:
the ability of models to handle complex problems can be activated with a small amount of
annotated data, rather than requiring massive amounts of supervised data for extensive training.
One possible explanation is that the ability of generating correct responses given instructions
has been learned during pre-training, but such instruction-response mappings are not with
high probabilities during inference. Fine-tuning can slightly adjust the models to get them
to follow instructions, requiring significantly less training effort than pre-training. This is
closely related to what is known as the superficial alignment hypothesis, which suggests
that learning primarily occurs during pre-training, and the subsequent fine-tuning or alignment
phase does not significantly contribute to the underlying knowledge base of an LLM [Zhou
et al., 2023a]. Since the core abilities and knowledge of the model are already established
from pre-training, effective fine-tuning for alignment with user needs can be achieved with
relatively small training fine-tuning effort. This implies the possibility of fine-tuning LLMs
with very little data. In another direction, it may not be necessary to restrict fine-tuning to paired
instruction-response data. For example, Hewitt et al. [2024] found that instruction-following
can be implicitly achieved by fine-tuning LLMs only on responses, without corresponding
instructions.

A concept related to the discussion here is sample efficiency. A machine learning method
is called sample efficient if it can learn effectively from a small number of training examples.
In this sense, instruction fine-tuning is sample efficient compared with pre-training. From
the perspective of machine learning, sample-efficient methods can be seen as efficient ways
to sample the space of data, and are advantageous as they make optimal use of scarce data.
Therefore, sampling-based learning techniques, such as many reinforcement learning algo-
rithms, can benefit from these sample efficient approaches. For example, in human preference
alignment, we can either efficiently sample preference data via reward models [Liu et al.,
2024b] or improve the sampling efficiency in policy learning [Wang et al., 2024].

10.2.4 Instruction Generalization
In many machine learning and NLP problems, training a model to generalize is a fundamental
goal. For example, in text classification, we expect our model to correctly classify new texts
that were not seen during training. However, generalization poses additional challenges in
instruction fine-tuning. We expect instruction-fine-tuned LLMs to not only generate appropriate
responses for different inputs within a task but also to accurately perform various tasks as
described by different instructions. To illustrate this issue, consider an LLM Pr(y|c,z),
where c is an instruction, z is a user input, and y is the corresponding model output (i.e., the



548 Chapter 10. Alignment

response). Suppose that the performance of this model is evaluated in terms of a metric, written
as Performance(Pr(y|c,z)) or P(c,z,y) for short. Informally, when we say this model can
generalize within a given task (indicated by the instruction c∗), we mean that there may be a
value ϵ such that the average performance on new inputs is above this value:

1

|Z|
∑
z′∈Z

P(c∗,z′,y′)> ϵ (10.8)

where Z is the set of new inputs, and z′ and y′ are an input in this set and the corresponding
output, respectively.

Likewise, we can say that this model can generalize across tasks if the average performance
over all instruction-input pairs is above some ϵ:

1

|D|
∑

(c′,z′)∈D

P(c′,z′,y′)> ϵ (10.9)

where D is the set of new instruction-input pairs.
Here, we need to deal with variations in two dimensions: instruction and user input. This

makes the generalization problem very complex, because, intuitively, a model needs to learn
from a vast number of tasks and different input-output pairs associated with each task to
achieve good generalization. As we have discussed several times in this book, achieving such
generalization incurs much lower cost than pre-training. In general, fine-tuning LLMs with
instruction-response data to some extent can lead to models yielding instruction following on
new tasks. Nevertheless, it is typically believed that certain efforts are still needed to adapt
LLMs to make them understand and execute instructions broadly.

One way to generalize instruction fine-tuning is to increase the diversity of the fine-
tuning data. In earlier studies on instruction fine-tuning, researchers developed many datasets,
covering a wide variety of NLP tasks and different instructions for each task [Wang et al.,
2022e; Sanh et al., 2022; Longpre et al., 2023]. By transforming these tasks into a unified
format, one can fine-tune an LLM with a sufficiently large number of samples, for example,
there have been several instruction fine-tuning datasets that involve over 100 NLP tasks and
1M samples. However, these early datasets mostly focus on existing academic problems,
but not those that users want to deal with in real-world applications. Much recent work has
shifted focus to addressing new and more practical problems. For example, there has been
considerable interest in constructing datasets that contain large and complicated demonstrations
and responses from SOTA models to real user queries [Wang et al., 2023d; Teknium, 2023].

Perhaps the use of large and diverse fine-tuning datasets has its origins in attempts to scale
LLMs in different dimensions. Indeed, scaling laws have been used broadly to motivate the
development of a wide range of different instruction-fine-tuned LLMs. And it is reasonable to
scale instruction fine-tuning to make an LLM follow broad instructions. From the perspective
of LLM alignment, however, scaling instruction fine-tuning might not be efficient to achieve
generalization.

One problem is that instruction fine-tuning relies on supervised learning that learns to
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generalize and perform tasks based on instruction-response mappings. However, such an
approach does not capture subtle or complex human preferences (e.g., tone, style, or subjective
quality) because these are hard to encode as explicit instruction-response data. Moreover, the
generalization performance is bounded by the diversity and quality of the instruction-response
dataset. Given these limitations, we would instead like to employ preference models as an
additional fine-tuning step following instruction fine-tuning, so the LLMs can generalize
further (see Section 10.3).

Another view is that some instruction-response mappings may already be learned during
pre-training, and so the pre-trained LLMs have encoded such mappings. However, since we
often do not know exactly what data is used in the pre-training, it is hard to judge whether
we need to learn such mappings in the fine-tuning. A related question is whether out-of-
distribution generalization is primarily achieved during pre-training or fine-tuning. While
directly answering this question is beyond the scope of this chapter, it has been shown that pre-
training on large and diverse datasets is effective in improving out-of-distribution performance
[Hendrycks et al., 2020; Radford et al., 2021; Gunasekar et al., 2023]. This raises an interesting
problem: if an LLM has been well pre-trained at scale, fine-tuning may not be as essential for
out-of-distribution generalization, since the model may have already encountered sufficient
distributional variation. This prompts researchers to fine-tune LLMs with modest effort or
to explore new methods to achieve instruction-following. As discussed in the previous sub-
section, for example, instruction following can be yielded by fine-tuning on a small number of
carefully selected instruction-response pairs [Zhou et al., 2023a], or even by using methods
that are not explicitly designed to do so [Kung and Peng, 2023].

The above discussion provides two different strategies: one requires scaling up fine-tuning
datasets for larger diversity, the other requires small but necessary fine-tuning datasets for
efficient LLM adaptation. However, in practice, involving diverse instructions often helps.
In many cases, we need to adapt our LLM for specific purposes. But the LLM, which has
possibly encoded broad instruction-following mappings during pre-training, might tend to
behave as a general-purpose instruction executor even with modest fine-tuning. An interesting
phenomenon is that when fine-tuning on math data, the resulting LLM might not specialize in
math outputs. Instead, this model might respond normally to general instructions, for example,
it could generate poetry if instructed to do so [Hewitt, 2024]. This is not a bad thing, but it
shows that LLMs may not easily change their nature of following general instructions. In this
case, additional adaptations with more diverse data may help adjust the way the LLM follows
instructions, particularly for those tasks we aim to address.

10.2.5 Using Weak Models to Improve Strong Models
So far we have explored a variety of instruction fine-tuning methods based on labeled data.
One of the limitations of many such methods is that they require the data to be annotated
by humans or generated by strong LLMs, which can provide accurate supervision signals
in fine-tuning. However, in many cases, the LLM we have in hand is already strong (or at
least is advantageous in specific aspects of problem solving), and thus it is not easy to find a
superior model for supervision. Even for human experts, when the problem becomes complex,
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providing correct and detailed answers might be difficult, or sometimes infeasible. For example,
when faced with an extremely long document, the experts would find it challenging to identify
any inconsistencies, subtle biases, or missing key points without conducting an exhaustive and
time-consuming review.

One may ask at this point: can we use weak LLMs to supervise strong LLMs? This seems
to be a significant challenge, but it may reflect a future scenario where we need to supervise
AI systems that are smarter than humans or any other AI systems [Burns et al., 2023b]. The
problem of using smaller, less complex models to improve the training of larger, more complex
models is also called the weak-to-strong generalization problem. While there have not been
mature approaches to weak-to-strong generalization, using smaller models to assist stronger
models has indeed proven useful in several areas of LLMs.

For instruction fine-tuning, one of the simplest ways of applying weak LLMs is to use
these models to generate synthetic fine-tuning data. Suppose we have a collection of inputs X ,
where each input includes an instruction and a user input if necessary. For each x ∈X , we use
a weak LLM Prw(·) to generate a prediction ŷ = argmaxyPr

w(y|x). Then, the strong LLM
Prsθ(·) can be trained on these generated predictions (see Eq. (10.1)):

θ̃ = argmax
θ

∑
x∈X

logPrsθ(ŷ|x) (10.10)

where θ is the model parameters.

The above form transforms the fine-tuning problem into a knowledge distillation problem,
in other words, we distill knowledge from the weak model to the strong model. Consequently,
we can employ various knowledge distillation methods to achieve this goal. However, ex-
plaining weak-to-strong fine-tuning from the perspective of knowledge distillation is not
straightforward. A major concern is that the strong model may merely imitate or overfit the
errors of the weak model and fail to generalize. For example, the fine-tuned strong model still
cannot solve difficult problems that the weak model cannot accurately predict. Fortunately,
preliminary experiments in this line of research have shown positive and promising results. For
example, Burns et al. [2023a] found that fine-tuning the strong pre-trained GPT-4 model with
GPT-2-level supervision could improve generalization across several NLP tasks. To measure
how the weak model improves the generalization of the strong model, we define the following
terms:

• Weak Performance (Pweak). This is the test-set performance of the weak model, which
can be regarded as the baseline performance.

• Weak-to-strong Performance(Pweak→strong). This is the test-set performance of the
strong model that is fine-tuned with the weak model.

• Strong Ceiling Performance (Pceiling). This is the test-set performance of the strong
model that is fine-tuned with ground truth data. For example, we fine-tune the strong
model with human-annotated predictions and take the resulting model as a ceiling.
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Then, the performance gap recovered (PGR) can be defined as

PGR = max
{
0,
Pweak→strong−Pweak

Pceiling−Pweak

}
(10.11)

This metric measures how much of the performance gap between the ceiling model and
the weak model can be recovered by the weak-to-strong model. A PGR of 1 indicates that
the weak-to-strong fine-tuning can completely closes the performance gap, whereas a PGR
of 0 indicates no improvement. In Burns et al. [2023a]’s work, it is shown that PGR can
be around 0.8 on 22 NLP classification tasks. It should be noted that, while the potential of
weak-to-strong fine-tuning is promising, achieving substantial weak-to-strong generalization
remains a challenging goal that needs further investigation [Aschenbrenner, 2024].

Fine-tuning LLMs with weak supervision is just one choice for using small models to
improve large models. Although this section primarily focuses on fine-tuning LLMs, we
also mention other methods here to give a more complete discussion (see Figure 10.5 for
illustrations of these methods).

• Instead of using small models to generate synthetic data, it is also straightforward to
incorporate knowledge distillation loss based on these models. For example, a simple
loss function that measures the difference between the small and large models can be
defined as:

Losskd = KL(Prw(·|x) || Prsθ(·|x)) (10.12)

Then, we can add this loss to the original loss of language modeling, and yield the
following training objective

θ̃ = argmax
θ

∑
(x,y)∈D

logPrsθ(y|x)−λ ·Losskd (10.13)

where D is the set of input and output pairs, and λ is the coefficient of the interpolation.
This method can be employed in either the pre-training or fine-tuning phase. We can
adjust λ to control how much the small model influences the training. For example,
we can gradually decrease λ to make the training rely more on the original language
modeling loss as the large model becomes more capable.

• Another approach to involving small models in LLM pre-training and fine-tuning is
to use them to do data selection or filtering. Given a sequence, we can compute the
likelihood or cross-entropy using a small model. These quantities can then be used as
criteria for selecting or filtering data. For example, sequences with low likelihood or
high cross-entropy might be excluded from the training set, as they are less aligned with
the small model’s learned distribution. Conversely, sequences with high likelihood or
low cross-entropy can be prioritized, ensuring that the training focuses on more relevant
or high-quality data.

• Ensemble learning is a simple and effective way to build a strong model by combining
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Figure 10.5: Illustrations of using small models to improve large models in LLMs. One
approach involves using smaller models for the fine-tuning or pre-training of larger models.
This includes generating synthetic data (a), incorporating auxiliary loss (b), and selecting
appropriate data (c). Another approach involves combining small models and large models.
This includes learning a strong model by aggregating multiple small models (d), and cascading
small models with large models (e).

multiple weak models. Applying this technique to LLMs is straightforward. We can
aggregate distributions predicted by multiple small models or specialized submodels,
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and derive the final prediction from the aggregated results. This aggregation can be done
using methods such as majority voting, weighted averaging, or stacking.

• Small models can also be employed at inference time to improve overall efficiency.
Suppose we have a large model that is slow but more accurate, and a small model that is
fast but less accurate. In model cascading, the small model first processes the input data,
quickly generating preliminary results. If these results meet certain pre-defined criteria,
they can be directly used. However, if the initial results are not sufficiently good, the
input is then passed to the larger, more accurate model to produce a better result. This
approach significantly reduces computational costs and latency, as the small model can
effectively handle many inputs without access to the large model.

10.3 Human Preference Alignment: RLHF
So far in this chapter, we have focused on fine-tuning LLMs using input-output paired labeled
data. This approach allows us to adapt LLMs for instruction-following via supervised learning.
In many applications, however, LLMs are required not only to follow instructions but also to
act in ways that are more aligned with human values and preferences. Consider a scenario
where a user asks an LLM how to hack into a computer system. If the LLM is not appropriately
aligned, it may respond by providing details on how to perform this illegal activity. Instead,
a more desirable response might be to advise the user against engaging in illegal activities
and offer a general overview of the consequences of such actions. The difficulty in achieving
this is that the ethical nuances and contextual considerations required for an LLM to respond
appropriately in such scenarios are not always straightforward to encode into a fine-tuning
dataset. What’s even more challenging is that, often, humans themselves cannot precisely
express their own preferences.

In this section, we discuss an alternative LLM fine-tuning method, called reinforcement
learning from human feedback or RLHF for short [Christiano et al., 2017; Stiennon et al.,
2020]. The basic idea behind RLHF is that LLMs can learn from comparisons of model
outputs using reward models (see Figure 10.6). To do this, we can recruit human experts who
indicate their preferences between pairs of outputs generated by the LLM. This preference
data is used to train a reward model that can predict the perceived quality of LLM outputs.
Once trained, the reward model provides feedback by assigning scores to new outputs that the
LLM generates in response to the inputs. The LLM uses these scores to update its parameters
through reinforcement learning algorithms. In the rest of this section, we will first introduce
the basic knowledge of reinforcement learning to facilitate the discussion, and then discuss
methods for training reward models and aligning LLMs with these models.

10.3.1 Basics of Reinforcement Learning
We begin by looking at some basic concepts of reinforcement learning. Note that the notation
used here slightly differs from that used in the previous sections and chapters because we want
to make our description more consistent with those in the reinforcement learning literature.
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(b) Reinforcement Learning from Human Feedback

Figure 10.6: Supervised fine-tuning vs. reinforcement learning from human feedback. In
supervised fine-tuning, we optimize the LLM by maximizing the probability of the prediction
given the input. In reinforcement learning from human feedback, we first train a reward model
on human preference data (on each pair of predictions, evaluators are asked to choose which
one they prefer). Then, we use this reward model to supervise the LLM during fine-tuning.

Nevertheless, we will show how this notation corresponds to the language modeling notation.
The reader who is already familiar with reinforcement learning techniques may skip or skim
this subsection.

A general reinforcement learning framework describes how an agent interacts with a
dynamic environment. This interaction is modeled as a sequence of actions taken by the
agent in response to the state of the environment. At each time step, the agent observes the
current state, chooses an action based on its policy, performs the action, and then receives
feedback from the environment in the form of a reward and a new state. This sequence of
observe-act-receive feedback is repeated until the agent achieves its goal.

A reinforcement learning system involves several components:

• Agent. This is the learner or decision-maker in reinforcement learning. In the context of
LLMs, it can be seen as the LLM itself.

• Environment. This includes everything external to the agent with which the agent
interacts. But the environment in LLMs is less about a physical or virtual space and
more about the framework within which the agent (e.g., an LLM) receives feedback and
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learns.

• State (s). A state represents the current situation of the environment. Given a sequence
of tokens for language modeling, a state at a time step can be viewed as the tokens we
observed so far, that is, the context tokens we take to predict the next token. For example,
we can define (x,y<t) as the state when predicting the next token at the time step t.

• Action (a). Actions represent possible decisions the agent can make. We can see them
as possible predicted tokens in the vocabulary.

• Reward (R). The reward is the feedback from the environment that evaluates the success
of an action. For example, r(s,a,s′) denotes the reward the agent receives for taking the
action a at the state s and moving to the next state s′. If the state-action sequence is given,
we can denote the reward at the time step t as rt = r(st,at,st+1). Also note that if the
decision-making process is deterministic, we can omit st+1 because it can be determined
by st and at. In such cases, we can use r(st,at) as shorthand for r(st,at,st+1).

• Policy (π). For an LLM, a policy is defined as the probability distribution over the
tokens that the LLM predicts, given the preceding context tokens. Formally, this can be
expressed as

π(a|s) = Pr(yt|x,y<t) (10.14)

where a corresponds to the token yt, and s corresponds to the context (x,y<t). Figure
10.7 illustrates how an LLM can be treated as a policy in the reinforcement learning
framework.

• Value Function (V and Q). A state-value function (or value function, for short)
assesses the expected discounted return (i.e., accumulated rewards) for an agent starting
from a particular state s and following a specific policy π. It is defined as:

V (s) = E
[
r(s0,a0,s1)+γr(s1,a1,s2)+γ

2r(s2,a2,s3)+ · · ·
∣∣ s0 = s,π

]
= E

[
r0+γr1+γ

2r2+ · · ·
∣∣ s0 = s,π

]
= E

[ ∞∑
t=0

γtrt
∣∣ s0 = s,π

]
(10.15)

where γ ∈ [0,1] is the discount factor that adjusts the importance of future rewards,
s0 = s indicates that the agent starts with the state s, and the expectation E is performed
over all possible trajectories (i.e., state-action sequences). Similarly, an action-value
function (or Q-value function) measures the expected return starting from a state s
taking an action a and thereafter following a policy π, given by

Q(s,a) = E
[ ∞∑
t=0

γtrt
∣∣ s0 = s,a0 = a,π

]
(10.16)

where a0 = a indicates that the action taken at the initial state is a.
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Figure 10.7: LLM as policy in reinforcement learning. At each step t, the LLM predicts a
token yt given the model input x and the previously-generated tokens y<t. This process can
be framed as a reinforcement learning problem, where yt serves as the action, (x,y<t) as the
state, and the predicted distribution Pr(yt|x,y<t) as the policy. Once yt is predicted, the LLM
inputs both (x,y<t) and yt to the reward model, which evaluates how effectively the chosen
token contributes to achieving the desired textual outcome. This evaluation generates reward
scores which are used to compute the value functions V (st) and Q(st,at). These functions
then provide feedback to the LLM and guide the policy training.

The goal of reinforcement learning is to learn a policy that maximizes the cumulative
reward (or return) the agent receives over the long run. Given a state-action sequence
τ = {(s1,a1), ...,(sT ,aT )}1, the cumulative reward over this sequence can be written as

R(τ) =

T∑
t=1

rt (10.17)

The expectation of this cumulative reward over a space of state-action sequences is given
in the form

J(θ) = E
τ∼D

[
R(τ)

∣∣πθ]
=

∑
τ∈D

Prθ(τ)R(τ)

=
∑
τ∈D

Prθ(τ)
T∑
t=1

rt (10.18)

where τ ∼D indicates that τ is drawn from the state-action sequence spaceD, and the subscript

1We assume the state-action sequence begins with s1 and a1, rather than s0 and a0, to align with the notation
commonly used in this chapter, where the prediction y typically starts from y1. Of course, it is also common to
denote a state-action sequence as {(s0,a0), ...,(sT ,aT )} or {(s0,a0), ...,(sT−1,aT−1)} in the literature. But
this variation in notation does not affect the discussion of the models presented here.
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θ indicates the parameters of the policy. J(θ) is also called the performance function.

Then the training objective is to maximize J(θ):

θ̃ = argmax
θ

J(θ) (10.19)

Now, we have a simple reinforcement learning approach: 1) we sample a number of
state-action sequences; then, 2) we evaluate each sequence using the performance function;
then, 3) we update the model to maximize this performance function. If we take Eq. (10.18)
and use gradient descent to optimize the policy, this approach would constitutes a form of
policy gradient methods [Williams, 1992].

Note that in many NLP problems, such as machine translation, rewards are typically sparse.
For instance, a reward is only received at the end of a complete sentence. This means that
rt = 0 for all t < T , and rt is non-zero only when t= T . Ideally, one might prefer feedback to
be immediate and frequent (dense), and thus the training of the policy can be easier and more
efficient. While several methods have been proposed to address sparse rewards, such as reward
shaping, we will continue in our discussion to assume a sparse reward setup, where the reward
is available only upon completing the prediction.

The model described in Eqs. (10.17-10.19) establishes a basic form of reinforcement
learning, and many variants and improvements of this model have been developed. Before
showing those more sophisticated models, let us take a moment to interpret the objective
function J(θ) from the perspective of policy gradient. In gradient descent, we need to compute
the gradient of J(θ) with respect to θ:

∂J(θ)

∂θ
=

∂
∑

τ∈DPrθ(τ)R(τ)

∂θ

=
∑
τ∈D

∂Prθ(τ)

∂θ
R(τ)

=
∑
τ∈D

Prθ(τ)
∂Prθ(τ)/∂θ

Prθ(τ)
R(τ)

=
∑
τ∈D

Prθ(τ)
∂ logPrθ(τ)

∂θ
R(τ) (10.20)

In some cases, we will assume that every sequence in D is equally probable (i.e., Prθ(τ) =
1/|D|). In this case we can simplify Eq. (10.20) and need only consider the terms ∂ logPrθ(τ)

∂θ

and R(τ):

∂J(θ)

∂θ
=

1

m

∑
τ∈D

∂ logPrθ(τ)

∂θ
R(τ) (10.21)

One advantage of this result is that R(τ) does not need to be differentiable, which means that
we can use any type of reward function in reinforcement learning.
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By treating the generation of the sequence τ as a Markov decision process, we can further
derive ∂ logPrθ(τ)

∂θ , and obtain:

∂ logPrθ(τ)

∂θ
=

∂

∂θ
log

T∏
t=1

πθ(at|st)Pr(st+1|st,at)

=
∂

∂θ

T∑
t=1

logπθ(at|st)︸ ︷︷ ︸
policy

+
∂

∂θ

T∑
t=1

logPr(st+1|st,at)︸ ︷︷ ︸
dynamics

(10.22)

where the gradient is decomposed into two parts: the policy gradient and the dynamics
gradient. The policy component, logπθ(at|st), determines the log-probability of taking action
at given state st, and it is parameterized by θ. The dynamics component, logPr(st+1|st,at),
represents the log-probability of transitioning to state st+1 from state st after taking action
at. In typical reinforcement learning settings, the dynamics are not directly influenced by
the policy parameters θ, and thus, their derivatives are often zero. In this case, therefore, Eq.
(10.22) can be simplified to:

∂ logPrθ(τ)

∂θ
=

∂

∂θ

T∑
t=1

logπθ(at|st) (10.23)

In other words, we only concentrate on optimizing the policy without concerning ourselves
with the underlying dynamics.

Substituting Eq. (10.23) into Eq. (10.21), and expanding R(τ), we then obtain

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

( T∑
t=1

logπθ(at|st)
T∑
t=1

rt

)
(10.24)

While this policy gradient approach is straightforward, it suffers from the problem that the
variance of the estimated gradients can be very high, making the learning process noisy and
inefficient. One reason for this high variance problem is that rewards can vary greatly across
different steps or scenarios. Imagine that in a sequence of action decisions, the reward model
tends to assign small rewards to good actions (e.g., Rt = 2) and large penalties to poor actions
(e.g., Rt =−50). Such varying reward scales for good and poor actions can result in a very
low total reward for the entire sequence, even if it includes good actions.

One simple method for reducing the variance of the gradient is to set a baseline b and
subtract it from

∑T
t=1 rt, resulting in

∑T
t=1 rt− b.2 Here, the baseline can be interpreted as a

reference point. By centering the rewards around this baseline, we remove systematic biases in

2In fact, the use of a baseline b does not change the variance of the total rewards
∑T

t=1 rt. However, it is
important to note that while introducing a baseline does not alter the overall variance of the rewards, it helps reduce
the variance of the gradient estimates. This is because subtracting the baseline from the total rewards effectively
reduces fluctuations around their mean, which makes the gradient estimates more stable. In general, the operation∑T

t=1 rt− b centers the rewards around zero (e.g., b is defined as the expected value of
∑T

t=1 rt), which can lead
to reduced variance in the product

∑T
t=1 logπθ(at|st)(

∑T
t=1 rt− b).
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the reward signal, making the updates more stable and less sensitive to extreme fluctuations in
individual rewards.

This policy gradient model with a baseline can be given by

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

( T∑
t=1

logπθ(at|st)
)( T∑

t=1

rt− b
)

=
1

|D|
∑
τ∈D

∂

∂θ

[ T∑
t=1

logπθ(at|st)
( T∑
k=1

rk− b
)]

=
1

|D|
∑
τ∈D

∂

∂θ

[ T∑
t=1

logπθ(at|st)
( t−1∑
k=1

rk+
T∑
k=t

rk− b
)]

(10.25)

Here we write
∑T

k=1 rk as the sum of two terms
∑t−1

k=1 rk and
∑T

k=t rk to distinguish between
the rewards accrued before and after the action at time step t. Note that in Markov decision
processes, the future is independent of the past given the present. Therefore, the action taken
at time step t cannot influence the rewards received before t, or in other words, the rewards
prior to t are already “fixed” by the time the action at t is chosen. The term

∑t−1
k=1 rk does not

contribute to the gradient and can be omitted, leading to a simplified version of Eq. (10.25)

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

[ T∑
t=1

logπθ(at|st)
( T∑
k=t

rk− b
)]

(10.26)

Also note that removing
∑T

k=t rk can further reduce the variance of the gradient.

There are many ways to define the baseline b. Here we consider the value function of
the state st, that is, the estimated value of being in state st: V (st) = E(rt+ rt+1+ · · ·+ rT ).
Hence we have

A(st,at) =

T∑
k=t

rk− b

=
T∑
k=t

rk−V (st) (10.27)

where
∑T

k=t rk represents the actual return received, and V (st) represents the expected return.
A(st,at) (or At for short) is called the advantage at time step t, which quantifies the relative
benefit of the action at compared to the expected value of following the policy from the state
st onward.

By using the advantage function A(st,at), the gradient of J(θ) can be written in the form

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

( T∑
t=1

logπθ(at|st)A(st,at)
)

(10.28)
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This optimization objective corresponds to the advantage actor-critic (A2C) method in
reinforcement learning [Mnih et al., 2016]. In this method, the actor aims at learning a policy.
It updates the policy parameters using Eq. (10.28) to help focus more on actions that are
likely to improve performance. The critic, on the other hand, updates its estimation of the
value function, which is used to calculate the advantage function A(st,at), thus serving as the
evaluator of the policy being learned by the actor.

In the A2C method, A(st,at) is typically expressed as the difference of the action-value
function Q(st,at) and the state-value function V (st)

A(st,at) = Q(st,at)−V (st) (10.29)

At first glance, this model may seem challenging to develop because it requires two separate sub-
models to calculate Q(st,at) and V (st) respectively. Fortunately, considering that Q(st,at)

can be defined as the return rt+V (st+1), we can rewrite Eq. (10.29) as

A(st,at) = rt+V (st+1)−V (st) (10.30)

or alternatively, introduce the discount factor γ to obtain a more general form

A(st,at) = rt+γV (st+1)−V (st) (10.31)

A(st,at) = rt+γV (st+1)−V (st) is also called the temporal difference (TD) error. What
we need is to train a critic network for the value function V (st), and then use it to compute the
advantage function3.

Up to this point, we have spent considerable space discussing the basics of reinforcement
learning, especially on how to derive the optimization objective for the A2C method. However,
reinforcement learning is a vast field, and many technical details cannot be covered here.
The interested reader can refer to reinforcement learning books for more details [Sutton and
Barto, 2018; Szepesvári, 2010]. Nevertheless, we now have the necessary knowledge to
further discuss RLHF. In the subsequent subsections, we will return to the discussion on LLM
alignment, demonstrating how to use the A2C method for aligning with human preferences.

10.3.2 Training Reward Models
We have shown that reward models play a very important role in the general reinforcement
learning framework and form the basis for computing value functions. We now consider the
problem of training these reward models.

In RLHF, a reward model is a neural network that maps a pair of input and output token

3The training loss for the value network (or critic network) in A2C is generally formulated as the mean squared
error between the computed return rt+γV (st+1) and the predicted state value V (st). Suppose that the value
network is parameterized by ω. The loss function is given by

Lv(ω) =
1

M

∑(
rt+γVω(st+1)−Vω(st)

)2 (10.32)

where M is the number of training samples, for example, for a sequence of T tokens, we can set M = T .
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x0 x1 x2 · · · xm y1 y2 · · · yn

(Last Token ⟨EOS⟩)

hx0 hx1 hx2 · · · hxm hy1 hy2 · · · hlast

Transformer Decoder (LLM)

Representation
at Each Position

Reward (Scalar)

Wr Linear Map

Figure 10.8: Architecture of the reward model based on Transformer. The main component of
this model is still an LLM. We use the Transformer decoder as the sequence representation
model. We extract the representation of the last position of the decoder as the representation
of the entire sequence [x,y]. We then map this representation to a scalar through a linear
transformation, which serves as the reward score for [x,y].

sequences to a scalar. Given an input x and an output y, the reward can be expressed as

r = Reward(x,y) (10.33)

where Reward(·) is the reward model. r can be interpreted as a measure of how well the output
y aligns with the desired behavior given the input x. As discussed in the previous subsection,
both x and y are assumed to complete texts. This means that the reward model evaluates the
relationship between inputs and outputs that provide full semantic content. For example, when
applying the reward model, it assigns a value of 0 (or another predetermined value) at each
position t in the output sequence y = y1...yn. Only at the final position, when t= n, does the
reward model generate the actual reward score. To keep the notation uncluttered, we will use
r(x,y) to denote the reward model Reward(x,y) from here on.

There are many ways to implement the reward model. One simple approach is to build the
reward model based on a pre-trained LLM. More specifically, we can concatenate x and y to
form a single token sequence seqx,y = [x,y]. We run a pre-trained LLM on this sequence, as
usual, and at each position, we obtain a representation from the top-most Transformer layer.
Then, we take the representation at the last position (denoted by hlast) and map it to a scalar
via linear transformation:

r(x,y) = hlastWr (10.34)

where hlast is a d-dimensional vector, and Wr is a d× 1 linear mapping matrix. This
architecture of the reward model is illustrated in Figure 10.8.

To train the reward model, the first step is to collect human feedback on a set of generated
outputs. Given an input x, we use the LLM to produce multiple candidate outputs {y1, ...,yN}.
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Human feedback can be obtained in several ways:

• Pairwise Comparison (Pairwise Ranking). Given two different outputs, human experts
select which one is better.

• Rating. Human experts provide a score or rating to each output. This score is often
a continuous or discrete numerical value, such as a score on a scale (e.g., 1-5 stars,
or 1-10 points). In some cases, the rating might be binary, indicating a “yes/no” or
“positive/negative” preference.

• Listwise Ranking. Human experts are asked to rank or order the given set of possible
outputs.

Here we consider pairwise comparison feedback as it is one of the simplest and most
common forms of human feedback used in RLHF. In this setting, each time, two outputs
(ya,yb) are randomly drawn from the candidate pool {y1, ...,yN}. Human experts are then
presented with these pairs and asked to decide which output they prefer based on specific
criteria, such as clarity, relevance, and accuracy. The human feedback can be encoded as a
binary label, ya ≻ yb for a preference for ya, and yb ≻ ya for a preference for yb.

One simple and widely used model for describing such pairwise comparisons is the
Bradley-Terry model [Bradley and Terry, 1952]. It is a probabilistic model that estimates the
probability that one item is preferred over another. Adapting this model to the notation used
here, we can write the probability that ya is preferred over yb in the form

Pr(ya ≻ yb|x) =
er(x,ya)

er(x,ya)+er(x,yb)

=
er(x,ya)−r(x,yb)

er(x,ya)−r(x,yb)+1
= Sigmoid(r(x,ya)− r(x,yb)) (10.35)

When training the reward model, we want to maximize this preference probability. A loss
function based on the Bradley-Terry model is given by

Lr(ϕ) = −E(x,ya,yb)∼Dr

[
logPrϕ(ya ≻ yb|x)

]
(10.36)

where (x,ya,yb) is drawn from a human-annotated dataset Dr consisting of preference pairs
of outputs and their corresponding inputs. ϕ represents the parameters of the reward model,
which includes both the parameters of the Transformer decoder and the linear mapping matrix
Wr. In practice, assuming (x,ya,yb) is uniformly sampled from Dr, we can replace the
expectation with a summation

Lr(ϕ) = − 1

|Dr|
∑

(x,ya,yb)∈Dr

logPrϕ(ya ≻ yb|x) (10.37)

The goal of training the reward model is to find the optimal parameters ϕ̂ that minimize
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this loss function, given by

ϕ̂ = argmin
ϕ
Lr(ϕ) (10.38)

Since the reward model itself is also an LLM, we can directly reuse the Transformer training
procedure to optimize the reward model. The difference from training a standard LLM is that
we only need to replace the cross-entropy loss with the pairwise comparison loss as described
in Eq. (10.37). After the training of the reward model, we can apply the trained reward model
rϕ̂(·) to supervise the target LLM for alignment.

It is worth noting that although we train the reward model to perform pairwise ranking,
we apply it to score each input-output pair independently during the alignment process. The
pairwise ranking objective ensures that the reward model is sensitive to subtle differences
between outputs, but we rely on the continuous scores produced by the reward model to guide
the optimization of the LLM. An advantage of this approach is that we can choose from or
combine various ranking loss functions, and still apply the resulting reward models in the same
way as we have done in this subsection. This consistency ensures a unified framework for
aligning the LLM, regardless of the specific ranking loss used during reward model training.

10.3.3 Training LLMs

Having obtained the reward model, we then train the policy (i.e., the LLM) via the A2C method.
Recall from Section 10.3.1 that a state-action sequence or trajectory τ can be evaluated by the
utility function

U(τ ;θ) =
T∑
t=1

logπθ(at|st)A(st,at) (10.39)

where A(st,at) is the advantage of taking the action at given the state st. An estimate of
A(st,at) is defined as the TD error rt+γV (st+1)−V (st), where the value function V (st) is
trained with the reward model.

Given this utility function, the A2C-based loss function can be written in the form

L(θ) = −Eτ∼D
[
U(τ ;θ)

]
= −Eτ∼D

[ T∑
t=1

logπθ(at|st)A(st,at)
]

(10.40)

where D is a space of state-action sequences. As usual, the goal of training the policy is to
minimize this loss function

θ̃ = argmin
θ
L(θ) (10.41)

If we map the problem back to the language modeling problem and adopt the notation
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from LLMs, the loss function can be written as:

L(θ) = −E(x,y)∼D
[
U(x,y;θ)

]
(10.42)

where

U(x,y;θ) =

T∑
t=1

logπθ(yt|x,y<t)A(x,y<t,yt) (10.43)

Here πθ(yt|x,y<t) = Prθ(yt|x,y<t) is the LLM parameterized by θ.
In general, we do not have a human annotated input-output dataset D in RLHF, but a

dataset containing inputs only. The outputs, in this case, are typically the predictions made by
the LLM. The loss function is then defined as

L(θ) = −Ex∼DEy∼πθ(·|x)
[
U(x,y;θ)

]
(10.44)

where D denotes the input-only dataset, and y ∼ πθ(·|x) denotes that the output y is sampled
by the policy πθ(·|x).

The above formulation provides a basic form of the A2C method for LLMs. Improved
versions of this model are more commonly used in RLHF. In the following discussion, we will
still use the reinforcement learning notation to simplify the presentation and will get back the
language modeling notation later.

One common improvement of policy gradient methods is to use importance sampling to
refine the estimation of U(τ ;θ). This can be written as

U(τ ;θ) =

T∑
t=1

πθ(at|st)
πθref (at|st)

A(st,at) (10.45)

Here we replace the log-probability logπθ(at|st) with the ratio πθ(at|st)
πθref (at|st)

. θref denotes the
parameters of the previous policy (such as an initial model from which we start the training).
So πθ(at|st)

πθref (at|st)
, also called the ratio function, can be interpreted as the log-probability ratio

between the current policy πθ and the previous policy πθref (call it the reference policy). By
using the ratio function we reweight the observed rewards based on the likelihood of the
actions under the current policy versus the reference policy. When πθ(at|st)

πθref (at|st)
> 1, the action

at is more favored by the current policy compared to the reference policy. By contrast, when
πθ(at|st)
πθref (at|st)

< 1, the action at is less favored by the current policy4.
A problem with the model presented in Eq. (10.47) (as well as in Eq. (10.39)) is that

the variance in the gradient estimates is often high, making the learning process unstable. To

4Consider a more general case where we wish to evaluate the policy using its expected reward (also see Eq.
(10.18))

J(θ) = Eτ∼πθ

[
R(τ)

]
(10.46)

Here τ ∼ πθ means that the sequence τ is generated by the policy πθ . Alternatively, we can write J(θ) in another
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mitigate this issue, techniques such as clipping are often employed to bound the importance
weights and prevent large updates. A clipped version of the utility function (also called the
clipped surrogate objective function) is given by

Uclip(τ ;θ) =
T∑
t=1

Clip
( πθ(at|st)
πθref (at|st)

)
A(st,at) (10.49)

Clip
( πθ(at|st)
πθref (at|st)

)
= min

( πθ(at|st)
πθref (at|st)

,bound
( πθ(at|st)
πθref (at|st)

,1− ϵ,1+ ϵ
))

(10.50)

Here the function bound( πθ(at|st)
πθref (at|st)

,1− ϵ,1+ ϵ) constrains the ratio function to the range

[1− ϵ,1+ ϵ].
A further improvement to the above model is to consider trust regions in optimization

[Schulman et al., 2015]. In reinforcement learning, a large update to the policy can lead to
instability, where the agent may start performing worse after an update. A reasonable idea is to
optimize the model in the trust region, which refers to a region around the current parameter
estimate where the model is well-behaved. One approach to incorporating trust regions is to
impose a constraint on the size of the policy update, ensuring that the current policy does not
deviate too significantly from the reference policy. This can be achieved by adding a penalty
based on some form of divergence between the current and reference policies to the objective
function. A simple form of such a penalty is given by the difference in the log-probability of
the sequence τ under the current policy versus the reference policy:

Penalty = logπθ(τ)− logπθref (τ) (10.51)

form

J(θ) = Eτ∼πθref

[ Prθ(τ)

Prθref (τ)
R(τ)

]
(10.47)

It is not difficult to find that the right-hand sides of these equations are essentially the same since
Eτ∼πθref

[
Prθ(τ)

Prθref (τ)
R(τ)

]
=
∑

τ Prθref (τ)
Prθ(τ)

Prθref (τ)
R(τ) =

∑
τ Prθ(τ)R(τ) = Eτ∼πθ

[
R(τ)

]
Note that this equivalence holds only when the expectation is performed over the entire sequence space. In

practice, however, we often only sample a relatively small number of sequences using a policy in policy learning.
As a result, the sampling method itself matters. Eq. (10.47) offers an interesting manner to separate the sampling
and reward computation processes: we first use a baseline policy (with θref ) to sample a number of sequences,
and then use the target policy (with θ) to compute the expected reward. In this way, we separate the policy used
for collecting the data, and the policy used for computing the gradient. This approach avoids the need to directly
sample from the policy we are evaluating, which can be beneficial in cases where generating sequences from
the target policy is expensive or difficult. In reinforcement learning, Eτ∼πθref

[
Prθ(τ)

Prθref (τ)
R(τ)

]
is often called a

surrogate objective.
Eq. (10.47) can also be interpreted from a policy gradient perspective. For Eτ∼πθref

[
Prθ(τ)

Prθref (τ)
R(τ)

]
, the

gradient at θ = θref is given by

∂

∂θ
Eτ∼πθref

[ Prθ(τ)

Prθref (τ)
R(τ)

]∣∣∣
θ=θref

= Eτ∼πθref

[∂Prθ(τ)|θ=θref

∂θ
R(τ)

]
(10.48)

The right-hand side is a standard form used in policy gradient methods, meaning that we compute the direction
of the parameter update at the point θ = θref on the optimization surface.
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In practice, this penalty can be approximated by considering only the policy probabilities and
ignoring the dynamics. This gives

Penalty =

T∑
t=1

logπθ(at|st)−
T∑
t=1

logπθref (at|st) (10.52)

By including this penalty in the optimization objective, we encourage the current policy to
remain close to the reference policy, limiting very large updates that could destabilize learning.

We can incorporate this penalty into the clipped surrogate objective function, and obtain

Uppo-clip(τ ;θ) = Uclip(τ ;θ)−βPenalty (10.53)

where β is the weight of the penalty. This training method is called proximal policy optimiza-
tion (PPO), which is one of the most popular reinforcement learning methods used in LLMs
and many other fields [Schulman et al., 2017].

Now we can write the objective of training LLMs in the form of PPO.

U(x,y;θ) = Uppo-clip(x,y;θ)−βPenalty (10.54)

where

Uppo-clip(x,y;θ) =
T∑
t=1

Clip
( πθ(yt|x,y<t)
πθref (yt|x,y<t)

)
A(x,y<t,yt) (10.55)

Penalty = logPrθ(y|x)− logPrθref (y|x)

=
T∑
t=1

logPrθ(yt|x,y<t)−
T∑
t=1

logPrθref (yt|x,y<t) (10.56)

Although the notation here appears a bit tedious, the idea of PPO is simple: we develop an
objective by combining the clipped likelihood ratio of the target and reference policies with an
advantage function, and then impose a penalty that ensures policy updates are not too large.
The PPO-based RLHF is illustrated in Figure 10.9.

To summarize, implementing RLHF requires building four models, all based on the
Transformer decoder architecture.

• Reward Model (rϕ(·) where ϕ denotes the parameters). The reward model learns from
human preference data to predict the reward for each pair of input and output token
sequences. It is a Transformer decoder followed by a linear layer that maps a sequence
(the concatenation of the input and output) to a real-valued reward score.

• Value Model or Value Function (Vω(·) where ω denotes the parameters). The value
function receives reward scores from the reward model and is trained to predict the
expected sum of rewards that can be obtained starting from a state. It is generally based
on the same architecture as the reward model.
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−
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Prθold
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)
At−

β ·
(
logPrθ(yt|x,y<t)−
logPrθold (yt|x,y<t)
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ω

1
M

∑
x∈D

∑T
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∗∗ rt = r(x,y<t+1) denotes the reward received as step t.

∗∗At denotes the advantage at step t, and can be defined as rt +γVω(x,y<t+1)−Vω(x,y<t)

Figure 10.9: Illustration of RLHF. The first step is to collect human preference data and train
the reward model using this data. Once the reward model is optimized, along with the reference
model, we proceed to train both the policy and the value function. At each prediction step, we
compute the sum of the PPO-based loss and update the parameters of the policy. This requires
access to the reward model, the reference model, and the value function at hand. At the same
time, we update the parameters of the value function by minimizing the MSE loss.
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• Reference Model (πθref (·) =Prθref (·) where θref denotes the parameters). The reference
model is the baseline LLM that serves as a starting point for policy training. In RLHF, it
represents the previous version of the model or a model trained without human feedback.
It is used to perform sampling over the space of outputs and contribute to the loss
computation for policy training.

• Target Model or Policy (πθ(·) = Prθ(·) where θ denotes the parameters). This policy
governs how the LLM decides the most appropriate next token given its context. It is
trained under the supervision of both the reward model and the value model.

In practice, these models need to be trained in a certain order. First, we need to initialize
them using some other models. For example, the reward model and the value model can
be initialized with a pre-trained LLM, while the reference model and the target model can
be initialized with a model that has been instruction fine-tuned. Note that, at this point, the
reference model is ready for use and will not be further updated. Second, we need to collect
human preference data and train the reward model on this data. Third, both the value model
and the policy are trained simultaneously using the reward model. At each position in an output
token sequence, we update the value model by minimizing the MSE error of value prediction,
and the policy is updated by minimizing the PPO loss.

10.4 Improved Human Preference Alignment
In the previous section, we reviewed the basic concepts of reinforcement learning and the
general framework of RLHF. In this section, we will discuss some refinements of RLHF and
alternative methods to achieve human preference alignment.

10.4.1 Better Reward Modeling

In Section 10.3.2, we highlighted the task of learning from human preferences as well as the
use of pairwise ranking loss for training reward models. Here we consider more methods
for reward modeling. Our discussion will be relatively general, and since the reward model
is widely used in many reinforcement learning problems, it will be easy for us to apply the
methods discussed here to RLHF and related applications.

1. Supervision Signals

The training of reward models can broadly be seen as a ranking problem, where the model
learns to assign scores to outputs so that their order reflects the preferences indicated by
humans. There are several methods to train a reward model from the perspective of ranking.

One approach is to extend pairwise ranking to listwise ranking. For each sample in a
dataset, we can use the LLM to generate multiple outputs, and ask human experts to order
these outputs. For example, given a set of four outputs {y1,y2,y3,y4}, one possible order of
them can be y2 ≻ y3 ≻ y1 ≻ y4. A very simple method to model the ordering of the list is
to accumulate the pairwise comparison loss. For example, we can define the listwise loss by
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accumulating the loss over all pairs of outputs:

Llist = −E(x,Y )∼Dr

[ 1

N(N −1)

∑
ya∈Y,yb∈Y

ya ̸=yb

logPr(ya ≻ yb|x)
]

(10.57)

where Y is a list of outputs, and N is the number of outputs in the list. Pr(ya ≻ yb|x) can be
defined using the Bradley-Terry model, that is, Pr(ya≻yb|x) = Sigmoid(r(x,ya)−r(x,yb)).
Here we omit the ϕ superscript on the Pr(·) to keep the notation uncluttered.

An extension to the Bradley-Terry model for listwise ranking could involve a ranking mech-
anism that takes into account the entire list of outputs rather than just pairwise comparisons.
One such model is the Plackett-Luce model, which generalizes the Bradley-Terry model to
handle multiple items in a ranking [Plackett, 1975]. In the Plackett-Luce model, for each item
in a list, we define a “worth” for this item that reflects its relative strength of being chosen over
other items. For the reward modeling problem here, the worth of y in the list Y can be defined
as

α(y) = exp(r(x,y)) (10.58)

Then the probability of selecting y from Y is given by

Pr(y is selected|x,Y ) =
α(y)∑

y′∈Y α(y
′)

=
exp(r(x,y))∑

y′∈Y exp(r(x,y′))
(10.59)

Suppose Y̊ is an ordered list yj1 ≻ yj2 ≻ ·· · ≻ yjN . The overall log-probability of this
ordered list can be defined as the sum of the conditional log-probabilities at each stage of
selection, given by

logPr(Y̊ |x) = logPr(yj1 ≻ yj2 ≻ ·· · ≻ yjN |x)
= logPr(yj1 |x,{yj1 ,yj2 , ...,yjN })+

logPr(yj2 |x,{yj2 , ...,yjN })+
· · ·+
logPr(yjN |x,{yjN })

=

N∑
k=1

logPr(yjk |x, Y̊≥k) (10.60)

where Y̊≥k represents the subset of the list of outputs that remain unselected at the k-th stage,
i.e., Y̊≥k = {yjk , ...,yjN }. Given the log-probability logPr(Y̊ |x), we can define the loss
function based on the Plackett-Luce model by

Lpl = −E(x,Y̊ )∼Dr

[
logPr(Y̊ |x)

]
(10.61)
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There are also many other pairwise and listwise methods for modeling rankings, such
as RankNet [Burges et al., 2005] and ListNet [Cao et al., 2007]. All these methods can be
categorized into a large family of learning-to-rank approaches, and most of them are applicable
to the problem of modeling human preferences. However, discussing these methods is beyond
the scope of this chapter. Interested readers can refer to books on this topic for more details
[Liu, 2009; Li, 2011].

In addition to pairwise and listwise ranking, using pointwise methods to train reward models
offers an alternative way to capture human preferences. Unlike methods that focus on the
relative rankings between different outputs, pointwise methods treat each output independently.
For example, human experts might assign a score to an individual output, such as a rating on a
five-point scale. The objective is to adjust the reward model so that its outputs align with these
scores. A simple way to achieve pointwise training is through regression techniques where
the reward of each output is treated as a target variable. Let φ(x,y) be the score assigned to y

given x by humans. Pointwise reward models can be trained by minimizing a loss function,
often based on mean squared error or other regression losses, between the predicted reward
r(x,y) and the actual human feedback φ(x,y). For example, the loss function could be

Lpoint = −E
[
φ(x,y)− r(x,y)

]2 (10.62)

While pointwise methods are conceptually simpler and can directly guide the reward model
to predict scores, they might not always be the best choice in RLHF. A problem is that these
methods may struggle with high variance in human feedback, especially when different experts
provide inconsistent scores for similar outputs. Because they focus on fitting to absolute
scores rather than relative differences, inconsistencies in scoring can lead to poor model
performance. Moreover, fitting to specific scored outputs might discourage generalization,
particularly given that training data is often very limited in RLHF. In contrast, methods that
consider relative preferences can promote the learning of more generalized patterns of success
and failure. Nevertheless, there are scenarios where pointwise methods might still be suitable.
For example, in tasks where training data is abundant and the costs of obtaining accurate,
consistent annotations are low, pointwise methods can prove effective.

In fact, to make the supervision signal for training the reward model more robust, we can
also introduce additional regularization terms into training. For example, if we consider the
first term Uppo-clip(x,y;θ) in Eq. (10.54) as a type of generalized reward, then the second term
(i.e., the penalty term) can be viewed as a form of regularization for the reward model, except
that here the goal is to train the policy rather than the reward model. Another example is that
Eisenstein et al. [2023] develop a regularization term based on the squared sum of rewards,
and add it to the pairwise comparison loss in RLHF:

Lreg = Lpair+(−E(x,ya,yb)∼Dr

[
r(x,ya)+ r(x,yb)

]2
)

= −E(x,ya,yb)∼Dr

[
logPrϕ(ya ≻ yb|x)

]
−E(x,ya,yb)∼Dr

[
r(x,ya)+ r(x,yb)

]2 (10.63)
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Optimizing with this regularization term can help mitigate the underdetermination of reward
models5.

2. Sparse Rewards vs. Dense Rewards

As discussed in Section 10.3, the rewards in RLHF are very sparse: they are observed only
at the end of sequences, rather than continuously throughout the generation process. Dealing
with sparse rewards has long been a concern in reinforcement learning, and has been one
of the challenges in many practical applications. For example, in robotics, it often needs to
shape the reward function to ease optimization rather than relying solely on end-of-sequence
rewards. Various methods have been developed to address this issue. One common approach
is reward shaping, where the original function is modified to include intermediate rewards,
thereby providing more immediate feedback. Also, one can adopt curriculum learning to
sequentially structure tasks in a way that the complexity gradually increases. This can help
models to master simpler tasks first, which prepares them for more complex challenges as their
skills develop. There are many such methods that can mitigate the impact of sparse rewards,
such as Monte Carlo methods and intrinsic motivation. Most of these methods are general and
the discussion of them can be found in the broader literature on reinforcement learning, such
as Sutton and Barto [2018]’s book.

Although we do not discuss methods for mitigating sparse rewards in detail here, an
interesting question arises: why are sparse rewards so successful in RLHF? Recall from
Section 10.3.1 that the supervision signal received at each time step t is not the reward for
the current action, but rather some form of the accumulated rewards from t until the last time
step. Such supervision signals are dense over the sequence, because the reward obtained at the
end of the sequence can be transferred back to that time step, regardless of which time step
it is. In other words, the sparse rewards are transformed into the dense supervision signals.
Furthermore, from the perspective of reward shaping, Ng et al. [1999] show that the reward at
t can be defined as

r′(st,at,st+1) = r(st,at,st+1)+f(st,at,st+1) (10.64)

where r′(·) is the transformed reward function, r(·) is the original reward function, and f(·)
is the shaping reward function. To ensure the optimality of the policy under the transformed
reward function, the shaping reward function can be given in the form

f(st,at,st+1) = γΦ(st+1)−Φ(st) (10.65)

where Φ(s) is called the potential value of the state s. If we define Φ(s) as the common value
function as in Eq. (10.15) and substitute Eq. (10.65) into Eq. (10.64), we obtain

r′(st,at,st+1) = r(st,at,st+1)+γV (st+1)−V (st) (10.66)

5A model is called underdetermined if there are multiple alternative sets of parameters that can achieve the
same objective.
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It is interesting to see that this function is exactly the same as the advantage function used in
PPO. This relates advantage-based methods to reward shaping: the advantage is essentially a
shaped reward.

On the other hand, one of the reasons for adopting end-of-sequence rewards lies in the
nature of the RLHF tasks. Unlike traditional reinforcement learning environments where the
agent interacts with a dynamic environment, RLHF tasks often involve complex decision-
making based on linguistic or other high-level cognitive processes. These processes do not lend
themselves easily to frequent and meaningful intermediate rewards because the quality and
appropriateness of the actions can only be fully evaluated after observing their impact in the
larger context of the entire sequence or task. In this case, the reward signals based on human
feedback, though very sparse, are typically very informative and accurate. Consequently, this
sparsity, together with the high informativeness and accuracy of the human feedback, can make
the learning both robust and efficient.

3. Fine-grained Rewards
For many applications, our objective will be more complex than merely evaluating an entire
text. For example, in sentiment analysis, we often do not just determine the sentiment of a
text, but need to analyze the sentiment in more detail by associating it with specific aspects
of a topic discussed in the text. Consider the sentence "The camera of the phone is excellent,
but the battery life is disappointing." In this example, we would need to separately analyze
the sentiments expressed about the camera and the battery. Such analysis, known as aspect-
based sentiment analysis, helps provide a finer-grained understanding of the customer review
compared to general sentiment analysis.

For the problem of reward modeling, we often need to model different parts of a sequence
as well. A simple and straightforward way to do this is to divide a sequence into different
segments and then compute the reward for each segment [Wu et al., 2023b]. Suppose that an
output token sequence y can be divided into ns segments {ȳ1, ..., ȳns} by some criterion. We
can use the reward model to evaluate each of these segments. By taking x, y and ȳk as input
to the reward model, the reward score for the k-th segment is given by

rk = r(x,y, ȳk) (10.67)

Then the reward score for the entire output sequence is given by

r(x,y) =

ns∑
k=1

r(x,y, ȳk) (10.68)

Here r(x,y) can be used to train the policy as usual.
A problem with this model is that training reward models at the segment level is not

as straightforward as learning from human preferences on entire texts, as it is difficult to
obtain segment-level human preference data. For rating-like problems (e.g., we rate a segment
according to its level of misinformation), one simple approach is to assign a rating score to
each segment and train the reward model using pointwise methods. For example, we can use a
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strong LLM to rate the sequences ȳ1...ȳk−1 and ȳ1...ȳk, and obtain the scores s(ȳ1...ȳk−1)

and s(ȳ1...ȳk). We can then define the score of the segment ȳk as the difference between
s(ȳ1...ȳk) and s(ȳ1...ȳk−1)

s(ȳk) = s(ȳ1...ȳk)−s(ȳ1...ȳk−1) (10.69)

Using these segment-level scores, we can train the reward model with a regression loss
function

Lrating = −Eȳk

[
s(ȳk)− r(x,y, ȳk)

]2 (10.70)

Sometimes, alignment can be treated as a classification problem, for example, we assess
whether a segment has ethical issues. In this case, the segment can be labeled as ethical or
unethical, either by humans or using additional classifiers. Given the label of the segment, we
can train the reward model using some classification loss function. For example, suppose that
r(x,y, ȳk) = 1 if the segment is classified as unethical, and r(x,y, ȳk) =−1 otherwise6. The
hinge loss of training binary classification models is given by

Lhinge = max(0,1− r(x,y, ȳk) · r̂) (10.71)

where r̂ ∈ {1,−1} denotes the ground truth label.
The remaining issue here is how to split y into segments. One approach is to define a

fixed-length segmentation, where y is divided into equal-length chunks. However, this may
not always be ideal, as the content of the sequence may not align well with fixed boundaries.
An alternative approach is to segment y based on specific linguistic or semantic cues, such as
sentence boundaries, topic shifts, or other meaningful structures in the text. Such a segmenta-
tion can be achieved by using linguistic segmentation systems or prompting LLMs to identify
natural breaks in the sequence. Another approach is to use dynamic segmentation methods
based on the complexity of the sequence. For example, segments could be defined where there
is a significant change in the reward score, which might correspond to shifts in the task being
modeled.

4. Combination of Reward Models

A reward model can be viewed as a proxy for the environment. Since the true environment is
often too complex or unknown, developing a perfect proxy for the environment is generally not
possible. As a result, over-aligning LLMs with this imperfect proxy might lead to decreased
performance, known as the overoptimization problem [Stiennon et al., 2020; Gao et al.,
2023a]7. We can also explain this through Goodhart’s law, which states: when a measure

6To allow the reward model to output categories, we can replace the linear layer described in Section 10.3.2
with a Softmax layer.

7This problem is also called reward hacking or reward gaming [Krakovna et al., 2020; Skalse et al., 2022;
Pan et al., 2022], which refers to the phenomenon where the agent attempts to trick the reward model but fails
to align its actions with the true intended objectives of the task. Imagine a student who is assigned homework
and is rewarded with points or praise for completing it. The student might then find ways to finish the homework
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becomes a target, it ceases to be a good measure [Goodhart, 1984].
Addressing the overoptimization problem is not easy, and there is no mature solution yet.

The ideal approach might be to develop an oracle reward model that can perfectly capture
the true objectives of the task and prevent the agent from “tricking”. However, creating such
a model is extremely difficult due to the complexity of the real-world environment, as well
as the challenge of defining all the relevant factors that contribute to the desired outcome.
Instead, a more practical approach is to combine multiple reward models, thereby alleviating
the misalignment between the training objective and the true objective that arises from using a
single, specific reward model [Coste et al., 2024].

Given a set of reward models, combining them is straightforward, and in some cases,
we can simply treat this problem as an ensemble learning problem. A simple yet common
approach is to average the outputs of these models to obtain a more precise reward estimation:

rcombine =
1

K

K∑
k=1

wk · rk(x,y) (10.72)

where rk(·) is the k-th reward model in the ensemble, wk is the weight of rk(·), and K
is the number of reward models. This combined reward can then be used to supervise the
training of a policy. In fact, there are many ways to combine different models, for example,
one can make predictions using Bayesian model averaging or develop a fusion network to
learn to combine the predictions from different models. Alternatively, one can frame this
task as a multi-objective optimization problem, and use multiple reward models to train the
policy simultaneously. These methods have been intensively discussed in the literature on
optimization and machine learning [Miettinen, 1999; Bishop, 2006].

In addition to model combination methods, another important issue is how to collect or
construct multiple different reward models. One of the simplest approaches is to employ
ensemble learning techniques, such as developing diverse reward models from different subsets
of a given dataset or from various data sources. For RLHF, it is also possible to construct
reward models based on considerations of different aspects of alignment. For example, we
can develop a reward model to evaluate the factual accuracy of the output and another reward
model to evaluate the completeness of the output. These two models are complementary to
each other, and can be combined to improve the overall evaluation of the output. Another
approach is to employ different off-the-shelf LLMs as reward models. This approach is simple
and practical, as there have been a lot of well-developed LLMs and we just need to use them
with no or little modification. An interesting issue, though not closely related to the discussion
here, arises: can an LLM that aligns with other LLMs outperform those LLMs? Probably
not at first glance. In part, this is because the target LLM merely imitates other LLMs based
on limited supervision and thus cannot capture well the nuances of the behaviors of these
supervisors. However, given the strong generalization ability of LLMs, this approach can, in
fact, be quite beneficial. For example, using open-sourced or commercial LLMs as reward

with minimal effort to maximize the reward, such as copying and pasting solutions from the internet or previous
assignments, rather than solving the problems themselves.
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Figure 10.10: Standard RLHF (PPO) vs. DPO. In RLHF, the human preference data is used
to train a reward model, which is then employed in training the policy as well as the value
function. In DPO, the use of human preference data is more direct, and the policy is trained on
this data without the need for reward model training.

models has demonstrated strong performance in aligning LLMs, even achieving state-of-the-art
results on several popular tasks [Lambert et al., 2024].

10.4.2 Direct Preference Optimization

Although learning reward models is a standard step in reinforcement learning, it makes the
entire training process much more complex than supervised training. Training a reliable reward
model is itself not an easy task, and a poorly trained reward model can greatly affect the
outcome of policy learning. We now consider an alternative alignment method, called direct
preference optimization (DPO), which simplifies the training framework by eliminating the
need to explicitly model rewards [Rafailov et al., 2024]. This method directly optimizes the
policy based on user preferences, rather than developing a separate reward model. As a result,
we can achieve human preference alignment in a supervised learning-like fashion. Figure
10.10 shows a comparison of the standard RLHF method and the DPO method.

Before deriving the DPO objective, let us first review the objective of policy training used
in RLHF. As discussed in Section 10.3.3, the policy is typically trained by optimizing a loss
function with a penalty term. The DPO method assumes a simple loss function where the
quality of the output y given the input x is evaluated by the reward model r(x,y). The training
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objective is thus given by

θ̃ = argmin
θ

Ex∼DEy∼πθ(·|x)
[
−r(x,y)︸ ︷︷ ︸

loss

+β (logπθ(y|x)− logπθref (y|x))︸ ︷︷ ︸
penalty

]
(10.73)

Note that in this optimization problem, only the term πθ(y|x) depends on the target policy
πθ(·). Both the reward model r(x,y) and the reference model πθref (y|x) are assumed to be
fixed given x and y. This is a strong assumption compared with PPO, but as will be shown
later, it simplifies the problem and crucial for deriving the DPO objective.

Since θ is the variable we want to optimize, we rearrange the right-hand side of Eq. (10.73)
to isolate πθ(y|x) as an independent term:

θ̃ = argmin
θ

Ex∼DEy∼πθ(·|x)
[
β logπθ(y|x)−β logπθref (y|x)− r(x,y)

]
= argmin

θ
Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)−

(
logπθref (y|x)+

1

β
r(x,y)

)]
= argmin

θ
Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)︸ ︷︷ ︸
dependent on θ

− logπθref (y|x)exp
( 1
β
r(x,y)

)
︸ ︷︷ ︸

not dependent on θ

]
(10.74)

This equation defines the objective function as the difference between the log-probability
distribution function of y and another function of y. This form of the objective function
seems not “ideal”, as we usually prefer to see the difference between two distributions, so
that we can interpret this difference as some kind of divergence between the distributions.
A simple idea is to convert the second term (i.e., logπθref (y|x)exp(

1
β r(x,y))) into a log-

probability distribution over the domain of y. If we treat πθref (y|x)exp(
1
β r(x,y)) as an

unnormalized probability of y, we can convert it into a normalized probability by dividing it
by a normalization factor:

Z(x) =
∑
y

πθref (y|x)exp
( 1
β
r(x,y)

)
(10.75)

Hence we can define a probability distribution by

π∗(y|x) =
πθref (y|x)exp

(
1
β r(x,y)

)
Z(x)

(10.76)
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We then rewrite Eq. (10.74) as

θ̃ = argmin
θ

Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)− log

πθref (y|x)exp
(
1
β r(x,y)

)
Z(x

)
− logZ(x)

]
= argmin

θ
Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)− logπ∗(y|x)− logZ(x)

]
= argmin

θ
Ex∼D

[
Ey∼πθ(·|x)

[
logπθ(y|x)− logπ∗(y|x)

]
−Ey∼πθ(·|x)

[
logZ(x)

]]
= argmin

θ
Ex∼D

[
KL
(
πθ(·|x) || π∗(·|x)

)︸ ︷︷ ︸
KL divergence

− logZ(x)︸ ︷︷ ︸
constant wrt. θ

]
(10.77)

Since logZ(x) is independent of θ, it does not affect the result of the argminθ operation,
and can be removed from the objective. Now we obtain a new training objective which finds
the optimal policy πθ by minimizing the KL divergence between πθ(·|x) and π∗(·|x)

θ̃ = argmin
θ

Ex∼D

[
KL
(
πθ(·|x) || π∗(·|x)

)]
(10.78)

Clearly, the solution to this optimization problem is given by

πθ(y|x) = π∗(y|x)

=
πθref (y|x)exp

(
1
β r(x,y))

Z(x
) (10.79)

Given this equation, we can express the reward r(x,y) using the target model πθ(y|x), the
reference model πθref (y|x), and the normalization factor Z(x):

r(x,y) = β

(
log

πθ(y|x)
πθref (y|x)

+ logZ(x)

)
(10.80)

This is interesting because we initially seek to learn the policy πθ(·) using the reward
model r(x,y), but eventually obtain a representation of the reward model based on the policy.
Given the reward model defined in Eq. (10.80), we can apply it to the Bradley-Terry model to
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calculate the preference probability (also see Section 10.3.2):

Prθ(ya ≻ yb|x) = Sigmoid(r(x,ya)− r(x,yb))

= Sigmoid

(
β
(
log

πθ(ya|x)
πθref (ya|x)

+ logZ(x)
)
−

β
(
log

πθ(yb|x)
πθref (yb|x)

+ logZ(x)
))

= Sigmoid

(
β log

πθ(ya|x)
πθref (ya|x)

−β log πθ(yb|x)
πθref (yb|x)

)
(10.81)

This formula is elegant because it converts the difference in rewards into the difference
in ratio functions, and we do not need to calculate the value of Z(x). A direct result is that
we no longer need a reward model, but only need the target policy and reference model to
calculate the probability of preferences. Finally, we can train the target policy by minimizing
the following DPO loss function

Ldpo(θ) = −E(x,ya,yb)∼Dr

[
logPrθ(ya ≻ yb|x)

]
(10.82)

The form of this loss function is very similar to that used in training reward models in RLHF
(see Eq. (10.36)). But it should be noted that the loss function here depends on the parameters
of the policy (i.e., θ) rather than the parameters of the reward model (i.e., ϕ).

The main advantage of DPO lies in its simplicity and efficiency. The DPO objective is very
straightforward — it directly optimizes for preference-based feedback, rather than relying on
separately developed reward models. Moreover, DPO is generally more sample-efficient, as it
learns from a fixed dataset without the need for the computationally expensive sampling process
used in PPO. This makes DPO a popular method for human preference alignment, especially
when developing and applying reward models via reinforcement learning is challenging.

DPO can broadly be viewed as an offline reinforcement learning method, where the
training data is pre-collected and fixed, and there is no exploration. In contrast, online rein-
forcement learning methods like PPO, which require exploring new states through interaction
with the environment (using the reward model as a proxy), also have their unique advantages.
One of the benefits of online reinforcement learning is that it allows the agent to continuously
adapt to changes in the environment by learning from real-time feedback. This means that,
unlike offline methods, online methods are not constrained by the static nature of pre-collected
data and can discover new problem-solving strategies. In addition, exploration can help the
agent cover a wider range of state-action pairs, thus improving generalization. This could be
an important advantage for LLMs, as generalization is considered a critical aspect in applying
such large models.

10.4.3 Automatic Preference Data Generation
Although learning from human preferences is an effective and popular method for aligning
LLMs, annotating preference data is costly. Using human feedback does not only faces the
problem of limited scalability, but it may also introduce bias because human feedback is
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inherently subjective. As a result, one can turn to AI feedback methods to address these
scalability and consistency issues without the limitations associated with human annotators.

As with data generation for instruction fine-tuning, generating preference data using LLMs
is straightforward. Given a set of inputs, we first use an LLM to generate pairs of outputs.
Then, we prompt the LLM to label the preference between each pair of outputs, along with
its corresponding input. Below is an example of prompting the LLM to generate a preference
label for a pair of consumer service responses.

Consider a customer service scenario where a customer poses a request. You
will review two responses to this request. Please indicate which response is
preferred. Note that a good response should be courteous, clear, and concise.
It should address the customer’s concern directly, provide helpful information
or a solution, and maintain a positive tone.

Request:

Hello, I noticed that my order hasn’t arrived yet, though it was scheduled to
arrive several days ago. Could you please update me on its status? Thank
you!

Response A:

I’m very sorry for the delay and understand how disappointing this can be.
We’re doing our best to sort this out quickly for you.

Response B:

Hey, stuff happens! Your package will get there when it gets there, no need to
stress.

Response A is preferred.

Once we collect such preference labels, we can use them, along with the output pair and
input, to train the reward model. Of course, we can consider demonstrating a few examples
or using advanced prompting techniques, such as CoT, to improve labeling performance. For
example, we can include in the prompt an example showing how and why one of the two
responses is preferred based on a CoT rationale.

In addition to preference labels, we can also obtain the probability associated with each
label [Lee et al., 2023]. A simple method is to extract the probabilities for the label tokens,
such as “A” and “B”, from the probabilities output by the LLM. We can then use the Softmax
function or other normalization techniques to re-normalize these probabilities into a distribution
over the labels. These probabilities of preferred labels can serve as pointwise supervision
signals for training the reward model, as discussed in Section 10.4.1.

For data generation, although it is easy to scale up, it is often necessary to ensure the
data is accurate and diverse. Here, the data quality and diversity issues involve not only the
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labeling of preferences but also the inputs and outputs of the model. Therefore, we often need
to use a variety of techniques to obtain large-scale, high-quality data. For example, one can
generate diverse model outputs and annotations by using different LLMs, prompts, in-context
demonstrations, and so on [Cui et al., 2024]. Dubois et al. [2024] report that the variability in
pairwise preference data is important for training LLMs from either human or AI feedback.

While learning from AI feedback is highly scalable and generally objective, this method
is more suited to well-defined tasks where objective performance metrics are available. By
contrast, learning from human feedback is more advantageous when aligning AI systems with
human values, preferences, and complex real-world tasks that require understanding of subtle
or subjective context. These methods can be combined to train LLMs that benefit from both
human insights and the scalability of AI feedback.

10.4.4 Step-by-step Alignment

So far, our discussion of alignment has primarily focused on the use of reward models for
evaluating entire input-output sequence pairs. These methods can be easily adapted to scenarios
where the correctness of an output can be examined by checking whether the desired result is
included. For example, in the task of calculating a mathematical expression, a reward model
can provide positive feedback if the answer is correct, and negative feedback if the answer is
wrong. However, in many problems that require complex reasoning, simply examining the
correctness of the final result is insufficient for learning. Imagine a student who is only given
the final answer to a challenging math problem. Knowing whether the final answer is right or
wrong does not help the student figure out where they went wrong and how to calculate the
correct answer. A better approach would be to guide the student with a step-by-step breakdown
of the problem-solving process and encourage understanding of the underlying concepts and
logic behind these steps.

In Chapter 9, we studied CoT methods to prompt LLMs to explicitly write out intermediate
steps or the reasoning process needed to reach a conclusion or solve a problem. We saw that
breaking down a problem into smaller parts could make it easier to understand the solution
path and increase the accuracy of the output. These methods can be naturally extended to
the alignment of LLMs, that is, we supervise the model during the intermediate steps of
reasoning. Consider a reasoning task where an LLM produces a sequence of reasoning steps
y = {ȳ1, ..., ȳns} for the given input. The result of the reasoning is assumed to be included in
the last step ȳns , and can be easily verified. For this reasoning problem, Uesato et al. [2022]
categorize LLM fine-tuning approaches into two classes:

• Outcome-based Approaches. Supervision occurs only when the end result is verified.
This is a standard method for learning from human feedback we have discussed in this
chapter. For example, the LLM is optimized to maximize some form of the reward
r(x,y).

• Process-based Approaches. Supervision is involved in all intermediate steps in addition
to the last step. To do this, we need to develop a model to give a supervision signal at
each step, and develop loss functions that can make use of such supervision signals.
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Question (from The International Junior Math Olympiad):
Jessica has a lot of apps on her phone. The number of apps she has is divisible by 5. If she
downloaded 10 more apps, she would still have less than 50 apps. What is the maximum
original number of apps Jessica could have?

Response 1:

x must be a multiple of 5, i.e.,
x≡ 0 (mod 5).

x
ȳ1:

After downloading 10 apps, the total
total number of apps should still be less
than 50: x+10< 50. Solving this
inequality: x < 40.

x

ȳ2:

Since x must be a multiple of 5 and
less than 40, the largest value of x is 35.

x
ȳ3:

Verify the result. If x= 35, then after
downloading 10 apps, Jessica would
have: 35+10 = 45 which satisfy
45< 50.

x

ȳ4:

The maximum original number of
apps is 35.

x
ȳ5:

correct

Response 2:

The number of apps is divisible by 5,
so x must be a multiple of 5.

x
ȳ1:

If she downloads 10 more apps, her
new total will be x+10, and this must
be less than 50. Therefore, x+10< 50.
Simplifying this gives x < 40.

x

ȳ2:

x must be less than or equal to
the largest multiple of 5, which is 40.

x
ȳ3:

But x+10 should not be more
than or equal to 50. So we need to
subtract 5 from 40.

x
ȳ4:

Therefore, the final result is 35. xȳ5:

correct

problematic

problematic

Figure 10.11: Two LLM responses to a math problem. In response 1, both the final result
and all the reasoning steps are correct. In response 2, the final result is correct, but there are
mistakes in the reasoning process (highlighted in red). For outcome-based approaches, both
responses are considered correct. For process-based approaches, the mistakes in response 2
can be considered in reward modeling.

Figure 10.11 shows two LLM outputs for an example math problem. Although the LLM
gives the correct final answer in both cases, it makes mistakes during the problem-solving
process in the second output. Outcome-based approaches overlook these mistakes and give
positive feedback for the entire solution. By contrast, process-based approaches can take these
mistakes into account and provide additional guidance on the detailed reasoning steps.

An important issue for process-based approaches is that we need to get step-level feedback
during a (potentially) long reasoning path. We can collect or generate reasoning paths corre-
sponding to problems from existing datasets. Human experts then annotate each step in these
paths for correctness. These annotations can be used to directly train LLMs or as rewards in
reward modeling. However, in practice, richer annotations are often introduced [Lightman
et al., 2024]. In addition to the correct and incorrect labels, a step can also be labeled as
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neutral to indicate that while the step may be technically correct, it might still be problematic
within the overall reasoning process. Furthermore, to improve the efficiency of data annotation,
techniques such as active learning can be employed. Identifying obvious errors usually does
not significantly contribute to learning from reasoning mistakes. Instead, annotating steps that
the model confidently considers correct but are actually problematic is often more effective.

Given a set of step-level annotated reasoning paths and corresponding inputs, we can train
a reward model to provide feedback for supervising policy learning. The reward model can be
treated as a classification model, and so its architecture can be a Transformer decoder with a
Softmax layer stacked on top. At step k, the reward model takes both the problem description
(denoted by x) and the reasoning steps generated so far (denoted by ȳ≤k) as input and outputs
a probability distribution over the label set {correct, incorrect} or {correct, incorrect,neutral}.
Then the learned reward model is used to evaluate reasoning paths by assessing the correctness
of each step. A simple method to model correctness is to count the number of steps that are
classified as correct, given by

r(x,y) =

ns∑
k=1

δ(correct,C(x, ȳ≤k)) (10.83)

where C(x, ȳ≤k) denotes the label with the maximum probability. We can also use log-
probabilities of classification to define the reward of the entire path

r(x,y) =

ns∑
k=1

logPr(correct|x, ȳ≤k) (10.84)

where Pr(correct|x, ȳ≤k) denotes the probability of the correct label generated by the reward
model. The reward score r(x,y) can then be used to train the policy in RLHF as usual.

While we restrict our discussion to math problems, the approaches described here are
general and can be applied to a wide variety of tasks that involve multi-step reasoning and
decision-making. Moreover, we can consider various aspects when assessing the quality of a
step, rather than just its correctness. For example, in dialogue systems, responses must not
only be accurate but also contextually appropriate across multiple turns of conversation. If a
model provides a correct response but fails to maintain coherence in the context of the ongoing
dialogue, step-level feedback could help the model identify and correct such discrepancies.
Also note that the process-based approaches are related to the fine-grained reward modeling
approaches discussed in Section 10.4.1. All these approaches essentially aim to provide more
detailed supervision to LLMs by breaking their outputs into smaller, more manageable steps.
However, process-based feedback focuses more on evaluating the correctness of a step based
on its preceding steps, while the approaches in Section 10.4.1 emphasize evaluating each step
independently.

The idea of aligning LLMs step by step has great application potential, especially consider-
ing the recent shift towards more complex reasoning tasks in the use of LLMs. For example,
both the GPT-o1 and GPT-o3 models are designed with more advanced reasoning techniques
(such as long internal CoT) to solve challenging problems like scientific and mathematical
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reasoning [OpenAI, 2024]. These tasks often rely on long and complex reasoning paths, and
therefore, it seems essential to introduce detailed supervision signals in the reasoning process.
Moreover, from a practical perspective, effective supervision on long reasoning paths not
only improves reasoning performance, but it also helps the model eliminate redundant or
unnecessary reasoning steps, thereby reducing reasoning complexity and improving efficiency.

10.4.5 Inference-time Alignment

In this section we explored a variety of methods to align models with human preferences
and annotations. However, one of the significant limitations of many such methods is that
LLMs must be fine-tuned. For RLHF and its variants, training LLMs with reward models can
be computationally expensive and unstable, leading to increased complexity and costs when
applying these approaches. In this case, we can consider aligning models at inference time,
thus avoiding the additional complexity and effort involved.

One simple way to achieve inference-time alignment is to use the reward model to select
the best one from N alternative outputs generated by the LLM, a method known as Best-of-N
sampling (BoN sampling). We can consider BoN sampling as a form of reranking. In fact,
reranking methods have been widely used in NLP tasks, such as machine translation, for a long
time. They are typically applied in situations where training complex models is costly. In such
cases, directly reranking the outputs allows for the incorporation of these complex models at a
very low cost8.

In the BoN sampling process, the LLM takes the input sequence x and generates N
different output sequences {ŷ1, ..., ŷN}:

{ŷ1, ..., ŷN} = argTopN
y

[Pr(y|x)] (10.85)

where the argTopN operation returns the top-N outputs that maximize the function Pr(y|x).
These outputs can be generated in a variety of ways, depending on the search algorithm used by
the model (e.g., sampling or beam search). Once the N -best output candidates are generated,
the reward model is used to evaluate and select the best one:

ŷbest = max{r(x, ŷ1), ..., r(x, ŷN )} (10.86)

It is worth noting that the result of BoN sampling is also influenced by the diversity of
the N -best list. This is a common issue with most reranking methods. Typically, we wish the
N -best output candidates to have relatively high quality but be sufficiently different from each
other. In many text generation systems, the N -best outputs are very similar, often differing by

8Reranking methods can also help us explore what are known as model errors and search errors, although these
issues are not often discussed in the context of LLMs. For example, suppose we have an old model and a new,
more powerful model. We can use the new model to select the best output from the N -best list of the old model
as the oracle output. The performance difference between the oracle output and the top-1 output of the original
N -best list reflects the performance gain brought by the new model. If the performance gain is significant, we can
say that the old model has more model errors. If the gain is small, it may indicate that the issue lies in search errors,
as the best candidates were not found.
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just one or two words. The diversity issue is even more challenging in LLMs, as the N -best
outputs generated by an LLM can be different in their wordings, yet their semantic meanings
are often quite similar. In practice, one can adjust the model hyperparameters and/or adopt
different LLMs to generate more diverse output candidates for reranking. Nevertheless, as with
many practical systems, we need to make a trade-off between selecting high-quality candidates
and ensuring sufficient variation in the generated outputs.

BoN sampling can be used for training LLMs as well. A closely related method is rejection
sampling. In this method, we first select the “best” outputs from the N -best lists via the reward
model, and then take these selected outputs to fine-tune the LLM. In this way, we can introduce
human preferences into the training of LLMs via a much simpler approach compared to RLHF.
Many LLMs have adopted rejection sampling for fine-tuning [Nakano et al., 2021; Touvron
et al., 2023b].

10.5 Summary
In this chapter, we have explored a range of techniques for aligning LLMs. In particular, we
have discussed fine-tuning methods that enable LLMs to follow instructions and align them
with human preferences. One of the benefits of fine-tuning LLMs is computation efficiency.
Unlike pre-training based on large-scale neural network optimization, fine-tuning is a post-
training step and so is less computationally expensive. Moreover, it is better suited to address
problems that are not easily solved in pre-training, such as human value alignment. The
widespread attention to the alignment issue has also led to a surge of research papers on this
topic, which has posed challenges in writing this chapter, as it is difficult to cover all the
latest techniques. However, we have tried to provide a relatively detailed introduction to the
fundamental approaches to alignment, such as instruction fine-tuning and RLHF.

While we have focused on LLM alignment techniques in this chapter, the term AI alignment
is a wide-ranging concept. It generally refers to the process of ensuring that the behavior of an
AI system aligns with human values, goals, and expectations. The idea of AI alignment can be
traced back to the early days of AI. A widely cited description of AI alignment comes from
an article by the mathematician and computer scientist Norbert Wiener [Wiener, 1960]. The
quote is as follows

If we use, to achieve our purposes, a mechanical agency with whose opera-
tion we cannot efficiently interfere ... we had better be quite sure that the
purpose put into the machine is the purpose which we really desire.

At that time, AI alignment was a distant concern for researchers. But today, it greatly
influences the design of various AI systems. For example, in robotics, alignment is critical
to ensuring that autonomous robots safely interact with humans and their environments. In
autonomous driving, cars must not only follow traffic laws but also make complex, real-time
decisions that prioritize human safety, avoid accidents, and navigate ethical dilemmas.

In current AI research, alignment is usually achieved by developing a surrogate objective
that is analogous to the real goal and steering the AI system towards this objective. However,
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designing the objective of AI alignment is very difficult. One reason is that human values are
diverse and often context-dependent, making it difficult to distill them into a single, universally
applicable objective function. Also, the complexity of real-world environments, where values
and goals often conflict or evolve over time, further complicates alignment efforts. Even if
we could define an appropriate objective, AI systems may find unintended ways to achieve it,
leading to “misaligned” outcomes that still technically satisfy the objective but in a harmful or
counterproductive way.

These challenges have motivated and are motivating AI research towards more aligned
systems, either through developing new mechanisms for perceiving the world or more efficient
and generalizable methods to adapt these systems to given tasks. More importantly, as AI
systems become more powerful and intelligent, especially given that recent advances in LLMs
have shown remarkable capabilities in dealing with many challenging problems, the need for
AI alignment has become more urgent. Researchers have started to be concerned with AI
safety and warn the community that they need to develop and release AI systems with great
caution to prevent these systems from being misaligned [Russell, 2019; Bengio et al., 2024].
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Chapter 11

Inference

Once we have pre-trained and fine-tuned an LLM, we can apply it to make predictions on
new data. This process is called inference, in which the LLM computes the probabilities of
different possible outputs given an input, and selects the output that maximizes the probability.
The inference problem is generally expressed in the following form:

ŷ = argmax
y

Pr(y|x) (11.1)

where x is the input sequence, y is a possible output sequence, and ŷ is the best output
sequence.

This is perhaps one of the most widely adopted formulas in NLP, and dates back to the early
days of speech recognition and machine translation systems based on probabilistic models.
Although for some applications, such as predicting a token using a very small language
model, solving this optimization problem seems trivial, for most situations the computational
challenges arise from both calculating Pr(y|x) and performing the argmax operation. The
problems we therefore wish to address in this chapter involve: 1) computing the prediction
probability efficiently given a trained LLM, and 2) devising an efficient (suboptimal) search
for ŷ.

At a high level, these are fundamental issues in artificial intelligence, which have been
extensively studied. So many well-established techniques can be directly applied, for example,
one can use greedy search algorithms to implement an efficient inference system. On the other
hand, model-specific optimizations, such as efficient attention models for Transformers, can be
considered to further improve efficiency. But, in many practical applications, we still need to
make a trade-off between accuracy and efficiency, by carefully combining various techniques.

The importance of the inference problem in LLMs also lies in the fact that many application
scenarios require processing extremely long sequences. Recent studies have found that injecting
additional prompts and contextual information, such as long chain-of-thought prompts, during
inference can significantly improve the performance of LLMs. This provides a new approach
to scaling LLMs: better results can be achieved by increasing the compute at inference time.
For instance, through inference-time scaling, OpenAI [2024]’s o1 and Deepseek [2025]’s R1

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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systems have demonstrated impressive performance on complex reasoning and programming
tasks. This, in turn, has encouraged the NLP field to focus more on the issue of efficient
inference.

In this chapter, we will introduce basic concepts and algorithms of LLM inference, includ-
ing prefilling-decoding frameworks, search (decoding) algorithms, and evaluation metrics of
inference performance. We will then present methods for improving the efficiency of LLM
inference, covering a range of techniques for speeding up the system and compressing the
model. Finally, we will discuss inference-time scaling, which is considered an important
application of inference optimization.

11.1 Prefilling and Decoding
In this section, we present the prefilling-decoding framework, which is the most commonly
used for interpreting and implementing LLM inference processes. We first introduce the
notation and background knowledge, and then describe the details of the framework, such as
the decoding algorithms for LLM inference.

11.1.1 Preliminaries
Although we have described LLMs many times in this book, we begin by briefly defining the
notation to facilitate the subsequent discussion, and to make this chapter self-contained.

x: The input token sequence. It is conceptually equivalent to a “prompt”,
which includes instructions, user inputs, and any additional context
intended as input to the LLM. x comprises m+1 tokens, denoted by
x0...xm, where x0 is the start symbol ⟨SOS⟩.

y: The output token sequence, also called the response to the input. y

comprises n tokens, denoted by y1...yn.

y<i: The output tokens that precede position i, that is, y<i = y1...yi−1.

Pr(y|x): The probability of generating y given x using the LLM. If the LLM is
parameterized by θ, we can write it as Prθ(y|x).

[x,y]: The concatenated token sequence of x and y. That is, [x,y] =

x0...xmy1...yn. Occasionally, we use the notation seqx,y to represent
[x,y].

Pr([x,y]): The probability of generating the token sequence [x,y] using the LLM.

As described in Eq. (11.1), the goal of LLM inference is to maximize Pr(y|x). Modeling
this conditional probability is common in NLP. At first glance, it seems to be a sequence-
to-sequence problem, where we transform a sequence into another using encoding-decoding
models. However, we are not discussing sequence-to-sequence problems or encoding-decoding
architectures. Instead, as discussed in earlier chapters, this modeling problem can be addressed
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by using decoder-only models. To do this, we can interpret the log-scale probability logPr(y|x)
as the difference between logPr([x,y]) and logPr(x)

logPr(y|x) = logPr([x,y])− logPr(x) (11.2)

where logPr([x,y]) and logPr(x) can be obtained by running the LLM on the sequences
[x,y] and x, respectively. For example, we can calculate the probability of generating x using
the chain rule

logPr(x) = logPr(x0...xm)

= log
[
Pr(x0)Pr(x1|x0) · · ·Pr(xm|x0...xm−1)

]
= logPr(x0)︸ ︷︷ ︸

=0

+

m∑
j=1

logPr(xj |x<j)

=
m∑
j=1

logPr(xj |x<j) (11.3)

In other words, we calculate the token prediction log-probability at each position of x, and
sum all these log-probabilities.

In common implementations of LLMs, however, we do not need to compute the log-
probability of the input sequence, but use the LLM to directly compute the log-probability of
the output sequence in the following form

logPr(y|x) =
n∑
i=1

logPr(yi|x,y<i) (11.4)

where [x,y<i] represents the context for predicting yi. We use Pr(yi|x,y<i) to denote
Pr(yi|[x,y<i]), following the commonly used notation in the literature.

Now, we have two sub-problems in addressing the inference issue described in Eq. (11.1):

• Model Computation: we model Pr(yi|x,y<i) and compute it in an efficient manner.

• Search: we find the optimal (or sub-optimal) output sequence in terms of logPr(y|x).

The second sub-problem is a classic issue in NLP. We will show in Section 11.1.3 that
there are several well-studied algorithms that can be applied to efficiently search the space
of possible output sequences. The first sub-problem requires a language model to produce a
distribution over a vocabulary V given a sequence of context tokens. We can do this by training
a Transformer decoder, which outputs the distribution

Pr(·|x,y<i) = Softmax(HWo)m+i (11.5)

H = Dec([x,y<i]) (11.6)

Here Dec(·) produces a sequence of representations, each corresponding to a position of the
input sequence. So, if we input [x,y<i] to the LLM, H is an i′× d matrix, where d is the
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x0 x1 · · · xm y1 · · · yi−1

Embedding Layer

decoder output

· · · · · ·

Linear Mapping

· · · · · ·

· · · · · ·

FFN

Self-attention L layers

Softmax Layer

· · · · · ·

Pr(·|x) Pr(·|x,y1) · · · Pr(·|x,y<i)

Figure 11.1: The decoder-only architecture for LLMs. The decoder consists of an embedding
layer and a stack of Transformer layers. In each Transformer layer, the input passes through a
linear mapping, a self-attention network, and an FFN. The output of the decoder is a sequence
of representations that are taken as input to a Softmax layer, which generates a distribution of
tokens for each position.

dimensionality of each representation, and i′ =m+ i is the number of context tokens. We
can then use a Softmax layer to transform these representations into distributions of tokens.
Wo ∈ Rd×|V | is the linear mapping matrix of the Softmax layer, and HWo transforms the
d-dimensional representations in H into the |V |-dimensional representations. The use of the
subscript m+ i indicates that the Softmax function is performed only on the representation at
position m+ i. See Figure 11.1 for an illustration of this architecture.

Dec(·) is a Transformer decoding network that consists of an embedding network and
a number of stacked self-attention and FFN networks. We will not discuss Transformers in
detail here, as readers can easily learn about these models from the literature. However, it is
worth pointing out that the difficulty of inference is in part from the use of the self-attention
mechanism in Transformers. Recall that a general form of single-head self-attention is given
by

Attqkv(qi′ ,K,V) = Softmax(
qi′K

T

√
d

)V (11.7)

where qi′ ∈ Rd is the query at the position i′ (i.e., position of yi ), and K and V ∈ Ri′×d are
the keys and values up to i′, respectively.

At each step during inference, we call the self-attention function Attqkv(·), followed by
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an FFN, to generate a d-dimensional representation that integrates information from both the
current token and its left context. This process is repeated through L layers of self-attention
and FFN, forming a stack of Transformer layers. The output of the L-th layer in this stack is
the final representation.

Each time, the model attends position i′ to all previous positions, which results in 2i′

vector products (i′ times for qi′KT and i′ times for the product of Softmax(
qi′K

T
√
d

) and V).
Hence, generating a sequence of length len has a time complexity of O(L× len2) for the
self-attention network. Clearly, the inference of this model is slow for long sequences due to
its quadratic time complexity with respect to sequence length. Therefore, many improvements
to Transformers and alternative models have focused on efficient methods that are faster than
this quadratic time complexity, such as sparse attention mechanisms and linear-time models. A
detailed discussion of efficient Transformers can be found in the previous chapters, and this
section will focus on the standard Transformer architecture.

Note that in self-attention, the queries, keys, and values of a layer are linear mappings
from the same input (i.e., the output of the previous layer). Once a new key-value pair is
generated, it is repeatedly used in subsequent inference steps. Rather than regenerating these
key-value pairs during inference, a more desirable way is to store them in a structure, called
the key-value cache, or the KV cache. Thus, (K,V) can straightforwardly be considered a
KV cache. This cache is updated as follows

K = Append(K,ki′) (11.8)

V = Append(V,vi′) (11.9)

where (ki′ ,vi′) is the newly generated key-value pair at position i′, and Append(a,b) denotes
a function that appends a row vector b to a matrix a. Figure 11.2 shows how a Transformer
decoder works with a KV cache.

Finally, the process of computing logPr(y|x) is summarized as follows:

1. We concatenate x and y into a sequence [x,y]. For each position i′ of this sequence, we
perform the following steps.

(a) We compute the embedding of the token at position i′, and feed the resulting
embedding as an initial representation into the stack of Transformer layers.

(b) In each Transformer layer, we pass the input representation through the self-
attention network first and then through an FFN. In the self-attention network, the
input representation is transformed into qi′ , ki′ , and vi′ . Then, we update the KV
cache (K,V) using ki′ and vi′ (see Eqs. (11.8-11.9)). Then, we compute the
output of the attention model by attending qi′ to (K,V) (see Eq. (11.7)).

(c) If i′ >m (i.e., i = i′−m ≥ 0), we take the output of the Transformer stack and
compute the token prediction probability Pr(yi|x,y<i) via the Softmax layer (see
Eq. (11.5)).

2. When reaching the end of the sequence, we obtain logPr(y|x) by summing logPr(yi|x,y<i)
over i ∈ [1,n] (see Eq. (11.4)).
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(a) Updating the KV Cache at Position i′
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(b) Updating the KV Cache at Position i′+1

Figure 11.2: Illustration of the KV cache. We update the KV cache at a position, perform the
attention operation, and then move to the next position to repeat the process.
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11.1.2 A Two-phase Framework

As we have seen, language modeling is a standard autoregressive process, where each token is
generated one at a time, conditioned on the previous tokens. For Transformers, this requires the
model to maintain a KV cache that stores past representations, and attend the newly generated
representation to this KV cache. If we think of the model Pr(y|x) from the perspective of
computing the KV cache, it is natural to divide inference into two phases:

• Prefilling. The prefilling phase computes the KV cache for the input sequence x. It
is called prefilling because the model prepares and stores the key-value pairs for each
token in the input before the actual inference begins. The process of prefilling in an
LLM can be expressed as

cache = Deckv(x) (11.10)

where Deckv(·) is the decoding network (i.e., the same as Dec(·)), but it returns the KV
cache in self-attention instead of the output representations. cache is a list, given by

cache = {cache1, ...,cacheL} (11.11)

where cachel represents the key-value pairs for the l-th layer.

• Decoding. The decoding phase continues generating tokens based on the KV cache, as
illustrated in Figure 11.2. When a new token is input into the decoder, we update the KV
cache in each layer by adding the new key-value pair. The updated cache is then used
for self-attention computation. The token generation stops when some stopping criterion
is met, such as when the generated token is the end symbol. The goal of decoding is to
find the best predicted sequence, which is given by

ŷ = argmax
y

Pr(y|cache) (11.12)

Here we use Pr(y|cache) instead of Pr(y|x) to emphasize that the decoding process
actually relies on the KV cache rather than x.

The prefilling and decoding processes are illustrated in Figure 11.3. Note that both these
processes are autoregressive. However, as shown in Table 11.1, they differ in several aspects,
which lead to very different implementations in practice.

In essence, while the underlying model of prefilling is based on token prediction, it can
be considered an encoding process. This is because our goal is not to generate tokens, but to
build a context representation (i.e., the KV cache) for the subsequent steps in the decoding
phase. In this sense, it is similar to BERT, where we encode the input sequence into a sequence
of contextualized token representations. On the other hand, unlike BERT which generates
bidirectional sequence representations, prefilling is based on standard language modeling tasks,
and is thus unidirectional. Note that, since the entire sequence x is input into the model all
at once, all queries can be packed together and the self-attention operation is performed on x
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Prefilling Decoding

Goal Set up initial context x. Continue generating tokens
y after the initial input.

All-at-once Visibility Tokens in x are presented
all at once.

Tokens in y are presented
sequentially, that is,
predicting a token requires
waiting for the previous
tokens to be predicted first.

Context Use Build the context or
encoded representation of
the input.

Use the cached key-value
pairs (from prefilling) to
generate further tokens.

Resource Limitation Compute-bound Memory-bound

Computational Cost High Very High

Table 11.1: Prefilling vs Decoding.

in parallel. Let Q be the queries that are packed into one matrix. The self-attention model in
prefilling can be defined as

Attqkv(Q,K,V) = Softmax(
QKT

√
d

+Mask)V (11.13)

where Q,K,V ∈ Rd×(m+1). Mask ∈ R(m+1)×(m+1) is a mask that ensures that each token
only attends to itself and the tokens that precede it in the sequence. It is represented by setting
the values in the mask corresponding to future tokens to a large negative number, for example,
for the query qi and the key kj , we set the value of the entry (i, j) to −∞ if i < j. One
advantage of processing the sequence with a single self-attention computation is that we can
make better use of the parallel computing capabilities of modern GPUs, and so speed up
prefilling. In general, the prefilling process is considered compute-bound. This is because
merging multiple computational operations into one operation reduces the number of data
transfers and the performance bottleneck usually comes from the computational capacity rather
than memory bandwidth.

Decoding is a standard left-to-right text generation process. The token sequence is gener-
ated autoregressively by predicting one token at a time based on the KV cache. Each time a new
token is generated, we need to attend it to previous tokens, following Eq. (11.7). Therefore,
the decoding process is memory-bound due to its frequent access to the KV cache. The cost
of decoding grows significantly as more tokens are generated. In most cases, decoding is
computationally more expensive than prefilling. Note that this is not just because, in decoding,
the LLM generates tokens one by one and repeatedly updates the KV cache. As we will see in
the following subsection, we may need to explore multiple different token sequences during
decoding, which makes the problem more complex and increases its cost further.
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Figure 11.3: Illustration of the prefilling and decoding processes. In prefilling, the entire input
sequence is processed together and the KV cache is filled. In decoding, the LLM generates the
output sequence step by step based on the prefilled KV cache.
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11.1.3 Decoding Algorithms

So far our discussion of LLM inference has primarily focused on the model computation
problem, that is, how to compute Pr(y|x). Now we turn to the discussion of the search
problem. The problem can be stated as: given an LLM Pr(y|x), how do we efficiently search
for the best output sequence ŷ given the input sequence x (or the generated KV cache)?
Naively, we can consider all of the output sequences, compute the prediction probability for
each, and then select the output sequence having the highest probability. This method can
guarantee the globally optimal solution, but direct exhaustive search is impractical for LLMs
as the number of possible output sequences grows exponentially with the length of y.

In practice, various heuristic search algorithms, such as greedy search and sampling-based
search, are commonly employed to approximate the solution. Each of these methods offers
trade-offs between search quality and computational efficiency. The search problem, therefore,
becomes a balancing act between exploration and exploitation, where the goal is to find an
efficient strategy that produces high-quality outputs without exploring the entire space.

Before giving a more detailed discussion of these methods, let us first informally define
what a search space is and how it is represented. In LLM inference, we define a hypothesis as a
tuple of input and output sequences. Since x is fixed during inference, we can simply consider
each hypothesis as an output sequence. The search space, denoted by Y , is then the set of all
possible hypotheses (i.e., output sequences) that the model can generate. The search problem
for LLM inference can be re-expressed as

ŷ = argmax
y∈Y

Pr(y|x) (11.14)

In NLP, Y is commonly represented in a tree data structure to facilitate search. Figure
11.4 shows an example of the search tree resulting from a small vocabulary. In this example,
a node represents a prefix subsequence that can be shared by many sequences. The search
starts with the root of the tree, which can be regarded as the beginning of all sequences that
can be generated1. Each child node extends the prefix of its parent node by adding one token
from the vocabulary to the sequence, along with the probability of predicting the token given
the prefix. This process continues as each node further branches out into additional child
nodes, each representing a new possible extension of the sequence with another token. The
search tree thus grows deeper and wider, representing an ever-increasing number of potential
sequences as more tokens are appended. This structure allows us to efficiently traverse through
possible sequences, evaluating each in terms of the log-probability accumulated over the path
from the root to that node. For example, in Figure 11.4, the path from the root to the node
17 corresponds to the output sequence “Cats are playful.”. The prediction log-probability
logPr(y|x) is the sum of the log-probabilities of all the nodes on this path.

In general, the search tree is organized as levels, where each level consists of all nodes that
are the same distance from the root node. Thus, a breadth-first search over the tree essentially
performs left-to-right generation of tokens. Nodes in the same level correspond to sequences

1Here, since the predictions in LLMs are based on x, we can think of the root as a representation of x.
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Figure 11.4: A search tree for decoding. At each node, we expand the tree by considering all
possible tokens, each leading to a new node representing a potential continuation of the text.
Here we highlight a path through nodes 0, 3, 9, 11, and 17. The path represents the output
sequence “cats are playful.”, whose log-probability can be computed by accumulating the
log-probabilities of these nodes.

of the same length. As the search progresses, new tokens are appended to these sequences,
expanding them incrementally.

Let Yi be the set of the sequences that the LLM generates at step i. Yi can be obtained by
expanding each sequence in Yi−1 with all possible next tokens in the vocabulary V , given in
the following recursive form

Yi = Yi−1×V (11.15)

where Yi−1×V denotes the Cartesian product of Yi−1 and V (i.e., each sequence in Yi−1 is
concatenated with each token in V ). Note that if a sequence in Yi−1 is complete (e.g., ending
with the ⟨EOS⟩ token), it will not be expanded any further. Let Ψ(Yi) be the set of all complete
sequences in Yi. Then, the search space can be expressed as

Y = Ψ(Y1)
⋃

Ψ(Y2)
⋃
· · ·
⋃

Ψ(Ynmax) (11.16)

where nmax is the maximum length of a sequence.

Most decoding algorithms follow this level-by-level search process. However, Y consists
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of an exponentially large number of sequences, and a direct search in such a vast space is
computationally infeasible. Therefore, practical decoding algorithms often rely on strategies
to prune the search space and avoid exploring low-quality sequences. For example, at each
decoding step, Yi can be obtained in the following way

Yi = Prune(Yi−1×V ) (11.17)

where Prune(·) is a function that selectively removes sequences less likely to result in high-
quality outcomes. In general, we expect that |Yi| << |Yi−1| · |V |. Thus we can drastically
reduce the number of sequences under consideration at each step, ensuring that the computa-
tional load does not grow exponentially with the sequence length.

Next, we will introduce these decoding algorithms. Some of them have already been
discussed in sequence-to-sequence models (see Chapter 5), while others are more commonly
used in LLMs.

1. Greedy Decoding

Greedy search (or greedy decoding) is one of the most widely used decoding methods in NLP,
particularly in text generation tasks like machine translation. The idea behind greedy search
is straightforward: at each step in generation, it selects the next token that has the highest
prediction probability. For each sequence y = y1...yi ∈ Yi−1×V , we can evaluate it using
logPr(y|x). This log-probability can be easily computed by noting that

logPr(y|x) = logPr(y1...yi|x)
= logPr(y<i|x)︸ ︷︷ ︸

accumulated up to the parent node

+ logPr(yi|x,y<i)︸ ︷︷ ︸
newly computed for the current node

(11.18)

Here the first term is the sum of the log-probabilities of the path from the root to the parent
node, which has been computed in the previous decoding steps. At step i, we only need to
compute the second term which is the standard token prediction log-probability produced by
the LLM.

The “best” token at step i is then chosen as

ytop1i = argmax
yi∈V

logPr(y1...yi|x)

= argmax
yi∈V

[
logPr(y<i|x)︸ ︷︷ ︸

fixed wrt. yi

+logPr(yi|x,y<i)
]

= argmax
yi∈V

logPr(yi|x,y<i) (11.19)

Thus, the “best” sequence generated up to step i is given by

ytop1 = y1...yi−1y
top1
i (11.20)
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Finally, Yi contains only this sequence

Yi = {ytop1} (11.21)

The greedy choice in one decoding step is illustrated in Figure 11.5 (a). Greedy search
offers computational efficiency and simplicity in implementation for LLM inference. Its
primary disadvantage, however, lies in its suboptimal nature — high-quality sequences are
likely pruned at early stages of decoding. Therefore, greedy search is appealing for tasks that
demand speed and simplicity. For tasks that require better search results, alternative strategies
such as beam search, which explores multiple potential paths simultaneously, are preferable.

2. Beam Decoding

Beam search (or beam decoding) is a natural extension of greedy search. Instead of selecting
the single most probable token at each step, beam search maintains a fixed number of the best
candidates at each step, known as the “beam width”. See Figure 11.5 (b) for an illustration of
beam search.

Let K be the beam width. Given a parent node, which corresponds to the prefix y1...yi−1,
we can select the top-K next tokens by

{ytop1i , ...,ytopKi } = argTopK
yi∈V

Pr(yi|x,y<i) (11.22)

where argTopK is a function that ranks the prediction probabilities of all possible next tokens
and selects the top K candidates. Given these tokens, the top-K sequences for step i are given
by

ytop1 = y1...yi−1y
top1
i (11.23)

...

ytopK = y1...yi−1y
topK
i (11.24)

Then, we can define Yi as

Yi = {ytop1, ...,ytopK} (11.25)

We can adjust the beam widthK to balance search efficiency and accuracy. But a very large
beam width might not be helpful. In many practical applications, selecting a relatively small
number for K, such as K = 2 or K = 4, is often sufficient to achieve satisfactory performance
in LLM inference.

3. Sampling-based Decoding

Both greedy and beam search generate deterministic outputs, that is, given an LLM, the output
of the model will always be the same every time it processes the same input. The deterministic
nature of greedy and beam search ensures predictability and reliability in applications where
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Figure 11.5: Illustrations of greedy decoding, beam decoding, top-k decoding and top-p
decoding methods (in one decoding step).
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consistent outcomes are critical, such as in formal document generation, where varying outputs
could cause confusion or errors. On the other hand, one disadvantage of these methods is
the lack of diversity and flexibility. For example, in creative tasks like story generation or
conversational agents, generic or repetitive outputs generated by deterministic systems are
often less engaging.

To add variation into LLM outputs, we can use sampling-based decoding methods. There
are two commonly used methods.

• Top-k Sampling. This method selects the next token from the top-k most likely candi-
dates at each step of the generation process [Fan et al., 2018]. Let V i be the selection
pool for top-k sampling. We can define it as

V i = {ytop1i , ...,ytopki } (11.26)

where {ytop1i , ...,ytopki } are the top-k tokens selected based on their prediction prob-
abilities (see Eq. (11.22)). Once the selection pool is determined, we recompute the
prediction probability distribution over V i. One of the simplest ways to do this is to
renormalize their probabilities:

Pr(yi|x,y<i) =
Pr(yi|x,y<i)∑

yj∈V i
Pr(yj |x,y<i)

(11.27)

Alternatively, we can calculate the distribution by using the Softmax function:

Pr(yi|x,y<i) =
exp(uyi)∑

yj∈V i
exp(uyj )

(11.28)

where uyi is the logit for token yi. Then, we sample a token ȳi from this distribution:

ȳi ∼ Pr(yi|x,y<i) (11.29)

The corresponding sequence is ȳ = y1...yi−1ȳi, and Yi is given by

Yi = {ȳ} (11.30)

• Top-p Sampling. This sampling method, also known as nucleus sampling, follows
a procedure similar to that of top-k sampling. Instead of drawing from a fixed size
candidate pool, it selects the next token from the smallest set of tokens that together have
a cumulative probability higher than a predefined threshold p [Holtzman et al., 2020b].
In this way we prevent the prediction from choosing from low-probability tokens in the
long tail that could lead to incoherent or nonsensical outputs. To obtain the candidate
pool in the top-p sampling method, we can sort all tokens by their predicted probabilities.
Then, starting with the token with the highest probability, we continue to add tokens to
the candidate pool until the cumulative probability of the tokens in the pool reaches or
exceeds p (we denote the size of the candidate pool at this point as kp). The candidate
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(a) β = 0.1 (b) β = 0.8 (c) β = 2.0

Figure 11.6: Histogram estimates of the distributions generated by the Softmax function with
different values of the temperature parameter β.

pool can then be expressed as

V i = {ytop1i , ...,y
topkp
i } (11.31)

The subsequent steps, such as the renormalization of the distribution and sampling, are
the same as in the top-k sampling method (see Eqs.(11.27-11.30)).

See Figure 11.5 (c-d) for illustrations of the top-k and top-p sampling methods. By limiting
the choices to a smaller set of high-probability tokens, these methods strike a balance between
randomness and coherence. They allow for more diverse outputs while still maintaining a
reasonable level of relevance and fluency. However, the value of k or p must be carefully
chosen: if k or p is too small, the output may still be overly deterministic (more like greedy
decoding), and if k or p is too large, the LLM might produce degenerate outputs.

In order to further control the randomness of the token selection process, the renormalized
distribution Pr(·) is typically obtained by using the Softmax function with the temperature
parameter, given by

Pr(yi|x,y<i) =
exp(uyi/β)∑

yj∈V i
exp(uyj/β)

(11.32)

Here β is a temperature parameter β that controls the sharpness of the probability distribution
derived from logits. In Figure 11.6, we show simple examples involving distributions generated
by the above function with different temperatures. When the temperature is set to a higher
value, the resulting probability distribution becomes more uniform, as the differences between
the logits are diminished. This means that each token in the candidate pool has a more equal
chance of being selected, leading to greater diversity in the generated output. By contrast,
when the temperature is set to a lower value, the distribution becomes sharper, making the high-
probability tokens even more likely to be chosen, which often results in more deterministic
outputs. For example, if we set p to 1 and β to a very small number (approaching zero), the
top-p sampling method will become equivalent to the greedy search method.

4. Decoding with Penalty Terms

One common improvement to decoding methods in text generation is to modify the search
objective. For example, one can replace maximum a posteriori (MAP) decoding with minimum
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Bayes risk (MBR) decoding [Kumar and Byrne, 2004b], where the focus shifts from selecting
the single most probable output to choosing an output that minimizes the expected risk over a
distribution of possible outputs. More details on MBR decoding can be found in Chapter 5.
Here we explore methods that incorporate penalty terms into decoding. These methods offer a
simple but effective way to make decoding more controllable.

Recall from Eq. (11.14) that the goal of decoding is to maximize the likelihood of the
output sequence. With penalty terms, the objective is extended to include additional factors
that penalize or reward certain behaviors in the generated text. A general form of the new
objective is given by

ŷ = argmax
y∈Y

[
Pr(y|x)−λ ·Penalty(x,y)

]
(11.33)

where Penalty(x,y) is a function that quantifies the degree to which the generated sequence
y violates certain constraints or exhibits undesirable behaviors given the input x. The design
of Penalty(·) is very flexible, thus allowing us to incorporate a wide range of constraints or
prior knowledge into it. Below, we present some common types of penalty functions.

• Repetition Penalty. A repetition penalty discourages the model from generating repeti-
tive or redundant text. The penalty function might measure the frequency of repeated
tokens or phrases in the generated sequence and impose a penalty proportional to their
occurrence.

• Length Penalty. A length penalty ensures that the generated sequence adheres to a
desired length. For example, in text summarization tasks, the penalty function could
penalize outputs that are too short or too long.

• Diversity Penalty. A diversity penalty promotes variation in the generated text. For
example, in beam search, we can measure the similarity between generated hypotheses,
and encourage the model to explore different hypotheses.

• Constraint-based Penalty. A constraint-based penalty enforces specific constraints
related to the content or style of the generated text. For example, in machine transla-
tion, the penalty function could penalize outputs that deviate from a desired tone or
terminology.

In general, we can consider Penalty(x,y) as a function that defines the cost of generating
the surface form of the output sequence y given the input sequence x. Alternatively, this
function can be defined to assess the hidden states of an LLM when generating y. For example,
Su et al. [2022] develop a penalty term that calculates the maximum distance between the
representation of the predicted token and the representations of the previously generated tokens.
Therefore, the search objective will penalize degenerated outputs, such as texts with many
repetitions.

The method described in Eq. (11.33) is general and can be easily adapted to different search
algorithms. For example, in greedy search, we can keep the single sequence that maximizes
Pr(y|x)−λ ·Penalty(x,y) at each decoding step; in sampling-based search, we can rank and
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select the top-ranked sequences based on Pr(y|x)−λ ·Penalty(x,y) to form the candidate
pool.

5. Speculative Decoding

Speculative decoding stems from the concept of speculative execution, where a system
makes educated guesses about future actions and performs them in advance. If the guess is
correct, the results are immediately available, which speeds up processing. In the case of LLM
inference, suppose we have two models. One is a smaller, faster model (called draft model),
and the other is the full, more accurate model (called verification model). These two models
represent two baselines in LLM inference: the draft model is efficient but not very accurate;
the verification model is usually the one we want to run, but it is very slow. Given a prefix,
we first use the draft model to speculatively predict a sequence of likely future tokens. This
is a standard autoregressive decoding process, but it is still fast in practice due to the high
efficiency of the draft model. Then, the verification model evaluates the speculated tokens in
parallel. It checks whether the predicted tokens are correct or need to be adjusted. Note that,
since we can deal with these tokens all at once, the verification can be done in a single step for
all the tokens simultaneously, rather than in a token-by-token manner. If the speculated tokens
are correct, they are accepted, and the process continues with the next set of tokens. If they
are incorrect, the incorrect speculations are discarded, and the verification model is used to
generate the correct tokens.

To be more specific, let us see the speculative decoding method presented in Leviathan
et al. [2023]’s work. In this method, the draft model is a small language model, denoted by
Prq(yi|x,y<i), while the verification model is a normal LLM, denoted by Prp(yi|x,y<i). The
goal is that, given a prefix, we use the draft model to autoregressively predict up to τ tokens.
The verification model is then employed to generate the last token at the point where errors
begin to occur in the speculative predictions. Figure 11.7 illustrates one step in this decoding
process.

The speculative decoding algorithm can be summarized as follows.

• Given the prefix [x,y≤i], we use the draft model to predict the next τ consecutive tokens,
denoted by {ŷi+1, ..., ŷi+τ}. This is a token-by-token generation process, given by

ŷi+t = argmax
yi+t

Prq(yi+t|x,y≤i, ŷi+1...ŷi+t−1) (11.34)

• We evaluate {ŷi+1, ..., ŷi+τ} using the verification model, that is, we compute {Prp(ŷi+1|x,y≤i)

, ...,Prp(ŷi+τ |x,y≤i, ŷi+1...ŷi+τ−1)}. Note that we can compute these probabilities in
parallel, and so this verification step is efficient.

• We determine the maximum number of accepted speculated tokens. In order to keep the
notation uncluttered, we denote Prq(ŷi+t|x,y≤i, ŷi+1...ŷi+t−1) and Prp(ŷi+t|x,y≤i, ŷi+1...ŷi+t−1)

simply by q(ŷi+t) and p(ŷi+t), respectively. We then define that, if q(ŷi+t)≤ p(ŷi+t),
then we accept this speculation. By contrast, if q(ŷi+t)> p(ŷi+t), we reject this specula-
tion with probability 1− p(ŷi+t)

q(ŷi+t)
. Starting from ŷi+1, the maximum number of accepted



11.1 Prefilling and Decoding 605

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ŷi+4 ŷi+5

Draft Model Prq(·)

predict

(a) Predict the next τ tokens given the context using the draft model (τ = 5)

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ŷi+4 ŷi+5

Draft Model Prq(·)

Evaluation Model Prp(·)

evaluate

(b) Evaluate the predicted tokens using the evaluation model

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ŷi+4 ŷi+5

Draft Model Prq(·)

Evaluation Model Prp(·)
accepted rejected

(c) Determine the number of accepted tokens

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ȳi+4

Draft Model Prq(·)

Evaluation Model Prp(·)

(d) Predict a new token following the accepted tokens using the evaluation model

Figure 11.7: Illustration of one step of speculative decoding. The goal is to predict as many
next tokens as possible using the draft model. There are four sub-steps. Given the context, we
first use the draft model to predict the next τ tokens. Then, we evaluate these predictions in
parallel using the evaluation model. Next, we determine the maximum number of predicted
tokens that can be accepted. Finally, we use the evaluation model to predict a new token
following these accepted tokens.
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consecutive speculated tokens is defined as

na = min

{
t−1|1≤ t≤ τ,rt >

p(ŷi+t)

q(ŷi+t)

}
(11.35)

where rt is a variable drawn from the uniform distribution U(0,1).
• Given na, we keep the speculated tokens {ŷi+1, ..., ŷi+na}. We then use the verification

model to make a new prediction at i+na+1

ȳi+na+1 = argmax
yi+ns+1

Prp(yi+ns+1|x,y≤i, ŷi+1...ŷi+ns) (11.36)

• Above, we have described one step of speculative decoding. The result sequence
(including both the context and predicted tokens) is illustrated as follows

[x, y<i] ŷi+1...ŷi+na ȳi+na+1

Context na tokens
predicted using
the draft model

One token
predicted using
the verification model

Once we have finished this step, we add the predicted tokens {ŷi+1, ..., ŷi+na , ȳi+na+1}
to the context, and repeat the above process.

In practice, we usually wish to use a smaller draft model so that predicting {ŷi+1, ..., ŷi+na}
would be computationally cheaper. But a very small draft model is less accurate and can result
in smaller na. We therefore need to carefully select the draft model to make the trade-off
between the computational efficiency and accuracy.

6. Stopping Criteria

Stopping criteria are a critical component of LLM inference. They typically involve rules or
conditions that specify when the model should stop generating text during decoding. Most
LLMs are trained to generate an end-of-sequence token (e.g., ⟨EOS⟩ or ⟨/s⟩) to signal the end
of the generated text. So one of the simplest strategies is that the generation process stops when
this token is produced. For beam search, which explores multiple hypotheses simultaneously,
the process can continue until a given number of complete sequences have been generated.

In practical applications, it will generally be undesirable to generate very long sequences,
and so we need to reduce the decoding cost and unnecessary verbosity. One commonly-used
stopping criterion is the maximum length of the output. The model stops generating text once
it has produced a predetermined number of tokens. Alternatively, we can stop the decoding
based on the real cost, such as the computational resources or time constraints. For example,
in real-time applications like chatbots, decoding may need to stop after a certain time limit to
ensure responsiveness.

Another approach is to design stopping criteria based on the behavior of LLMs. For
example, decoding can be stopped if the probability of predicting the next token falls below a
certain threshold. In addition to probability-based stopping, a repetition detection module can
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be implemented to trigger the model to stop if it begins repeating tokens or phrases beyond a
predefined limit. This helps prevent redundant or incoherent outputs.

11.1.4 Evaluation Metrics for LLM Inference
Evaluating the performance of LLMs during inference involves a variety of metrics to assess
how well these models meet desired standards, such as accuracy, robustness, usability, and
efficiency. As with most NLP systems, we can evaluate LLMs using accuracy-based metrics,
such as perplexity and F1 score. We can also examine their robustness by testing how well they
handle ambiguous or challenging inputs, including adversarial, perturbed, or out-of-distribution
data. Additionally, usability can be assessed by measuring how well the generated outputs
align with user expectations in terms of fluency, coherence, relevance, and diversity. Human
evaluators can rate the naturalness of the text or assess whether the responses are contextually
appropriate and logically consistent. Ethical and fairness metrics can also be included to ensure
LLMs avoid perpetuating biases or generating harmful content.

All of the evaluation metrics mentioned above essentially focus on assessing the quality of
the outputs. Given the high cost of deploying and applying LLMs, efficiency metrics are also
very important for practitioners. Below are some commonly used efficiency metrics [Nvidia,
2025]:

• Request Latency. This metric measures the total time taken from when a request is sent
to the LLM until the complete response is received. This includes the time taken for data
transmission, processing by the model, and the return of the output to the user.

• Throughput. It refers to the number of tokens or requests the model can process per
second.

• Time to First Token (TTFT). This metric measures the time it takes from the beginning
of a request being sent to the generation of the first token of the response. If data
transmission does not consume too much time, then TTFT is mainly the time for
prefilling and predicting the first token.

• Inter-token Latency (ITL). This metric refers to the time taken to generate each
subsequent token after the first one. It reflects the efficiency of the decoding process.

• Tokens Per Second (TPS). This metric quantifies the number of tokens that the model
can generate per second.

• Resource Utilization. This involves measuring the computational resource usage (e.g.,
CPU and GPU utilization) and memory consumption of the model during inference.

In addition to these metrics, energy efficiency and cost efficiency are practical considera-
tions for deploying LLMs at scale. Energy efficiency measures the amount of electrical power
consumed by the model during inference. Cost efficiency, on the other hand, evaluates the total
expenses related to deploying and maintaining the model.

In general, choosing the right evaluation metrics depends on the specific task and applica-
tion. While quality-focused metrics are essential for assessing LLMs, efficiency metrics are
equally crucial for their effective deployment in real-world applications. A comprehensive
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evaluation framework should include both sets of metrics to accurately estimate an LLM’s
performance and practicality.

11.2 Efficient Inference Techniques
In practical applications, we often wish a system to be as efficient as possible. For LLM
inference, this typically involves two types of improvements: reducing memory requirements
and accelerating the system. For example, we can modify the Transformer architecture to
avoid memory explosion when processing very long input sequences. Another example is that
we can compress input sequences to reduce computational overhead while preserving their
semantic information. In addition, techniques like quantization and pruning can be employed
to further optimize memory usage and inference speed.

Efficient inference is a wide-ranging topic that overlaps with several sub-fields of LLMs,
such as architecture design and model compression. Most of these topics have been covered in
previous chapters. For example, in Chapter 6, we discussed efficient Transformer architectures;
in Chapter 8, we discussed long-context LLMs; and in Chapter 9, we discussed prompt
compression methods for reducing prompt length. In this section, we focus on techniques that
are commonly used in LLM deployment and serving.

11.2.1 More Caching
In real-world applications, it is common practice to store frequent requests and their corre-
sponding responses in a cache. When a new request hits the cache, the system can retrieve
the response directly from the cache instead of recomputing the result. One straightforward
implementation is a key-value datastore (e.g., a hash table) that maps input sequences to
their LLM-generated output sequences. In the simplest case, we can collect frequent queries,
generate their responses using the LLM, and store these query-response pairs in the datastore.
This creates a basic sequence-level caching mechanism that allows the system to bypass LLM
computation when the input sequence exactly matches a cached query.

A straightforward extension of the caching mechanism is to cache prefixes and their
corresponding hidden states. Given an input sequence x in a dataset D, we can process it as in
the standard prefilling phase. Thus, we obtain a sequence of prefixes and their corresponding
KV cache states:

x0 (x<1) ⇒ cache<1

x0x1 (x<2) ⇒ cache<2

...

x0x1...xm−1 (x<m) ⇒ cache<m

where cache<i denotes the KV cache for the prefix x<i (see also Eq. (11.10)). All these
mappings can be stored in the prefix cache for efficient reuse.

When processing a new sequence that shares a common prefix with a previously seen
sequence in D, we can load the corresponding cached hidden states instead of recomputing
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them. Specifically, if a new input x′ has x<k (i.e., x′
<k = x<k for some k ≤ m), we can

initialize the KV cache with cache<k and only compute the hidden states for the remaining
tokens x′

≥k.
As usual, we can maintain a key-value datastore that maps frequently encountered prefixes

to their precomputed KV caches. The lookup can be performed using a hash of the prefix
tokens, allowing constant-time access to the cached states. Care must be taken to manage
memory usage, as storing all possible prefixes may be infeasible for large datasets. Practical
systems often employ least recently used (LRU) caching methods or other strategies to balance
between computational savings and memory constraints.

11.2.2 Batching
Batching in LLM inference refers to the process of processing multiple input sequences simul-
taneously as a group (called a batch) rather than one at a time. Because modern GPUs excel at
parallel processing, batching allows them to compute multiple sequences in a single forward
pass, keeping the hardware fully occupied. Therefore, when serving LLMs at scale, batching
is important for improving computational efficiency and maximizing hardware utilization2.

To illustrate the idea of batching, Figure 11.8 (a-b) show simple examples with batch
sizes of 1 and 4, respectively. When using a batch size of 1 (i.e., without batching), the GPU
processes one input sequence at a time. Thus, the processing is sequential: the next sequence
must wait for the current computation to finish. By contrast, when using a batch size of 4,
the GPU can process four sequences simultaneously in a single forward pass. As the input
sequences vary in length, we need to standardize their length using padding techniques. Here
we use left padding, which adds dummy tokens to the beginnings of short sequences, so all the
sequences in the batch would have the same length for prefilling. For decoding, tokens are
generated simultaneously for all these sequences, and the generation process continues until
the longest sequence reaches completion.

The above examples imply a trade-off between throughput and latency, which is a very
important consideration in designing and implementing LLM inference systems. If we choose
a smaller batch size, the latency would be lower, as fewer tokens need to be processed in a
single run of inference. Imagine that we have only one sequence. The result becomes available
immediately after generation completes, with no additional computational overhead. However,
this low-latency advantage comes at the cost of underutilizing parallel computing resources,
as the parallelism of GPUs remains largely idle during sequential processing. On the other
hand, if we use a larger batch, we can make better use of the parallelism, as GPUs can be
occupied by large-scale matrix computations. As a result, we can process more tokens in the
same period of time and the throughput is improved. However, since the result is obtained only
when the last token in the batch is predicted, the latency would be higher.

In practice, we usually prefer to use a slightly larger batch, but try to fill the batch with
sequences of similar lengths to reduce the number of padding tokens and improve device
utilization. For example, we can group the incoming user requests in a short period of time into

2See https://docs.nvidia.com/deeplearning/performance/
dl-performance-gpu-background/index.html#understand-perf for a simple evaluation.

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf
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(b) batch size = 4
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(c) batch size = 4 (similar sequence lengths)

11111pad 1 1 1 1
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transfer the KV cache

(d) disaggregation of prefilling and decoding

Figure 11.8: Illustrations of basic batching methods. We use a 2D layout to illustrate the
batch, where each square represents a token. Red squares indicate tokens in the prefilling stage,
blue squares represent tokens in the decoding stage, green squares denote padding tokens,
and gray squares correspond to meaningless tokens. Subfigures (a) and (b) compare the cases
where the batch size is 1 and 4, respectively. Subfigure (c) shows the strategy of grouping
sequences with similar lengths into the same batch. Subfigure (d) illustrates the disaggregation
of prefilling and decoding. In this approach, we can make better use of the parallelism of GPUs
by concatenating multiple short sequences into a single long sequence for joint processing.
This allows us to maximize the number of tokens processed in a batch while minimizing the
number of padding tokens. However, as a trade-off, we need to copy the KV cache to the
decoding engine and reorganize it after the prefilling phase, which introduces additional data
transfer overhead.

buckets, each of which contains sequences with similar lengths. Then, we can fill the batch
with sequences in the same bucket, so that we can minimize wasted computational resources,
as illustrated in Figure 11.8 (c).

Another approach to implementing batching in LLMs is to disaggregate the prefilling and
decoding processes [Wu et al., 2023a; Patel et al., 2024; Zhong et al., 2024]. For example, we
can perform prefilling on one GPU, and perform decoding on another GPU. One advantage of
disaggregation is that we can rearrange the input sequences in the batch to better fill it, because
there is no interference between prefilling and decoding. For example, we can concatenate
multiple short sequences into a longer one, thus ensuring that the lengths of sequences in
the batch are as consistent as possible, as illustrated in Figure 11.8 (d). In this way, we can
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maximize the throughput of the prefilling phase. However, as a trade-off, we need to transfer
the KV cache to the devices performing decoding, which also incurs extra communication
overhead. Typically, this method requires a high-bandwidth, low-latency network to achieve
optimal performance.

In this section, we will discuss several improvements to the above basic batching strategies.
Most of them are based on an aggregated architecture, that is, decoding and prefilling can be
considered as different stages of a model executed on the same device.

1. Scheduling

A practical LLM inference system typically consists of two components:

• Scheduler. Its primary role is to efficiently queue and dispatch tasks (i.e., input se-
quences) to the inference engine based on the current system load and task priorities.
This often involves a variety of batching strategies that group certain requests together
to maximize processing efficiency in some way.

• Inference Engine. It is responsible for the actual execution of the LLMs, processing
the queued requests as they come in. As discussed previously, this engine involves both
prefilling and decoding processes.

This architecture is illustrated in Figure 11.9. Incorporating scheduling into batch pro-
cessing provides a flexible way to optimize both the system’s throughput and latency, thereby
achieving a better balance between them. For example, the batching methods shown in Figure
11.8 (a) and (b) can be considered one of the simplest scheduling strategies, called request-
level scheduling. In this strategy, once a batch is filled and sent to the engine, the processing
of the entire batch cannot be interrupted. The scheduler waits for this batch to be processed
before handling the next batch [Timonin et al., 2022].

A more sophisticated scheduling strategy, called iteration-based scheduling, interacts
with the inference engine at each token prediction step rather than at the sequence level. This
approach allows dynamic batch adjustment during inference, as illustrated in Figure 11.10.
Such fine-grained control lets the system prioritize critical tokens or sequences in real-time. For
instance, if an urgent request arrives at some decoding step, the scheduler can add this request
into the batch so that it can be processed as early as possible. In the following subsections, we
will discuss batching methods based on iteration-based scheduling.

2. Continuous Batching

Continuous batching is an iteration-based scheduling method used in the Orca system [Yu
et al., 2022]. In this method, an iteration refers to either the entire prefilling procedure or
a single decoding step. For example, given an input sequence x = x0...xm and an output
sequence y= y1...yn, there are n+1 iterations in total: one for prefilling, and n for generating
the output tokens (one per token). During scheduling, the batch can be adjusted between
iterations. For example, we can either add a new input sequence to the batch, or remove a
complete sequence from the batch at some iteration, even if the batch processing is not yet
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Scheduler
Inference
Engine

batch

batch (after processing)

Request Pool
x1, x2, x3, ...

Predictions
y2, y1, y3, ...

Figure 11.9: Illustration of the LLM inference architecture involving a scheduler and an
inference engine. Each time, the scheduler selects a number of user requests to form a batch
and sends it to the inference engine. The scheduler can interact with the inference engine and
adjust the batch at certain points during inference, such as at the beginning of batch processing
and at the start of each token prediction.

finished.
The general process of continuous batching includes the following steps:

• Initially, a batch is created with one or more input sequences, based on both the inference
engine’s processing capacity and the current user requests. The batch is then fed into the
inference engine.

• The inference engine processes the batch iteration by iteration. After each iteration, the
scheduler may adjust the batch in one of the following ways:

– If a sequence in the batch completes generation (i.e., generates the end-of-sequence
symbol), that sequence is removed from the batch.

– If a new user request arrives and the inference engine has additional processing
capacity, it is added to the batch.

– If no sequences are added to or removed from the batch, the batch remains un-
changed.

• The processing terminates only when all sequences have been completed and no new
user requests arrive.

See Figure 11.11 for an example of continuous batching. In this example, we start with two
user requests, x1 and x2. These two sequences are packed into a batch and sent to the inference
engine for processing. After the engine completes two iterations, a new user request, x3,
arrives. At this point, the scheduler adjusts the batch by adding x3 to it. The inference engine
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Figure 11.10: Illustrations of request-level scheduling and iteration-based scheduling. In
request-level scheduling, once a batch is created and sent to the inference engine, we cannot
adjust the batch. In other words, scheduling only occurs after the processing of a batch finishes.
In iteration-level scheduling, we can perform scheduling during batch processing. For example,
if a new request arrives at some point during inference, we can add it to the batch and continue
processing.

then continues processing the updated batch. Note that the inference engine now processes
different sequences in different ways: x1 and x2 proceed with the decoding process (i.e.,
predicting the next tokens), while x3 undergoes the prefilling process. After some time, the
generation for x2 completes. As it happens, two more user requests, x4 and x5, arrive. The
scheduler removes the completed sequence x2 from the batch and, considering the current load
of the inference engine, adds x4 to the batch. However, x5 must wait until another sequence in
the batch finishes before it can be added.

The idea behind continuous batching is to keep the inference engine fully utilized by
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Figure 11.11: Illustration of batch adjustment in continuous batching. Instead of fixing a
batch of input sequences and processing them to completion (as in request-level batching),
continuous batching dynamically updates the batch during inference. The system continuously
accepts and adds new requests (e.g., x3 and x4) into the current batch as long as there is
available compute capacity.

processing as many sequences as possible, thereby maximizing computational resource usage.
A key difference between continuous batching and standard batching (see Figure 11.8) lies
in the fact that, in continuous batching, prefilling and decoding can occur simultaneously
across different sequences, whereas in standard batching, these two phases are performed
sequentially for the entire batch. As discussed in Section 11.1.2, prefilling is considered a
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compute-bound process, while decoding is considered a memory-bound process. The intuition
behind overlapping prefilling and decoding is to reduce idle times for both computation and
data transfer. Consider two mini-batches: one for prefilling and one for decoding. While the
prefilling mini-batch keeps the GPUs occupied, the decoding mini-batch can perform memory
transfers concurrently.

Another difference between continuous batching and standard batching is that continuous
batching is prefilling-prioritized, while standard batching is decoding-prioritized [Agrawal
et al., 2024]. In continuous batching, once the inference engine has spare computational
resources, the scheduler will add new requests to the batch. In other words, these newly
added requests will be processed for prefilling as early as possible. This approach improves
system throughput, but at the cost of increased latency, as the newly added requests extend the
processing time of earlier ones. In contrast, in standard batching, once the batch is created, we
must wait for the last sequence in the batch to complete before processing new requests. This
ensures relatively low latency, but results in lower device utilization and system throughput.

It is important to note that the cost of continuous batching is that we need to continuously
reorganize the batches, which involves rearranging the data in memory. Each time a new
request is added, the scheduler needs to reassess and optimize the current batch structure. This
dynamic adjustment can incur additional memory and computational overhead, especially when
the batches are frequently adjusted. Therefore, while this method can improve throughput, it
may also lead to increased memory fragmentation and, in some cases, introduce additional
latency.

3. PagedAttention

PagedAttention (or paged KV caching) is a technique used in the vLLM system [Kwon et al.,
2023]. Inspired by operating system paging, it optimizes memory usage during LLM inference
— particularly for the KV cache — by addressing fragmented memory allocation in dynamic
batching scenarios with variable-length sequences. The idea behind PagedAttention is to
break down large memory requirements for KV caching into more manageable "pages" or
chunks of memory. In this way, we do not need to store the KV cache of the full sequence in
a continuous memory. Instead, the KV cache is divided into fixed-size blocks (analogous to
memory pages in an operating system), which can be non-contiguously allocated in physical
memory. One advantage of PagedAttention is that it enables flexible memory management,
supporting dynamic sequence growth without requiring expensive reallocation or copying of
large contiguous memory regions. Note that PagedAttention is not specifically designed for
batching. But it indeed helps improve memory efficiency in batched inference scenarios, where
memory management is more demanding and complicated.

Consider a simple example of memory allocation in Figure 11.12 in which self-attention
is performed for a batch consisting of two sequences. For each sequence, we need to attend
the current token to the key-value pairs in the KV cache of this sequence, as required by
self-attention. In the standard implementation of self-attention, the KV cache is stored in
a contiguous block of memory, allowing us to efficiently access this continuous memory.
However, in a paged KV caching system, the KV cache is divided into smaller, fixed-size
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(b) Memory allocation for KV caching in standard self-attention
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Figure 11.12: Illustration of memory allocation in PagedAttention. There are two sequences in
the batch, as illustrated in sub-figure (a). Since the memory is fragmented, the KV cache is
stored in a large unused block of memory in standard self-attention (see sub-figure (b)), but the
fragmented memory is not used. By contrast, in PagedAttention (see sub-figure (c)), the KV
cache is divided into smaller blocks and thus fits into fragmented memory.
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memory blocks which are not necessarily contiguous. These smaller KV cache blocks can
be more effectively allocated to fragmented memory regions, thereby improving memory
utilization. Another benefit of distributing chunks of the KV cache across different memory
blocks is that it enables parallelization of the caching process. For example, if the input
sequence is long and the memory bandwidth is sufficient, it would be beneficial to write and
read the key and value vectors of different segments of the sequence in parallel across multiple
memory blocks.

In general, storing contiguous data in non-contiguous regions can cause issues, for exam-
ple, accessing fragmented data requires additional seek time, which reduces I/O efficiency.
However, when handling large-scale data (e.g., performing multiplication on extremely large
matrices), we typically do not process all the data at once but instead divide it into smaller
blocks for block-level computation. From this perspective, it is also reasonable to partition
the attention computation. If the paging strategy is well designed, the additional overhead
in memory access can be minimal, while the improvement in memory utilization can be
significant.

4. Chunked Prefilling

We have seen that, in iteration-level scheduling, prefilling and decoding for different sequences
can occur simultaneously. This can be seen as a prefilling-prioritized strategy which can
maximize the throughput. However, one such iteration can take a long time if the input
sequence is very long and the prefilling process dominates the computation. In this case,
decoding for other sequences has to wait until the prefilling completes, leading to increased
latency for generating output tokens. Therefore, while prefilling-prioritized strategies are
effective for maximizing hardware utilization, they may introduce significant variability in
token generation latency, particularly when the system is handling a mix of long and short
input sequences.

A simple way to reduce decoding latency is to make computations for different sequences
in the batch comparable. One such method is to divide sequences into chunks and perform
prefilling chunk by chunk. This approach, often referred to as chunked prefilling, processes
smaller portions of each sequence at a time, allowing the system to better balance the computa-
tional load across sequences [Agrawal et al., 2023]. By choosing an appropriate chunk size,
we can ensure that when prefilling and decoding overlap for two sequences, their processing
within the same iteration tends to take a similar amount of time. As a result, decoding idle time
is reduced and overall throughput is improved.

Figure 11.13 shows an illustration of chunked prefilling in a few iterations. In this example,
the batch contains two sequences. The whole prefilling process of the first sequence is divided
into three prefilling steps, giving rise to the chunks denoted P11, P12 and P13. Each chunk
corresponds to one iteration and can thus overlap with one decoding step. In this way, during
the prefilling of the first sequence, we can perform three decoding steps, rather than only a
single decoding step, as is the case in standard iteration-level scheduling. As a result, the idle
time of the decoding process is reduced, and the output tokens can be generated earlier.

Chunked Prefilling improves decoding efficiency by overlapping prefilling and decoding,
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Figure 11.13: Comparison of simple iteration-based scheduling and chunked prefilling. Pxy
denotes the y-th prefilling step for sequence x, and Dxy denotes the y-th decoding step for
sequence x. In simple iteration-based scheduling (or prefilling-prioritized scheduling), since
prefilling is treated as a single iteration, D22 has to wait for the completion of the prefilling
of sequence 1. In chunked prefilling, the prefilling process can be divided into multiple steps.
Thus, D22 can execute during prefilling for sequence 1 (i.e., during P12).

but at the cost of additional memory overhead and scheduling complexity. In standard prefilling,
we process the whole input sequence once, building the KV cache in one go. By contrast, in
chunked prefilling, each chunk needs a separate forward pass to compute its attention outputs
and update the KV cache. As a result, we need to maintain the KV cache of early chunks while
processing later chunks. This also compromises the parallelism of completing the prefilling for
the entire sequence in a single pass. In practice, it is usually possible to balance throughput
and latency by choosing an appropriate chunk size.

It is worth noting that the methods discussed in this subsection can broadly be categorized
as priority-based scheduling methods. In these methods, we can give priority to certain requests,
or to certain prefilling or decoding steps, so that system resources are allocated in a way that
better aligns with specific performance goals. As presented above, for example, we may
prioritize decoding over prefilling to minimize token generation latency, or prioritize prefilling
over decoding to maximize overall throughput in batch-processing scenarios. Practitioners
can design custom priority policies for specific needs and operational constraints in real-world
applications, such as request deadlines and importance levels defined by users.
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11.2.3 Parallelization
Parallelization is a widely used approach to scale up LLM inference, especially for large-scale
deployments. In Chapter 7, we have discussed several common parallelization strategies
to parallelize LLM pre-training, such as model parallelism, tensor parallelism, and pipeline
parallelism. We have also discussed efficient architectures that are easy to deploy in distributed
computing systems. For example, in MoE models, we assigns different experts to different
devices3. Only the active experts for a given input are executed, which significantly improves
computational efficiency while maintaining model quality. Many of these methods can be
directly applied to LLM inference with minimal modifications.

However, applying these parallelization techniques to inference poses new challenges
compared to pre-training. These issues become especially pronounced in real-time or low-
latency inference scenarios, where load imbalance across devices and communication overhead
can significantly impact performance. For example, unlike pre-training, where batches can
be prepared in advance, inference must handle variable-length sequences in real time. This
makes it harder to maintain optimal device utilization and complicates scheduling across
heterogeneous computational resources. A related issue is load balancing. When a large
number of requests arrive in a short period of time, the system must efficiently distribute
workloads across available devices. For example, real-world requests typically exhibit highly
variable computational demands due to differences in task types and prompt lengths. Such
variability renders simple static load balancing approaches ineffective, and so we need to use
finer-grained strategies that can adapt to runtime conditions. The problem becomes even more
complicated when we deploy the system on heterogeneous hardware and there are strict latency
constraints.

In the development of LLMs, parallelization is closely related to LLM serving. Generally,
building a high-quality LLM serving system is not a simple task — it typically requires
the combination of multiple techniques, such as architectural design, workload distribution,
and LLM-specific hardware/software optimizations. As such, LLM serving constitutes an
exceptionally broad subject that often demands substantial engineering expertise. Here, we
will not go into the details of LLM serving. For related concepts and techniques, readers may
refer to relevant open-source systems (such as vLLM4, TensorRT-LLM5 and TGI6) and papers
[Pope et al., 2023; Li et al., 2024a].

11.2.4 Remarks
We have considered many methods for improving the efficiency of LLMs in this and previous
chapters. Although these approaches address different issues, most of them essentially explore
trade-offs between various performance factors. One important trade-off is between inference
speed and accuracy. For example, techniques like quantization, pruning, and knowledge

3In LLMs, the experts are typically modular FFNs. So each expert is a part of the FFN component in the
Transformer architecture.

4https://github.com/vllm-project/vllm
5https://github.com/NVIDIA/TensorRT-LLM
6https://github.com/huggingface/text-generation-inference

https://github.com/vllm-project/vllm
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/huggingface/text-generation-inference
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distillation can significantly reduce computational overhead and latency but may introduce
minor degradations in model performance. Conversely, preserving full precision or using larger
models enhances accuracy but at the cost of slower inference and higher resource demands.

Another important consideration in LLM inference is the memory-compute trade-off. As
in computer system design, we need to consider the balance between memory usage and
computation required to generate the output. In particular, storing intermediate results such as
KV caches during inference can significantly reduce redundant computation, but at the cost of
increased memory usage. In KV caching, storing past attention states avoids recomputation
of self-attention over previous tokens, thereby reducing compute time per token. However,
as the number of tokens grows, so does the memory footprint of the KV cache, especially
when processing very long sequences or multiple sequences in parallel. In response, various
techniques have been developed to reduce memory consumption by partially recomputing
intermediate states. For instance, chunked or windowed attention limits the attention span to a
recent subset of tokens, reducing KV cache size at the cost of reduced context or additional
compute if past information must be reprocessed.

Note that considering the memory-compute trade-off is a very general principle. It can
be extended beyond attention mechanisms and Transformers to other components in system
design. An example is the choice of data precision. Using lower-precision formats such as
FP16 or INT8 can reduce both memory usage and memory bandwidth requirements, effectively
alleviating pressure on the memory subsystem. However, lower precision may lead to numerical
instability or slight accuracy degradation, requiring careful calibration or retraining. Thus, this
trade-off can also be seen as a memory-compute-accuracy triangle, where improvements in
one dimension may come at the expense of another.

Beyond speed, accuracy, and memory, several other dimensions also influence LLM
inference efficiency. Some of these dimensions have been discussed in this chapter, while
others have not. Here we outline them as follows.

• Throughput vs. Latency: In large-scale multi-user LLM serving scenarios, we often
aim to maximize system throughput. For example, as discussed in this section, we
can batch multiple requests together to increase the number of tokens processed at
the same time. However, batching increases waiting time and may lead to higher per-
request latency, especially for short or interactive requests. By contrast, optimizing for
low latency often requires serving requests individually or in smaller batches, which
underutilizes hardware resources and reduces throughput. Achieving a good balance
depends on the quality-of-service requirements and user interaction patterns.

• Generalization vs. Specialization: General-purpose LLMs are trained to perform a
wide range of tasks with a single set of parameters. While flexible, they may be less
efficient or accurate for specific tasks. Specialized models can yield better performance
and lower inference costs for targeted applications. However, maintaining multiple
specialized models increases system complexity and storage requirements. The trade-off
between maintaining a single general model versus multiple specialized models is an
important system-level design choice.
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Figure 11.14: Scaling for pre-training, fine-tuning and inference stages [Briski, 2025].

• Energy Efficiency vs. Performance: High-performance inference often requires run-
ning large models at high throughput on powerful accelerators, which consumes con-
siderable energy. This may be problematic for edge deployments or energy-sensitive
environments. Techniques like model compression can improve energy efficiency, but
usually with some degradation in output quality or increase in latency. Energy constraints
thus introduce another important dimension in optimizing LLM inference.

11.3 Inference-time Scaling
Scaling laws can be considered one of the fundamental principles guiding the development of
LLMs. In previous chapters, we discussed several times that scaling up training data, model
size, and compute can effectively improve the performance of pretraining. In fact, scaling laws
also apply to downstream stages such as fine-tuning and inference (see Figure 11.14). Here we
consider inference-time scaling, which has been widely employed by recent LLMs to solve
complex problems, such as complex math problems [Snell et al., 2025]. Unlike pre-training and
fine-tuning scaling, which focuses on improving LLMs via parameter updates, inference-time
scaling improves these models during inference without further training. This includes a large
variety of methods which scale LLMs in different dimensions, such as ensembling multiple
model outputs, increasing context length, adopting more aggressive decoding algorithms, and
using external tools to extend model capabilities.

While inference-time scaling is wide-ranging, in this section we consider those methods
that incorporate more compute into inference (called inference-time compute scaling). Here is
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a list of inference-time (test-time) compute scaling methods, organized by category:

• Context Scaling. It involves scaling the input or context to improve generation (or
potentially scale the output).

• Search Scaling. It involves increasing computational effort during decoding.

• Output Ensembling. It involves combining multiple model outputs.

• Generating and Verifying Thinking Paths. It involves guiding LLMs to generate and
verify thinking paths for solving complex reasoning problems.

We will describe these methods in the following subsections.

11.3.1 Context Scaling

Context scaling improves LLM performance by extending the input to the model. A straight-
forward approach is to incorporate more helpful context during inference, allowing the model
to condition its predictions on more prior information. One example is few-shot prompting.
It augments the context with multiple input-output examples, and so the model can learn
task behavior implicitly from these examples without parameter updates. On top of few-shot
prompting, we can use chain-of-thought prompting to encourage the model to produce inter-
mediate reasoning steps before final answers. Note that chain-of-thought prompting is one
of the most important methods in addressing reasoning problems. By explicitly providing
intermediate steps in problem-solving, we can prompt the model to break down complex
tasks into simpler sub-tasks, which is found to be very beneficial for generating accurate and
interpretable outputs.

Beyond extending the prompt with examples or reasoning steps, another approach to
context scaling involves dynamically incorporating external knowledge. This is often achieved
through RAG. RAG systems first retrieve relevant document snippets from a large collection of
documents or a database based on the current input. These retrieved pieces of information are
then added to the context provided to the LLM. This essentially expands the context to include
timely or specialized external knowledge. By doing so, the model grounds its responses in
specific knowledge found in the external source. The LLM thus can generate responses that
are not only relevant to the input but also factually accurate and up-to-date.

However, as the context grows, these methods often suffer from the constraints of finite
context window length. While model architectures and techniques (like efficient attention
models) are continually evolving to support longer contexts, processing extremely long inputs
still poses challenges. Increased computational cost is one factor. More critically, when the
context window becomes very large, the model might struggle to attend effectively to the
most relevant information (e.g., the “lost in the middle” phenomenon). Therefore, effective
context scaling is not just about adding more information, but also about strategically selecting,
structuring, and presenting the most pertinent information within the model’s processing
capabilities.

Here we omit the detailed discussion of these methods, as they have already been covered
in previous chapters. See Chapters 8 and 9 for more details, including prompting, RAG, and
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long-sequence modeling methods.

11.3.2 Search Scaling
In LLMs, decoding is a search process that aims to efficiently find the best output sequence
given the input sequence. Search scaling (or decoding scaling) typically involves two aspects:
scaling the output length and scaling the search space.

Scaling the output length refers to increasing the number of tokens generated during
inference. This is especially important in tasks that require long-form generation, such as
story writing. More recently, generating outputs with long thinking paths has shown strong
performance in math problem solving and code generation. For example, encouraging the
model to generate long thinking paths before producing the final answers has been found to be
very beneficial in performing complex reasoning. This idea has been widely used in developing
recent LLMs for reasoning, such as OpenAI [2024]’s o1 and Deepseek [2025]’s R1. We will
discuss more about output length scaling in Section 11.3.4.

Scaling the search space, on the other hand, refers to expanding the set of candidate output
sequences considered during search, so that higher-quality outputs can be found. As discussed
in Section 11.1.3, a simple example is that in beam search we increase the beam width to allow
more candidate sequences to be explored in parallel at each decoding step. This increases
the chance of discovering better outputs, especially in tasks where the optimal solution is not
immediately apparent from local decisions.

In addition to decoding algorithm adjustments, it is also possible to explore compact
structures to encode a large number of outputs. For example, we can construct and navigate a
tree or graph of reasoning steps [Yao et al., 2024]. In this paradigm, each node represents a
partial solution or intermediate step, and edges represent transitions between reasoning states.
Such structured search enables the model to consider multiple paths simultaneously. Another
related direction is Monte Carlo tree search-inspired decoding, where the model stochastically
explores and scores different paths based on learned heuristics or external reward models.

Search scaling is a very general idea, and it is often implicitly involved in the design of
search procedures that exploit search structure, heuristics, and model uncertainty. Many of the
above methods have been discussed previously, though they were not originally developed with
scaling as their primary goal. However, search scaling inherently comes with computational
costs. Increasing beam width, for instance, directly translates to higher memory usage and
longer inference times. In practice, there is often a point of diminishing returns, where further
expansion of the search space yields marginal improvements in output quality at a significant
computational expense. Therefore, an effective strategy often involves finding an optimal
balance between scaling and computational feasibility.

11.3.3 Output Ensembling
If we have multiple model outputs, it is often beneficial to combine them to mitigate the impact
of individual model errors and synthesize a superior final output. Each model might capture
different aspects of the underlying data distribution or possess unique strengths and weaknesses.
By ensembling, we can average out the noise or random errors present in individual predictions,
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leading to a more stable and reliable outcome. In LLM ensembling, one of the simplest
approaches is to average the probability distributions over the next token from each model, and
select the best token using this averaged distribution. Or, if we regard the problem as a discrete
decision-making task, majority voting can be employed. More sophisticated methods might
involve re-ranking candidate outputs generated by different models based on a separate scoring
function or even using a meta-learner to intelligently combine the predictions.

The “scaling” from output ensembling comes at the cost of running multiple models or
sampling multiple outputs. This not only increases the latency of inference but also leads
to the additional complexity of managing multiple models. But the quality of outputs does
not continue to improve indefinitely as more models are added. In some cases, the benefits
of output ensembling may diminish as the number of component models in the ensemble
exceeds a certain threshold. Instead, the benefits of ensembling are generally greater when the
individual models are diverse (i.e., they make different errors), even if there are a relatively
small number of component models. Therefore, it is common practice to use a set of diverse
LLMs which differ in their training data, model architectures, or fine-tuning objectives.

In LLMs, “scaling” often implies making things “bigger” for quality with more resources.
However, in addition to scaling up the quality, scaling can mean more. It can also signify
scaling up the robustness (making the system less prone to errors and more reliable) and
exploration (covering a wider range of potential solutions). In output ensembling, these
dimensions are naturally integrated. For instance, the very act of averaging or voting across
different model outputs is a direct strategy to scale up robustness against individual model
failures. Furthermore, by intentionally including varied models, ensembling increases the
chances of discovering novel or superior solutions. In this sense, scaling is not limited to
making models larger or running them longer — it also means strategies for making inference
more robust, exploratory, and adaptive.

11.3.4 Generating and Verifying Thinking Paths
So far, we have viewed inference-time scaling as a general class of methods for scaling various
aspects of inference, such as sequence length, model size, and/or search strategies. In fact, one
successful application is the use of inference-time scaling to enhance the reasoning capabilities
of LLMs. As we have seen, the reasoning performance of LLMs can be improved by using
chain-of-thought methods. We can therefore make use of the chain-of-thought prompts to
generate intermediate reasoning steps and reach a correct answer. However, reasoning problems
are often so complicated that we cannot obtain high-quality solutions by providing simple chain-
of-thought prompts. For example, when solving a math problem, we typically need to reason
over a sequence of steps. At each step, we need to work out some intermediate result, verify it,
and then determine what to do next. The reasoning path is not a fixed pattern but a dynamically
generated thinking process that often involves trial-and-error, backtracking, and self-correction.
This requires more sophisticated prompting strategies or search algorithms to navigate such
complex reasoning. In this subsection, we focus on inference-scaling methods that go beyond
simple chain-of-thought to address complex reasoning problems more effectively.

At a high level, methods for scaling the reasoning of LLMs can be categorized into two
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classes:

• Training-free Methods. These methods aim to improve reasoning capabilities without
requiring any modification or retraining of the pre-trained parameters. Instead, they
focus on techniques applied during inference, such as sophisticated prompting strategies
(e.g., chain-of-thought) and algorithmic control over the reasoning process (e.g., search).

• Training-based Methods. These methods involve further training or fine-tuning the
model parameters to explicitly improve reasoning abilities, such as supervised fine-
tuning on datasets with reasoning examples (e.g., math problems with step-by-step
solutions).

In the following, we first discuss training-free methods, and then training-based methods.

1. Solution-level Search with Verifiers

Given an input sequence (e.g., a math problem), there are many possible output sequences
(e.g., solutions to the problem). If we have a model to evaluate or verify each solution, we can
select the best one. This is the fundamental principle behind methods like best-of-N sampling,
where multiple outputs are generated, and the optimal result is picked based on some selection
mechanism. Such a selection process can be viewed as a search problem, which involves two
components:

• Search Algorithm. This defines the strategy used to explore the space of possible
output sequences (solutions) and generate a set of candidates. It can range from simple
independent sampling to more sophisticated search techniques as discussed in Section
11.1.3.

• Verifier. This is a model or function responsible for evaluating the quality, correctness,
or utility of each candidate solution generated by the search algorithm. It provides
a score, a probability, or a judgment that allows the system to select the best among
the candidates. The verifier can be another LLM, or even a set of predefined rules or
heuristics.

Given an input problem x, we define that an output solution y can be represented as a
sequence of reasoning steps:

y = (a1,a2, ...,anr) (11.37)

where ai is the i-th reasoning step, and anr is the last step which should contain the answer to
the problem. See Figure 11.15 for an example of a multi-step reasoning path.

The search algorithm can efficiently generate a set of candidate solutions

Dc = {y1, ...,yK} (11.38)

Then, we can use a verifier, which evaluates each solution by the function V (y), to score
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Figure 11.15: Illustration of multi-step reasoning. This example is from the PRM800K dataset
[Lightman et al., 2024]. Given a math problem, the LLM is prompted to generate a thinking
path (or reasoning path) consisting of several reasoning steps. Each step addresses a sub-
problem based on the results of the previous steps. The answer to the original problem is
contained in the last step.

the candidates in Dc. The final output is the best candidate selected by the verifier

ŷ = argmax
y∈Dc

V (y) (11.39)

Although verifying the entire reasoning path is possible, a simpler alternative is to verify
only the final reasoning step. In this way the verifier function V (y) is simplified to depend
solely on the final answer contained within anr . This can be achieved in various ways,
depending on the nature of the problem and the expected answer format.

• For some math and coding problems, we can use off-the-shelf tools as verifiers. Examples
include proof checkers for mathematical theorems, interpreters or compilers for code
execution, and unit test systems for verifying program correctness against predefined
test cases.

• If there is labeled data for evaluating the answer, such as human preference data, we can
train a reward model on such data. The learned reward model is then used as the verifier
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which assigns a scalar score to each candidate answer.

• If there are no existing systems or suitable reward models, we can use another LLM to
act as the verifier. This LLM is prompted to assess the quality of the candidate answer.
It could potentially be a more capable model, or the same LLM used with a specific
“evaluator” prompt.

• Alternatively, simpler heuristic-based verifiers can be designed. A commonly used
approach is to employ majority voting, where the most frequently occurring answer
among a set of candidates is selected.

Based on these verifiers, we can search to obtain a set of candidate solutions for selection.
One simple strategy, which is often referred to as parallel scaling [Brown et al., 2024; Snell
et al., 2024], involves generating K candidate solutions by running the base LLM K times
independently. In this process, we can adjust the temperature in sampling to control the
diversity in the outputs. The verifier then assesses each of these K complete solutions, and
the one with the highest score is selected as the final output. This is conceptually very similar
to best-of-N sampling, which in previous chapters we primarily described as a method of
selecting the best one from a set of sampled outputs using a reward model.

Another approach is sequential scaling, which builds a sequence of solutions incrementally
[Gou et al., 2024; Zhang et al., 2024]. It starts with an initial solution generated by the LLM
with prompting. Then, we use a verifier (often the same LLM) to evaluate the solution. This
can be seen as a critique stage. The output of this stage is some form of feedback, such as
textual critiques pinpointing errors or suggesting improvements, numerical scores reflecting
solution quality, or even a revised plan or intermediate step to guide the next generation. This
feedback, along with the original problem and the current solution, is then used to prompt
the LLM to generate a potentially improved solution. This can be seen as a refine stage. This
critique-refine cycle can be repeated, forming an iterative loop:

yk+1 = Refine(x,yk,Feedback(yk)) (11.40)

where Feedback(yk) represents the feedback from the verifier. The Refine(·) function gen-
erates the improved solution yk+1 by prompting the LLM with the original problem x, the
previous solution yk, and this feedback. The process can be iterated for K times, or until
the solution quality, as assessed by the verifier, converges to a satisfactory level. This iter-
ative framework, where a solution is progressively improved through cycles of generation,
evaluation (critique), and revision, is precisely what constitutes self-refinement [Shinn et al.,
2023; Madaan et al., 2024]. In such scenarios, the role of the verifieris not just to pick the best
complete solution from a static set, but to actively guide the generation process itself.

See Figure 11.16 for illustrations of parallel scaling and sequential scaling. Note that
there are other ways to perform search and obtain different sets of candidate solutions. One
alternative method is to organize search as a tree structure. This approach, often referred to as
tree search, provides a more structured way to explore the space of possible reasoning paths. In
solution-level search, each node of the tree represents a complete solution. During search, we
need to expand a node to a set of child nodes, representing new solutions that can be considered
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Figure 11.16: Illustrations of parallel scaling and sequential scaling. In parallel scaling, we
obtain multiple solutions by running the LLM several times independently. In sequential
scaling, the LLM generates an initial solution. Then, we use the LLM to refine it iteratively,
with each refinement yielding a new, possibly better solution.

in verification. The expansion process typically involves taking an existing solution (the parent
node) and using the LLM to generate variations or alternative solutions.

2. Step-level Search with Verifiers

While the methods discussed above primarily focus on generating complete solutions before
final selection, the search process can also be integrated more deeply into the step-by-step
generation of the reasoning path itself. This leads to approaches that perform step-level search
with verifiers, where guidance or pruning occurs at intermediate reasoning steps {a1, ...,ank

}
rather than only after a full solution y is formed.

Such fine-grained control is particularly beneficial for complex reasoning problems where
a single incorrect intermediate step can render the entire subsequent reasoning chain invalid.
By evaluating or guiding the generation at each intermediate step, the LLM can explore the
reasoning space more effectively, potentially pruning unpromising paths early or allocating
more resources to explore more plausible ones.

Step-level search with verifiers can also be modeled as a tree search problem. In this
paradigm, each node (or state) corresponds to a partial reasoning path, a≤i = (a1, ...,ai),
representing the sequence of i reasoning steps taken so far (i.e., a path from the root node to
the current node). The objective of the search process is to explore the underlying state space,
starting from an initial empty path, to find a complete path that constitutes a correct solution.
Note that we use a≤i here to represent a partial reasoning path instead of y≤i. While this
makes notation a bit inconsistent with that used for representing complete solutions (y) or full
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paths in solution-level search, it serves to highlight the focus on individual actions or steps.

The core components of step-level search with verifiers are:

• Node Representation. A node is a partial reasoning path a≤i = (a1, ...,ai). The root
node is an empty path, and terminal nodes are complete reasoning paths.

• Node Expansion. Given a current partial path a≤i, the LLM is used to generate one
or more candidate next reasoning steps {a(1)i+1, ...,a

(M)
i+1 }. Each candidate step, when

appended to a≤i, forms a new potential partial path a≤i+1 = (a1, ...,ai,a
(j)
i+1).

• Verification. The verifier V (·) evaluates the quality of a newly generated step in the
context of the current partial path a≤i = (a1, ...,ai) and the original problem x. As
with solution-level verification, step-level verifiers might output a numerical score, a
categorical label, and textual feedback.

• Search. This governs how the search space is explored. Based on the evaluations from
the verifier, the search strategy decides which partial paths to extend further, which to
prune, and the order of exploration.

This step-by-step verification allows for dynamic adjustments to the reasoning process. If a
step ai+1 is deemed incorrect or unpromising by V (·), the search algorithm can backtrack and
explore alternative steps from a≤i, or even from an earlier node a≤i′ (where i′ < i). Conversely,
if a step is highly rated, resources can be focused on extending that path. See Figure 11.17 for
an illustration of step-level search with verifiers.

Clearly, this search framework is very similar to that used in decoding methods for LLMs,
as discussed in Section 11.1.3. For example, beam search maintains a set of K most promising
partial sequences at each generation step. This is a form of step-level search where the “verifier”
is implicitly the LLM’s own probability model, and the “search” is the pruning mechanism to
maintain the beam size.

However, step-level search with explicit verifiers, as described here, presents differences
from standard decoding. One of them is that the verifier can be a much more sophisticated
component than just the raw output probabilities of the generative LLM. The design of step-
level verifiers basically follows that of solution-level verification. A step-level verifier might
be a language model that assesses the quality of an individual reasoning step within the context
of the preceding path. This LLM can even be fine-tuned to enhance its verification capability.
Alternatively, for domains with well-defined rules, it could be a symbolic engine or a set of
programmatic checks. Furthermore, verifiers can be designed to predict the future utility or
likelihood of success given the current partial path, drawing inspiration from value functions
in reinforcement learning. Human expertise can also be incorporated to provide judgments on
critical steps, especially in high-stakes scenarios.

One example of such a step-level verifier, particularly when using human feedback to assess
intermediate progress, is the process reward model (PRM). A PRM is typically a separate
language model trained to output a scalar reward for each reasoning step ai′ within a partial
path a≤i. It provides a more direct and fine-grained supervisory signal compared to outcome
reward models (ORMs) which only evaluate the final solution. However, the development
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Figure 11.17: Illustration of step-level search with verifiers. a(j)i = the j-th candidate for the
i-th reasoning step, ⊠ = candidate pruned by the LLM’s output probability, and ⊠ = candidate
pruned by the verifier. Given the input problem as the root node, we expand the tree by
generating multiple reasoning steps at each expansion. Each candidate can be pruned by either
likelihood (as in standard decoding) or step-level verification. The unpruned candidates are
then expanded to generate further reasoning steps. The process is iterated until a complete
reasoning chain leading to a final answer is generated, or until a predefined search limit is
reached.

of PRMs relies on step-level human annotations, such as preferences on different next steps.
Collecting supervision for each intermediate step is considerably more labor-intensive and
requires greater cognitive effort from human annotators than simply labeling final outcomes.

One alternative approach to developing training data for step-level verification is to use
LLMs to generate such annotations automatically. For example, we can take a strong LLM,
referred to as a teacher model, and prompt it to first generate a complete reasoning path for
a given problem. Then, at each intermediate step within this path, we can prompt the same
teacher LLM (or another capable LLM) to generate several alternative candidate next steps
in addition to the one it originally chose. The teacher LLM can then be prompted again to
evaluate these alternatives. These evaluation results (e.g., correct vs. incorrect) can then serve
as data annotations. Alternatively, the generalization capabilities of PRMs can be leveraged.
We can train a PRM on tasks where step-level verification is easier and then generalize this
PRM to other tasks with little or no additional training.
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Note that step-level verification also comes with its own problems. Frequent verification,
especially if using an LLM as the verifier, can substantially increase computational costs
and latency. The design of effective step-level verifiers is non-trivial itself. An inaccurate
verifier might prematurely discard good reasoning paths or fail to identify flawed ones, thereby
misleading the search. This makes the development of such systems more complex and
difficult.

3. Encouraging Long Thinking

So far in this subsection, most of the methods are implicitly based on a simple idea: generating
longer reasoning paths can help. In addition to CoT and search with verifications, we can
consider alternative methods to achieve this. For example, we can prompt the LLM by explicitly
asking for extended deliberation. Beyond direct prompting, we can also make modifications
to the decoding process itself, such as adjusting token limits or applying penalties for short
outputs. Another approach is to employ multi-stage generation schemes where the model
incrementally builds upon its reasoning.

4. Training-based Scaling

As well as considering inference-time scaling methods without training, we also wish to
consider methods that can improve intrinsic reasoning capabilities of LLMs by modifying
their parameters through further training. While such training-based scaling methods typically
require additional training cost and computational resources, they instill stronger reasoning
skills directly into the model parameters, which in turn can lead to more effective and efficient
reasoning performance. We can even combine them with training-free methods for better
inference-time scaling results.

Although our discussion here is restricted to reasoning problems, methods for training-
based scaling are common. Most of them have been discussed in Chapter 10. Here, we will
briefly describe how these methods can be applied to improving inference-time scaling for
reasoning problems.

• Fine-tuning on Reasoning Data. One of the most direct ways to enhance reasoning
is by fine-tuning pre-trained LLMs on datasets specifically curated for reasoning tasks.
These datasets can range from simple input-output pairs to more structured formats that
include step-by-step reasoning processes. Typical examples include datasets of math
word problems, logical deduction exercises, or code generation with explanations. By
training on such data, the model learns from common reasoning patterns, and thus can
generate detailed and coherent reasoning paths at test time.

• Reinforcement Learning for Reasoning. If we regard a verifier as a reward model, we
can see that the methods discussed in the previous subsection are a direct application
of the reward model to reasoning problems, though they are training-free. Of course,
we can apply this reward model to LLM fine-tuning. This follows a standard paradigm
of reinforcement learning. Given a reward model, the LLM, acting as a policy, is fine-
tuned using reinforcement learning algorithms. The LLM generates reasoning steps
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or full solutions, receives feedback (rewards) from the reward model, and updates its
parameters to produce outputs that maximize these rewards. This process aligns the
LLM output with notions of high-quality reasoning, thereby encouraging the LLM to
generate more reliable reasoning paths. Another key issue is the training of the reward
model. Generally, this reward model could be an outcome reward model that evaluates
the correctness or quality of the final answer, or a process reward model that assesses
the quality of each intermediate reasoning step, as discussed in the context of step-level
verifiers. In some cases, we can even develop a reward model based on simple rules,
such as giving bonuses to longer outputs.

• Knowledge Distillation for Reasoning. In this approach, a smaller, more efficient
student LLM is trained to mimic the reasoning outputs or internal representations of a
larger, more capable teacher LLM. The teacher model might generate detailed reasoning
steps for a variety of problems. The student model then learns to reproduce these high-
quality reasoning demonstrations. This strategy makes stronger reasoning capabilities
more accessible by deploying them in smaller models that are less computationally
expensive at inference time.

• Iterative Refinement. Training-based scaling can also involve iterative refinement. For
example, an LLM can generate solutions to a set of problems. These solutions and their
reasoning paths are then verified, either by humans or automatic verifiers. The correct
reasoning paths are subsequently added to the training data, and the LLM is further
fine-tuned on this augmented dataset. This creates a cycle where the LLM progressively
improves its reasoning capabilities through repeated generation, critique, and learning.

The primary advantage of these training-based scaling methods is that they endow the LLM
with stronger inherent reasoning skills. This directly contributes to improved inference-time
scaling in several ways: it can lead to more efficient inference, as the LLM might require less
extensive search or fewer generation samples to arrive at a correct solution. Moreover, the
base quality of generated steps or solutions is higher. Therefore, a well-trained LLM might
generalize its learned reasoning abilities to novel problems more effectively than an LLM
relying solely on in-context learning or training-free inference schemes.

On the other hand, training-based approaches also present challenges, compared to the
training-free counterparts. The creation of high-quality, large-scale training datasets for
reasoning can be expensive and labor-intensive. The fine-tuning process itself, particularly for
the largest LLMs or when using RL, can be computationally intensive and require substantial
engineering effort. There is also the risk of the model overfitting to the specific types of
problems or reasoning styles present in the training data, potentially limiting its performance
on out-of-distribution tasks.

11.4 Summary
In this chapter, we have discussed the inference issue for LLMs. We have presented the
prefilling-decoding framework and related decoding algorithms for LLM inference. Then, we
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have described several techniques for efficient inference. We have also discussed inference-
time scaling, which has been considered one of the most important methods for improving
LLM reasoning.

Inference over sequential data has long been a concern in AI [Wozengraft and Reiffen,
1961; Viterbi, 1967; Forney, 1972]. In the context of NLP, this line of work dates back to the
very early days of speech recognition and statistical machine translation [Koehn, 2010], where
researchers faced the challenge of efficiently searching vast hypothesis spaces to find the most
probable output sequence. Techniques like beam search and various pruning strategies were
developed then to make this computationally tractable. At that time, models were relatively
weak, and much of the research focused on developing powerful search algorithms to reduce
search errors. These foundational ideas continue to influence modern approaches.

As we enter the era dominated by deep learning methods, models based on deep neural
networks have become extremely powerful. Even with very simple search algorithms, these
models can achieve excellent results. In this context, inference no longer seems as “important”
as it once was, and research attention has gradually shifted toward model architectures, training
methods, and scaling up models.

However, history tends to repeat itself. With the rise of LLMs, inference has once again
attracted significant attention. This renewed focus is primarily manifested in two aspects:

• The inference cost for LLMs is very high. For example, efficiently deploying LLMs
in high-concurrency, low-latency scenarios remains a challenging problem, making
inference efficiency critically important. In this context, efficient architecture designs,
optimized search algorithms, and various inference optimization strategies hold substan-
tial practical significance.

• Input and output sequence lengths have significantly increased in complex tasks. Es-
pecially in tasks like mathematical reasoning, the growth of sequence lengths further
highlights the importance of inference efficiency. Moreover, scaling the inference pro-
cess has recently proven to be an effective way to improve the reasoning capabilities of
models. Therefore, achieving efficient inference scaling is emerging as a particularly
promising research direction.

Inference is now a wide-ranging topic that encompasses many techniques. It involves not
only the development of model architectures and decoding algorithms, but is increasingly
shaped by the intricate engineering and sophisticated systems-level optimizations required to
deploy LLMs effectively and efficiently. Many of these techniques are beyond the scope of NLP
or a specific AI area. Instead, the frontier of LLM inference optimization now extends deeply
into domains traditionally considered core computer science and engineering. This systemic
perspective has brought many new ideas to the study of inference problems. Unfortunately,
this chapter cannot cover all relevant techniques — indeed, that would be an almost impossible
task in itself. Ultimately, the best way to better understand and master these techniques may
still lie in hands-on practice.
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Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical



666 BIBLIOGRAPHY

machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180, 2007.

[Kojima et al., 2022] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199–22213, 2022.

[Konishi and Kitagawa, 2007] Sadanori Konishi and Genshiro Kitagawa. Information Criteria and
Statistical Modeling. Spinger, 2007.

[Korthikanti et al., 2023] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation
in large transformer models. Proceedings of Machine Learning and Systems, 5, 2023.

[Krakovna et al., 2020] Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz,
Tom Everitt, Ramana Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gam-
ing: the flip side of ai ingenuity. https://deepmind.google/discover/blog/

specification-gaming-the-flip-side-of-ai-ingenuity, 2020.

[Krebs et al., 2018] Alicia Krebs, Alessandro Lenci, and Denis Paperno. SemEval-2018 task 10:
Capturing discriminative attributes. In Proceedings of The 12th International Workshop on Semantic
Evaluation, pages 732–740, 2018.

[Krizhevsky et al., 2017] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90,
2017.

[Kudo, 2018] Taku Kudo. Subword regularization: Improving neural network translation models with
multiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 66–75, 2018.

[Kudo and Richardson, 2018] Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 66–71, 2018.

[Kulikov et al., 2019] Ilia Kulikov, Alexander Miller, Kyunghyun Cho, and Jason Weston. Importance of
search and evaluation strategies in neural dialogue modeling. In Proceedings of the 12th International
Conference on Natural Language Generation, pages 76–87, 2019.

[Kulis, 2013] Brian Kulis. Metric learning: A survey. Foundations and Trends® in Machine Learning,
5(4):287–364, 2013.

[Kumar et al., 2016] Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan
Gulrajani, Victor Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory
networks for natural language processing. In International conference on machine learning, pages
1378–1387, 2016.

[Kumar et al., 2021] Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yulia Tsvetkov. Controlled text
generation as continuous optimization with multiple constraints. Advances in Neural Information
Processing Systems, 34:14542–14554, 2021.

[Kumar and Byrne, 2004] Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for
statistical machine translation. In Proceedings of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,

https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity


BIBLIOGRAPHY 667

pages 169–176, 2004a.

[Kumar and Byrne, 2004] Shankar Kumar and William Byrne. Minimum bayes-risk decoding for
statistical machine translation. In Proceedings of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,
pages 169–176, 2004b.

[Kung and Peng, 2023] Po-Nien Kung and Nanyun Peng. Do models really learn to follow instructions?
an empirical study of instruction tuning. arXiv preprint arXiv:2305.11383, 2023.

[Kupiec, 1992] Julian Kupiec. Robust part-of-speech tagging using a hidden markov model. Computer
Speech & Language, 6:225–242, 1992.

[Kwon et al., 2023] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for
large language model serving with pagedattention. arXiv preprint arXiv:2309.06180, 2023.

[Lafferty et al., 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th
International Conference on Machine Learning 2001, pages 282–289, 2001.

[Lagunas et al., 2021] François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block
pruning for faster transformers. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10619–10629, 2021.

[Lai et al., 2015] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural
networks for text classification. In Twenty-ninth AAAI conference on artificial intelligence, 2015.

[Lake and Baroni, 2018] Brenden Lake and Marco Baroni. Generalization without systematicity: On
the compositional skills of sequence-to-sequence recurrent networks. In International conference on
machine learning, pages 2873–2882. PMLR, 2018.

[Lambert et al., 2024] Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen
Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and
Hannaneh Hajishirzi. Rewardbench: Evaluating reward models for language modeling. arXiv
preprint arXiv:2403.13787, 2024.

[Lample and Conneau, 2019] Guillaume Lample and Alexis Conneau. Cross-lingual language model
pretraining. arXiv preprint arXiv:1901.07291, 2019.

[Lample et al., 2016] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recognition. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 260–270, 2016.

[Lample et al., 2019] Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic
Denoyer, and Hervé Jégou. Large memory layers with product keys. Advances in Neural Information
Processing Systems, 32, 2019.

[Lan et al., 2020] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. In
Proceedings of International Conference on Learning Representations, 2020.

[Landauer et al., 1998] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to
latent semantic analysis. Discourse processes, 25(2-3):259–284, 1998.

[Lang et al., 1990] Kevin J Lang, Alex H Waibel, and Geoffrey E Hinton. A time-delay neural network



668 BIBLIOGRAPHY

architecture for isolated word recognition. Neural networks, 3(1):23–43, 1990.

[Lapesa and Evert, 2014] Gabriella Lapesa and Stefan Evert. A large scale evaluation of distributional
semantic models: Parameters, interactions and model selection. Transactions of the Association for
Computational Linguistics, 2:531–546, 2014.

[Lawson, 2003] Mark V. Lawson. Finite Automata (1st ed.). Chapman and Hall/CRC, 2003.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196. PMLR, 2014.

[Leblond et al., 2021] Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-
Baptiste, Ioannis Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding
beyond beam search. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 8410–8434, 2021.

[LeCun and Bengio, 1995] Yann LeCun and Yoshua Bengio. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[LeCun et al., 1989] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

[LeCun et al., 2012] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[Lee et al., 2023] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard,
Johan Ferret, Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling
reinforcement learning from human feedback with ai feedback. arXiv preprint arXiv:2309.00267,
2023.

[Lee et al., 2017] Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural
machine translation without explicit segmentation. Transactions of the Association for Computational
Linguistics, 5:365–378, 2017.

[Lee et al., 2020] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive
neural sequence modeling by iterative refinement. In 2018 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2018, pages 1173–1182, 2020.

[Lee et al., 2019] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee
Koh. Attention models in graphs: A survey. ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(6):1–25, 2019.

[Lenci, 2018] Alessandro Lenci. Distributional models of word meaning. Annual review of Linguistics,
4:151–171, 2018.

[Lepikhin et al., 2021] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. In Proceedings of International Conference
on Learning Representations, 2021.

[Lester et al., 2021] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-
efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pages 3045–3059, 2021.

[Leviathan et al., 2023] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from
transformers via speculative decoding. In Proceedings of International Conference on Machine



BIBLIOGRAPHY 669

Learning, pages 19274–19286. PMLR, 2023.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 302–308, 2014a.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and
explicit word representations. In Proceedings of the eighteenth conference on computational natural
language learning, pages 171–180, 2014b.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. Advances in neural information processing systems, 27, 2014c.

[Levy et al., 2015] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the association for computational
linguistics, 3:211–225, 2015.

[Lewis et al., 2020] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 7871–7880, 2020a.

[Lewis et al., 2020] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel,
and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in
Neural Information Processing Systems, 33:9459–9474, 2020b.

[Li et al., 2024] Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh Tiwari. Llm inference serving:
Survey of recent advances and opportunities. arXiv preprint arXiv:2407.12391, 2024a.

[Li et al., 2020] Bei Li, Hui Liu, Ziyang Wang, Yufan Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and
Changliang Li. Does multi-encoder help? a case study on context-aware neural machine translation.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
3512–3518, 2020a.

[Li et al., 2020] Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du, Tong Xiao, Huizhen Wang, and
Jingbo Zhu. Shallow-to-deep training for neural machine translation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 995–1005,
2020b.

[Li et al., 2021] Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao, Chunliang Zhang, and Jingbo
Zhu. Learning light-weight translation models from deep transformer. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 13217–13225, 2021a.

[Li et al., 2022] Bei Li, Quan Du, Tao Zhou, Yi Jing, Shuhan Zhou, Xin Zeng, Tong Xiao, Jingbo
Zhu, Xuebo Liu, and Min Zhang. Ode transformer: An ordinary differential equation-inspired
model for sequence generation. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8335–8351, 2022a.

[Li et al., 2022] Bei Li, Tong Zheng, Yi Jing, Chengbo Jiao, Tong Xiao, and Jingbo Zhu. Learning
multiscale transformer models for sequence generation. In International Conference on Machine
Learning, pages 13225–13241. PMLR, 2022b.

[Li et al., 2023] Bei Li, Rui Wang, Junliang Guo, Kaitao Song, Xu Tan, Hany Hassan, Arul Menezes,
Tong Xiao, Jiang Bian, and JingBo Zhu. Deliberate then generate: Enhanced prompting framework



670 BIBLIOGRAPHY

for text generation. arXiv preprint arXiv:2305.19835, 2023a.

[Li, 2011] Hang Li. Learning to Rank for Information Retrieval and Natural Language Processing.
Online access: Morgan & Claypool Synthesis Collection Five. Morgan & Claypool Publishers, 2011.
ISBN 9781608457076.

[Li et al., 2022] Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding
of shallow vision transformers: Learning, generalization, and sample complexity. In The Eleventh
International Conference on Learning Representations, 2022c.

[Li et al., 2022] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-
augmented text generation. arXiv preprint arXiv:2202.01110, 2022d.

[Li et al., 2021] Jicheng Li, Pengzhi Gao, Xuanfu Wu, Yang Feng, Zhongjun He, Hua Wu, and
Haifeng Wang. Mixup decoding for diverse machine translation. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 312–320, 2021b.

[Li et al., 2020] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for
named entity recognition. IEEE Transactions on Knowledge and Data Engineering, 34(1):50–70,
2020c.

[Li and Jurafsky, 2016] Jiwei Li and Dan Jurafsky. Mutual information and diverse decoding improve
neural machine translation. arXiv preprint arXiv:1601.00372, 2016.

[Li et al., 2016] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and William B Dolan. A
diversity-promoting objective function for neural conversation models. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 110–119, 2016.

[Li et al., 2017] Jiwei Li, Will Monroe, and Dan Jurafsky. Learning to decode for future success. arXiv
preprint arXiv:1701.06549, 2017a.

[Li et al., 2017] Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang, and Guodong Zhou.
Modeling source syntax for neural machine translation. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 688–697, 2017b.

[Li et al., 2021] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong,
and Steven Chu Hong Hoi. Align before fuse: Vision and language representation learning with
momentum distillation. Advances in neural information processing systems, 34:9694–9705, 2021c.

[Li et al., 2022] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
Conference on Machine Learning, pages 12888–12900. PMLR, 2022e.

[Li et al., 2024] Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil
Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional inter-
polation for relative positions improves long context transformers. In The Twelfth International
Conference on Learning Representations, 2024b.

[Li et al., 2023] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang You. Sequence
parallelism: Long sequence training from system perspective. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2391–2404,
2023b.

[Li and Liang, 2021] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts
for generation. In Proceedings of the 59th Annual Meeting of the Association for Computational



BIBLIOGRAPHY 671

Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 4582–4597, 2021.

[Li et al., 2019] Xintong Li, Guanlin Li, Lemao Liu, Max Meng, and Shuming Shi. On the word
alignment from neural machine translation. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 1293–1303, 2019.

[Li et al., 2022] Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra
Malik, and Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classifica-
tion and detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4804–4814, 2022f.

[Li et al., 2018] Yanyang Li, Tong Xiao, Yinqiao Li, Qiang Wang, Changming Xu, and Jingbo Zhu. A
simple and effective approach to coverage-aware neural machine translation. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 292–297, 2018.

[Li, 2023] Yinheng Li. A practical survey on zero-shot prompt design for in-context learning. In Pro-
ceedings of the 14th International Conference on Recent Advances in Natural Language Processing,
pages 641–647, 2023.

[Li et al., 2023] Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to
enhance inference efficiency of large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 6342–6353, 2023c.

[Li et al., 2021] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of
convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural
networks and learning systems, 2021d.

[Lialin et al., 2023] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale
up: A guide to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647, 2023.

[Liao et al., 2021] Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin He. A global past-
future early exit method for accelerating inference of pre-trained language models. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2013–2023, 2021.

[Lightman et al., 2024] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen
Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by
step. In The Twelfth International Conference on Learning Representations, 2024.

[Likhomanenko et al., 2021] Tatiana Likhomanenko, Qiantong Xu, Gabriel Synnaeve, Ronan Collobert,
and Alex Rogozhnikov. Cape: Encoding relative positions with continuous augmented positional
embeddings. Advances in Neural Information Processing Systems, 34:16079–16092, 2021.

[Lin et al., 2022] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers.
AI Open, 2022a.

[Lin et al., 2022] Ye Lin, Shuhan Zhou, Yanyang Li, Anxiang Ma, Tong Xiao, and Jingbo Zhu. Multi-
path transformer is better: A case study on neural machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 5646–5656, 2022b.

[Lin et al., 2017] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. In Proceedings of the 5th
International Conference on Learning Representations (ICLR), 2017.



672 BIBLIOGRAPHY

[Ling et al., 2015] Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramón Fermandez, Silvio
Amir, Luis Marujo, and Tiago Luís. Finding function in form: Compositional character models for
open vocabulary word representation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1520–1530, 2015.

[Linzen, 2016] Tal Linzen. Issues in evaluating semantic spaces using word analogies. In Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for NLP, pages 13–18, 2016.

[Lippmann, 1989] Richard P Lippmann. Review of neural networks for speech recognition. Neural
computation, 1(1):1–38, 1989.

[Lipton et al., 2015] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review of
recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

[Liu et al., 2024] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024a.

[Liu et al., 2020] Fenglin Liu, Xuancheng Ren, Zhiyuan Zhang, Xu Sun, and Yuexian Zou. Rethinking
skip connection with layer normalization. In Proceedings of the 28th international conference on
computational linguistics, pages 3586–3598, 2020a.

[Liu et al., 2023] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning. arXiv preprint arXiv:2304.08485, 2023a.

[Liu and Motoda, 2012] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and
data mining, volume 454. Springer Science & Business Media, 2012.

[Liu et al., 2022] Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and
Weizhu Chen. What makes good in-context examples for gpt-3? In Proceedings of Deep Learning
Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 100–114, 2022.

[Liu et al., 2016] Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Agreement on
target-bidirectional neural machine translation. In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 411–416, 2016a.

[Liu et al., 2016] Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Neural machine
translation with supervised attention. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 3093–3102, 2016b.

[Liu et al., 2020] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Under-
standing the difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5747–5763, 2020b.

[Liu et al., 2020] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Under-
standing the difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5747–5763, November 2020c.

[Liu et al., 2023] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural
language processing. ACM Computing Surveys, 55(9):1–35, 2023b.

[Liu et al., 2018] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. Generating wikipedia by summarizing long sequences. In Proceedings



BIBLIOGRAPHY 673

of International Conference on Learning Representations, 2018.

[Liu et al., 2017] Shusen Liu, Peer-Timo Bremer, Jayaraman J Thiagarajan, Vivek Srikumar, Bei Wang,
Yarden Livnat, and Valerio Pascucci. Visual exploration of semantic relationships in neural word
embeddings. IEEE transactions on visualization and computer graphics, 24(1):553–562, 2017.

[Liu et al., 2024] Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J
Liu, and Jialu Liu. Statistical rejection sampling improves preference optimization. In The Twelfth
International Conference on Learning Representations, 2024b.

[Liu, 2009] Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends® in
Information Retrieval, 3(3):225–331, 2009.

[Liu et al., 2023] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie
Tang. Gpt understands, too. AI Open, 2023c.

[Liu et al., 2023] Xiaoxia Liu, Jingyi Wang, Jun Sun, Xiaohan Yuan, Guoliang Dong, Peng Di, Wenhai
Wang, and Dongxia Wang. Prompting frameworks for large language models: A survey. arXiv
preprint arXiv:2311.12785, 2023d.

[Liu et al., 2024] Xinyu Liu, Runsong Zhao, Pengcheng Huang, Chunyang Xiao, Bei Li, Jingang
Wang, Tong Xiao, and Jingbo Zhu. Forgetting curve: A reliable method for evaluating memorization
capability for long-context models. In Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 4667–4682, 2024c.

[Liu et al., 2023] Yang Liu, Yao Zhang, Yixin Wang, Feng Hou, Jin Yuan, Jiang Tian, Yang Zhang,
Zhongchao Shi, Jianping Fan, and Zhiqiang He. A survey of visual transformers. IEEE Transactions
on Neural Networks and Learning Systems, 2023e.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[Liu et al., 2020] Yuchen Liu, Junnan Zhu, Jiajun Zhang, and Chengqing Zong. Bridging the modality
gap for speech-to-text translation. arXiv preprint arXiv:2010.14920, 2020d.

[Longpre et al., 2023] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay,
Denny Zhou, Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing
data and methods for effective instruction tuning. In International Conference on Machine Learning,
pages 22631–22648. PMLR, 2023.

[Lopez, 2008] Adam Lopez. Statistical machine translation. ACM Computing Surveys (CSUR), 40(3):
1–49, 2008.

[Lu et al., 2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-image
co-attention for visual question answering. Advances in neural information processing systems, 29,
2016.

[Lund, 1995] Kevin Lund. Semantic and associative priming in high-dimensional semantic space. In
Proc. of the 17th Annual conferences of the Cognitive Science Society, 1995, 1995.

[Lund and Burgess, 1996] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces
from lexical co-occurrence. Behavior research methods, instruments, & computers, 28(2):203–208,
1996.

[Luong et al., 2015] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches
to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical



674 BIBLIOGRAPHY

Methods in Natural Language Processing, pages 1412–1421, 2015.

[Ma et al., 2019] Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng,
Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. Stacl:
Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix
framework. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 3025–3036, 2019.

[Ma and Hovy, 2016] Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional
lstm-cnns-crf. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1064–1074, 2016.

[Ma et al., 2023] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig,
Jonathan May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. In The
Eleventh International Conference on Learning Representations, 2023.

[Ma et al., 2024] Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang,
Jonathan May, Luke Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm
pretraining and inference with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

[Madaan et al., 2024] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao,
Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark.
Self-refine: Iterative refinement with self-feedback. Advances in Neural Information Processing
Systems, 36, 2024.

[Malaviya et al., 2018] Chaitanya Malaviya, Pedro Ferreira, and André FT Martins. Sparse and
constrained attention for neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages 370–376, 2018.

[Manning and Schütze, 1999] Chris Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

[Manning, 2022] Christopher D Manning. Human language understanding & reasoning. Daedalus,
151(2):127–138, 2022.

[Manning et al., 2008] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[Manning et al., 2020] Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and
Omer Levy. Emergent linguistic structure in artificial neural networks trained by self-supervision.
Proceedings of the National Academy of Sciences, 117(48):30046–30054, 2020.

[Marcus, 1993] Gary F Marcus. Negative evidence in language acquisition. Cognition, 46(1):53–85,
1993.

[Markman, 2013] Arthur B Markman. Knowledge representation. Psychology Press, 2013.

[Markov, 1913] AA Markov. Essai d’une recherche statistique sur le texte du roman. Eugene Onegin”
illustrant la liaison des epreuve en chain (‘Example of a statistical investigation of the text of “Eugene
Onegin” illustrating the dependence between samples in chain”). In: Izvistia Imperatorskoi Akademii
Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg). 6th ser, 7:153–162, 1913.

[Martins et al., 2022] Pedro Henrique Martins, Zita Marinho, and André FT Martins. ∞-former:
Infinite memory transformer-former: Infinite memory transformer. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages



BIBLIOGRAPHY 675

5468–5485, 2022.

[Maruf et al., 2019] Sameen Maruf, André FT Martins, and Gholamreza Haffari. Selective attention
for context-aware neural machine translation. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3092–3102, 2019.

[Masoudnia and Ebrahimpour, 2014] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a
literature survey. The Artificial Intelligence Review, 42(2):275, 2014.

[Matusov et al., 2006] Evgeny Matusov, Nicola Ueffing, and Hermann Ney. Computing consensus
translation for multiple machine translation systems using enhanced hypothesis alignment. In 11th
Conference of the European Chapter of the Association for Computational Linguistics, pages 33–40,
2006.

[Mavi et al., 2024] Vaibhav Mavi, Anubhav Jangra, and Adam Jatowt. Multi-hop question answering.
Foundations and Trends® in Information Retrieval, 17(5):457–586, 2024.

[McCallum et al., 2000] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum en-
tropy markov models for information extraction and segmentation. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 591–598, 2000.

[McCann et al., 2017] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. Advances in neural information processing systems, 30,
2017.

[McCarley et al., 2019] JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a
bert-based question answering model. arXiv preprint arXiv:1910.06360, 2019.

[McClave and Sincich, 2006] James T. McClave and Terry Sincich. Statistics (10th ed.). Prentice Hall,
2006.

[McCulloch and Pitts, 1943] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[McElreath, 2020] Richard McElreath. Statistical Rethinking: A Bayesian Course with Examples in R
and STAN (2nd ed.). Chapman and Hall/CRC, 2020.

[McNamara, 2005] Timothy P McNamara. Semantic priming: Perspectives from memory and word
recognition. Psychology Press, 2005.

[Meister et al., 2020] Clara Meister, Tim Vieira, and Ryan Cotterell. Best-first beam search. Transac-
tions of the Association for Computational Linguistics, 8:795–809, 2020.

[Merrill et al., 2022] William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers
are constant-depth threshold circuits. Transactions of the Association for Computational Linguistics,
10:843–856, 2022.

[Meyer and Schvaneveldt, 1971] David E Meyer and Roger W Schvaneveldt. Facilitation in recognizing
pairs of words: evidence of a dependence between retrieval operations. Journal of experimental
psychology, 90(2):227, 1971.

[Mi et al., 2016] Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe Ittycheriah. Coverage
embedding models for neural machine translation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 955–960, 2016a.

[Mi et al., 2016] Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. Supervised attentions for neural



676 BIBLIOGRAPHY

machine translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 2283–2288, 2016b.

[Michel et al., 2019] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better
than one? Advances in neural information processing systems, 32, 2019.

[Micikevicius et al., 2018] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos,
Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
and Hao Wu. Mixed precision training. In Proceedings of International Conference on Learning
Representations, 2018.

[Mielke et al., 2021] Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey,
Matthias Gallé, Arun Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Samson Tan. Between
words and characters: A brief history of open-vocabulary modeling and tokenization in nlp. arXiv
preprint arXiv:2112.10508, 2021.

[Miettinen, 1999] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science
& Business Media, 1999.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev
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attention head, 229
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auto-regressive, 61
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back translation, 263
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