
Tong Xiao

Jingbo Zhu

Natural Language Processing
Neural Networks and Large Language Models

NATURAL LANGUAGE PROCESSING LAB

NORTHEASTERN UNIVERSITY

&

NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook


Copyright © 2021-2025 Tong Xiao and Jingbo Zhu

NATURAL LANGUAGE PROCESSING LAB, NORTHEASTERN UNIVERSITY

&
NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Licensed under the Creative Commons Attribution-NonCommercial 4.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

June 12, 2025

Tong Xiao and Jingbo Zhu
June, 2025

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
http://creativecommons.org/licenses/by-nc/4.0


https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Chapter 9

Prompting

In the context of LLMs, prompting refers to the method of providing an LLM with a specific
input or cue to generate a desired output or perform a task. For example, if we want the LLM
to translate a sentence from English to Chinese, we can prompt it like this

Translate the text from English to Chinese.

Text: The early bird catches the worm.

Translation:

Prompting is crucial for LLMs because it directly influences how effectively these models
understand and respond to user queries. A well-crafted prompt can guide an LLM to generate
more accurate, relevant, and contextually appropriate responses. Furthermore, this process can
be iteratively refined. By analyzing the responses of the LLM, users can adjust their prompts
to align more closely with their specific needs. Given the importance of prompting in applying
LLMs, prompt design has become an essential skill for users and developers working with
LLMs. This leads to an active research area, called prompt engineering, in which we design
effective prompts to make better use of LLMs and enhance their practical utility in real-world
applications.

An important concept related to prompting is in-context learning. When prompting an
LLM, we can add new information to the context, such as demonstrations of problem-solving.
This allows the LLM to learn from this context how to solve the problem. Here is an example
of prompting LLMs with a few demonstrations of how to classify text based on sentiment
polarity.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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Here are some examples of text classification.

Example 1: We had a delightful dinner together. → Label: Positive

Example 2: I’m frustrated with the delays. → Label: Negative

What is the label for “That comment was quite hurtful.”?

Label:

In-context learning is often seen as an emergent ability of LLMs that arises after pre-
training. Though LLMs can be trained or tuned to perform new tasks, in-context learning
provides a very efficient way to adapt these models without any training or tuning effort.
Perhaps this is one of the most notable features of LLMs: they indeed learn general knowledge
about the world and language during pre-training, which we can easily apply to new chal-
lenges. Moreover, in-context learning reflects the broader trend of making AI systems more
generalizable and user-friendly. Instead of requiring specialized engineers to fine-tune models
for every unique task, users can interact with LLMs in a more intuitive way, simply providing
examples or adjusting the context as needed.

In this chapter, we focus on prompting techniques in LLMs. We begin by considering
several interesting prompt designs commonly used in prompt engineering. Then, we discuss a
series of refinements to these methods. Finally, we explore approaches for automating prompt
design.

9.1 General Prompt Design

This section presents basic concepts in prompt design, along with examples of how to prompt
LLMs for various NLP tasks. Since the effectiveness of prompting is highly dependent on the
LLMs being used, prompts often vary across different LLMs, making it difficult to provide a
comprehensive list of prompts for all LLMs and downstream tasks. Therefore, this discussion
is not focused on any specific LLM. Instead, the goal is to provide guiding principles for
prompt design.

9.1.1 Basics

The term prompt is used in many different ways. In this chapter we define a prompt as the input
text to an LLM, denoted by x. The LLM generates a text y by maximizing the probability
Pr(y|x). In this generation process, the prompt acts as the condition on which we make
predictions, and it can contain any information that helps describe and solve the problem.

A prompt can be obtained using a prompt template (or template for short) [Liu et al., 2023a].
A template is a piece of text containing placeholders or variables, where each placeholder can
be filled with specific information. Here are two templates for asking the LLM for weekend
suggestions.
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Please give me some suggestions for a fun weekend.

If {∗premise∗}, what are your suggestions for a fun weekend.

In the first template, we simply instruct the LLM to return some suggestions. So the tem-
plate is just a piece of text with no variables. In the second template, the variable {∗premise∗}
needs to be specified by the users to provide a premise for making suggestions. For example,
if we input

premise = the weather is nice this weekend

then we can generate a prompt

If the weather is nice this weekend,
what are your suggestions for a fun weekend.

We can also design a template with multiple variables. Here is an example in which we
compare the two sentences in terms of their semantic similarity.

Here is a sentence
{∗sentence1∗}
Here is another sentence
{∗sentence2∗}
Compute the semantic similarity between the two sentences

A popular way to format prompts is to write each input or output in a “name:content” style.
For example, we can describe a conversation between two people, named John and David, and
use the LLM to continue the conversation. A template of such prompts is given by
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John: {∗utterance1∗}
David: {∗utterance2∗}
John: {∗utterance3∗}
David: {∗utterance4∗}
John: {∗utterance5∗}
David: {∗utterance6∗}
John: {∗utterance7∗}
David:

The “name:content” format can be used to define the task that we want the LLM to perform.
For example, given that “Q” and “A” are commonly used abbreviations for “Question” and
“Answer”, respectively, we can use the following template to do question-answering.

Q: {∗question∗}
A:

This format can be used to describe more complex tasks. For example, the following is an
example of providing a specification for a translation task

Task: Translation
Source language: English
Target language: Chinese
Style: Formal text
Template: Translate the following sentence: {∗sentence∗}

In practical systems, it is common to represent and store such data in key-value pairs, such as
the JSON format1.

When the problem is difficult to describe in an attribute-based manner, it is more common
to instruct LLMs with a clear and detailed description. There are many ways to do this. One

1The JSON representation is

{
"Task": "Translation"
"Source language": "English"
"Target language": "Chinese"
"Style": "Formal text"
"Template": "Translate the following sentence: {∗sentence∗}"

}
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example is to assign a role to LLMs and provide sufficient context. The following is a template
that instructs an LLM to act as an expert and answer questions from children.

You are a computer scientist with extensive knowledge in the field
of deep learning.

Please explain the following computer-related concept to a child
around 10 years old, using simple examples whenever possible.

{∗concept∗}

Here the text “You are a computer scientist ... deep learning. ” is sometimes called system
information, and is provided to help the LLM understand the context or constraints of the task
it is being asked to perform.

9.1.2 In-context Learning
Learning can occur during inference. In-context learning is one such method, where prompts
involve demonstrations of problem-solving, and LLMs can learn from these demonstrations
how to solve new problems. Since we do not update model parameters in this process, in-
context learning can be viewed as a way to efficiently activate and reorganize the knowledge
learned in pre-training without additional training or fine-tuning. This enables quick adaptation
of LLMs to new problems, pushing the boundaries of what pre-trained LLMs can achieve
without task-specific adjustments.

In-context learning can be illustrated by comparing three methods: zero-shot learning, one-
shot learning and few-shot learning. Zero-shot learning, as its name implies, does not involve
a traditional “learning” process. It instead directly applies LLMs to address new problems that
were not observed during training. In practice, we can repetitively adjust prompts to guide
the LLMs in generating better responses, without demonstrating problem-solving steps or
providing examples. Consider the following example. Suppose we want to use an LLM as an
assistant that can help correct English sentences. A zero-shot learning prompt is given by

SYSTEM You are a helpful assistant, and are great at grammar correction.

USER You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: She don’t like going to the park.
Output:

Here the gray words are used to indicate different fields of the prompt.
In one-shot learning, we extend this prompt by adding a demonstration of how to correct

sentences, thereby allowing the LLM to learn from this newly-added experience.
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SYSTEM You are a helpful assistant, and are great at grammar correction.

DEMO You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: There is many reasons to celebrate.
Output: There are many reasons to celebrate.

USER You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: She don’t like going to the park.
Output:

Furthermore, we can add more demonstrations to enable few-shot learning.

SYSTEM You are a helpful assistant, and are great at grammar correction.

DEMO1 You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: There is many reasons to celebrate.
Output: There are many reasons to celebrate.

DEMO2 You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: Me and my friend goes to the gym every day.
Output: My friend and I go to the gym every day.

USER You will be provided with a sentence in English. The task is
to output the correct sentence.

Input: She don’t like going to the park.
Output:

In few-shot learning, we essentially provide a pattern that maps some inputs to the corre-
sponding outputs. The LLM attempts to follow this pattern in making predictions, provided
that the prompt includes a sufficient number of demonstrations, although generally small. It is
also possible to use simpler patterns to achieve this. For example, one can use the following
few-shot learning prompt for translating words from Chinese to English.



9.1 General Prompt Design 9

DEMO 现在 → now
来 → come
去 → go
男孩 → boy

USER 女孩 →

If the LLM is powerful enough, few-shot learning can enable it to address complex
problems, such as mathematical reasoning. For example, consider the following task of
summing two numbers and then dividing the sum by their product.

DEMO 12 5 → (12+5)/(12×5) = 0.283

3 1 → (3+1)/(3×1) = 1.33

−9 4 → (−9+4)/(−9×4) = 0.138

15 15 → (15+15)/(15×15) = 0.133

USER 19 73 →

In many practical applications, the effectiveness of in-context learning relies heavily on the
quality of prompts and the fundamental abilities of pre-trained LLMs. On one hand, we need
a significant prompt engineering effort to develop appropriate prompts that help LLMs learn
more effectively from demonstrations. On the other hand, stronger LLMs can make better use
of in-context learning for performing new tasks. For example, suppose we wish to use an LLM
to translate words from Inuktitut to English. If the LLM lacks pre-training on Inuktitut data, its
understanding of Inuktitut will be weak, and it will be difficult for the model to perform well
in translation regardless of how we prompt it. In this case, we need to continue training the
LLM with more Inuktitut data, rather than trying to find better prompts.

It might be interesting to explore how in-context learning emerges during pre-training and
why it works during inference. One simple understanding is that LLMs have gained some
knowledge of problem-solving, but there are many possible predictions, which are hard to
distinguish when the models confront new problems. Providing demonstrations can guide the
LLMs to follow the “correct” paths. Furthermore, some researchers have tried to interpret
in-context learning from several different perspectives, including Bayesian inference [Xie et al.,
2022], gradient descent [Dai et al., 2023; Von Oswald et al., 2023], linear regression [Akyürek
et al., 2023], meta learning [Garg et al., 2022], and so on.

9.1.3 Prompt Engineering Strategies

Designing prompts is highly empirical. In general, there are many ways to prompt an LLM for
performing the same task, and we need to perform a number of trial-and-error runs to find a
satisfactory prompt. To write good prompts more efficiently, one can follow certain strategies.
Examples of common prompting principles include
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• Describing the task as clearly as possible. When we apply an LLM to solve a problem,
we need to provide a precise, specific, and clear description of the problem and instruct
the LLM to perform as we expect. This is particularly important when we want the
output of the LLM to meet certain expectations. For example, suppose we are curious
about climate change. A simple prompt for asking the LLM to provide some information
is

Tell me about climate change.

Since this instruction is too general, the LLM may generate a response that addresses
any aspect of climate change, which may not align with our specific interests. In this
case, we can instead use prompts that are specific and detailed. One such example is

Provide a detailed explanation of the causes and effects of climate
change, including the impact on global temperatures, weather patterns,
and sea levels. Also, discuss possible solutions and actions being taken
to mitigate these effects.

Now suppose we intend to explain climate change to a 10-year-old child. We can adjust
the above prompt further.

Explain the causes and effects of climate change to a 10-year-old child.
Talk about how it affects the weather, sea levels, and temperatures.
Also, mention some things people are doing to help. Try to explain in
simple terms and do not exceed 500 words.

• Guiding LLMs to think. LLMs have exhibited surprisingly good capabilities to “think”.
A common example is that well-developed LLMs have achieved impressive performance
in mathematical reasoning tasks, which are considered challenging. In prompt engineer-
ing, the “thinking” ability of LLMs needs to be activated through appropriate prompting,
especially for problems that require significant reasoning efforts. In many cases, an
LLM that is instructed to “think” can produce completely different results compared
with the same LLM that is instructed to perform the task straightforwardly. For example,
Kojima et al. [2022] found that simply appending “Let’s think step by step” to the end of
each prompt can improve the performance of LLMs on several reasoning tasks. LLMs
can be prompted to “think” in a number of ways. One method is to instruct LLMs to
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generate steps for reasoning about the problem before reaching the final answer. For
example, consider a task of solving mathematical problems. See below for a simple
prompt for this task.

You are a mathematician. You will be provided with a math problem.
Please solve the problem.

Since solving math problems requires a detailed reasoning process, LLMs would proba-
bly make mistakes if they attempted to work out the answer directly. So we can explicitly
ask LLMs to follow a given reasoning process before coming to a conclusion.

You are a mathematician. You will follow these detailed reasoning
steps when solving math problems.

Step 1: Problem Interpretation.
The mathematician carefully listens to your query and understands the
intricate details of the mathematical challenge you have presented.

Step 2: Strategy Formulation.
Drawing upon their extensive knowledge, the mathematician chooses
the most effective strategy tailored to the type of math problem, whether
it is algebra, calculus, or geometry.

Step 3: Detailed Calculation.
With precision and expertise, the mathematician performs the necessary
calculations step by step, adhering to all mathematical principles.

Step 4: Solution Review.
Before providing the final answer, the mathematician meticulously
checks the calculations for accuracy and offers a concise explanation
or rationale for the solution.

You will be provided with a math problem. Please solve the problem.

{∗problem∗}

Another method to guide LLMs to “think” is through multiple rounds of interaction with
LLMs. For example, as a first step, we can instruct LLMs to solve the problem directly
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You will be provided with a math problem. Please solve the problem.

{∗problem∗}

Now we have an initial answer to the problem. As a second step, we prompt LLMs
to evaluate the correctness of the answer and, if necessary, rework it to find a better
solution.

You will be provided with a math problem, along with a solution.
Evaluate the correctness of this solution, and identify any errors if
present. Then, work out your own solution.

Problem: {∗problem∗}

Solution: {∗solution∗}

The prompts presented here are closely related to a long line of research on reasoning
problems in LLMs. It is impossible to provide a complete discussion of all related issues
because this topic covers a large family of methods. But we will see a relatively more
detailed discussion on how to improve prompting through more reasoning in Section
9.2.

• Providing reference information. As discussed in the previous section, we can include
demonstrations in prompts and allow LLMs to in-context learn from these demon-
strations how to perform the task. In fact, given the remarkable ability of language
understanding of LLMs, we can add any type of text into the prompts and so these
models can predict based on enriched contexts. In many applications, we have various in-
formation that is relevant to user queries. Instead of using LLMs to make unconstrained
predictions, we often want LLMs to produce outputs that are confined to the relevant
text. One such example is RAG, where the relevant text for the user query is provided by
calling an IR system, and we prompt LLMs to generate responses based on this provided
relevant text. The following prompt shows an example.
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You are an expert that can generate answers to input queries. You have
now been provided with a query and the corresponding context infor-
mation. Please generate an answer based on this context information.
Note that you need to provide the answer in your own words, not just
copy from the context provided.

Context information: {∗IR-result∗}
Query: {∗query∗}

If the context information is highly reliable, we can even restrict LLMs to answering
using only the provided text. An example prompt is shown as follows

You are an expert tasked with generating answers from input queries.
You have been provided with a query and corresponding context infor-
mation, organized in a table where each row represents a useful record.
Please generate an answer using only this context information. Ensure
that you provide the answer in your own words.

Context information: {∗table∗}
Query: {∗query∗}

When dealing with real-world problems, we often have prior knowledge and additional
information about the problems that help produce better answers. Considering such
information in prompting is generally helpful in improving the result.

• Paying attention to prompt formats. In general, the performance of LLMs is highly
sensitive to the prompts we input. Sometimes a small modification to a prompt can
lead to a big change in model output. An interesting example is that changing the
order of sentences in a prompt may cause LLMs to generate different results. To make
prompts easy to read and reduce ambiguity, it is common to format them in a way that
ensures clarity. One example is that we define several fields for prompts and fill different
information in each field. Another example is we can use code-style prompts for LLMs
which can understand and generate both natural language and code. See the following
for a code-style prompt that performs translation where one demonstration is presented.
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[English] = [I have an apple.]

[German] = [Ich habe einen Apfel.]

[English] = [I have an orange.]

[German] =

LLMs can receive text in various formats. This allows us to use control characters, XML
tags, and specific formatting to represent complex data. And it is useful to specify how
the input and output should be formatted or structured. For example, we can delimit
sections of text using quotes and prompt LLMs accordingly (e.g., adding a sentence like
“the input text is delimited by double quotes” to the prompt).

Above, we have discussed only a few strategies for writing good prompts. There are, of
course, many such methods, and one needs to develop their own through practice. Interested
readers can refer to various online documents for more information, such as OpenAI’s manual
on the GPT series models2.

9.1.4 More Examples

In this subsection, we consider more examples of prompting LLMs to perform various NLP
tasks. The motivation here is not to give standard prompts for these tasks, but rather to use
simple examples to illustrate how LLMs can be prompted to deal with NLP problems.

1. Text Classification

Text classification is perhaps one of the most common problems in NLP. Many tasks can
be broadly categorized as assigning pre-defined labels to a given text. Here we consider the
polarity classification problem in sentiment analysis. We choose polarity classification for
illustration because it is one of the most popular and well-defined text classification tasks. In a
general setup of polarity classification, we are required to categorize a given text into one of
three categories: negative, positive, or neutral. Below is a simple prompt for doing this (for
easy reading, we highlight the task description in the prompt).

Analyze the polarity of the following text and classify it as positive, negative,
or neutral.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

The polarity of the text can be classified as negative.

2See https://platform.openai.com/docs/guides/prompt-engineering/
six-strategies-for-getting-better-results.

https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
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To make the example complete, we show the response generated by the LLM (underlined text).

Although the answer is correct, the LLM gives this answer not in labels but in text
describing the result. The problem is that LLMs are designed to generate text but not to assign
labels to text and treat classification problems as text generation problems. As a result, we need
another system to map the LLM’s output to the label space (call it label mapping), that is, we
extract “negative” from “The polarity of the text can be classified as negative”. This is trivial
in most cases because we can identify label words via simple heuristics. But occasionally,
LLMs may not express the classification results using these label words. In this case, the
problem becomes more complicated, as we need some way to map the generated text or words
to predefined label words.

One method to induce output labels from LLMs is to reframe the problem as a cloze task.
For example, the following shows a cloze-like prompt for polarity classification.

Analyze the polarity of the following text and classify it as positive, negative,
or neutral.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

The polarity of the text is negative

We can use LLMs to complete the text and fill the blank with the most appropriate word.
Ideally, we wish the filled word would be positive, negative, or neutral. However, LLMs
are not guaranteed to generate these label words. One method to address this problem is to
constrain the prediction to the set of label words and select the one with the highest probability.
Then, the output label is given by

label = argmax
y∈Y

Pr(y|x) (9.1)

where y denotes the word filled in the blank, and Y denotes the set of label words
{positive,negative,neutral}.

Another method of using LLMs to generate labels is to constrain the output with prompts.
For example, we can prompt LLMs to predict within a controlled set of words. Here is an
example.
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Analyze the polarity of the following text and classify it as positive, negative,
or neutral.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

What is the polarity of the text?

Just answer: positive, negative, or neutral.

Negative

Sentiment analysis is a common NLP problem that has probably been well understood by
LLMs through pre-training or fine-tuning. Thus we can prompt LLMs using simple instructions
to perform the task. However, for new classification problems, it may be necessary to provide
additional details about the task, such as the classification standards, so that the LLMs can
perform correctly. To do this, we can add a more detailed description of the task and/or
demonstrate classification examples in the prompts. To illustrate, consider the following
example.

Analyze the polarity of the following text and classify it as positive, negative,
or neutral. Here’s what each category represents:

Positive: This indicates that the text conveys a positive emotion or attitude. For
example, texts expressing happiness, satisfaction, excitement, or admiration
are considered positive.

Negative: This refers to a text that expresses a negative emotion or attitude. It
encompasses feelings of sadness, anger, frustration, or criticism.

Neutral: Neutral sentiment is used to describe texts that do not exhibit clear
positive or negative emotions but instead convey informational, factual, or
indifferent tones.

Text:
The service at the restaurant was slower than expected, which was a bit
frustrating.

What is the polarity of the text?

Negative

While it seems straightforward to use LLMs for classification problems, there are still
issues that have not been well addressed. For example, when dealing with a large number of
categories, it remains challenging to effectively prompt LLMs. Note that if we face a very
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difficult classification problem and have a certain amount of labeled data, fine-tuning LLMs or
adopting “BERT + classifier”-like architectures is also desirable.

2. Information Extraction

Many NLP problems can be regarded as information extraction problems, involving the
identification or extraction of specific pieces of information from unstructured text. This
information can include named entities, relationships, events, and other relevant data points.
The goal of information extraction is to transform raw data into a format that can be easily
analyzed and used in various downstream applications.

As information extraction covers a wide range of problems, we cannot discuss them all
here. Instead, we start with the task of named entity recognition — a task that has long
been a concern in NLP. Named entity recognition is a process that detects and classifies key
information in text into specific groups. These key pieces of information, known as named
entities, typically include proper names and are categorized into distinct classes such as people,
locations, organizations, dates, monetary values, and percentages. Consider first a simple
example of extracting person names from a text3.

Identify all person names in the provided text.

Text:
Is the UK really doing that badly or have travel trends shifted, post-pandemic?
For Tom Jenkins, CEO of the European Tourism Organisation, it’s the latter.
“I think the UK is doing perfectly well but we’ll see more people going to
Europe,” he says of 2024, adding that there’s “allegedly a slight plateau of
American demand for the UK.”

The person name identified in the provided text is:

Tom Jenkins

Then, we can extract all named entities.

3The text is from https://edition.cnn.com/travel

https://edition.cnn.com/travel
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Identify and classify all named entities in the provided text into categories
such as person names, locations, dates, and organizations. List each entity
with its type on one line.

Text:
Is the UK really doing that badly or have travel trends shifted, post-pandemic?
For Tom Jenkins, CEO of the European Tourism Organisation, it’s the latter.
“I think the UK is doing perfectly well but we’ll see more people going to
Europe,” he says of 2024, adding that there’s “allegedly a slight plateau of
American demand for the UK.”

1. Tom Jenkins - Person Name

2. European Tourism Organisation - Organization

3. UK - Location

4. Europe - Location

5. 2024 - Date

Given these identified named entities, we can further process the text using other infor-
mation extraction tasks. For example, we can identify the relationships between these named
entities (call it relation extraction). The corresponding prompt is shown as follows.

Given a text and a list of named entities identified within it, analyze and
describe the relationships between these entities. Explain how each entity is
contextually related to others.

Text:
Is the UK really doing that badly or have travel trends shifted, post-pandemic?
For Tom Jenkins, CEO of the European Tourism Organisation, it’s the latter.
“I think the UK is doing perfectly well but we’ll see more people going to
Europe,” he says of 2024, adding that there’s “allegedly a slight plateau of
American demand for the UK.”

Named Entity:
Tom Jenkins, European Tourism Organisation, UK, Europe, 2024

Tom Jenkins - European Tourism Organisation: Tom Jenkins is the CEO
of the European Tourism Organisation. This indicates a professional
association where Tom Jenkins likely has a significant role in directing the
organization’s activities, especially those related to tourism in Europe.

...
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If LLMs have been fine-tuned with instruction following for information extraction tasks,
it is relatively easy to perform various information extraction tasks. For example, the following
is a prompt template for information extraction.

You will be provided with a text. Your task is to {∗task-description∗}

Text: {∗text∗}

Here task-description is the instruction for the task. Examples of the instruction include

extract the keywords from the text.

extract the key events from the text.

detect the coreference and anaphoric links between entities from the text.

and so on. Of course, we can provide a more detailed description of the task to prompt LLMs
more accurately.

3. Text Generation

In NLP, the term text generation is used broadly to cover a wide range of different problems,
many of which focus on generating text based on given text. These problems can be roughly
categorized into two classes: 1) continual writing based on the input text (call it text comple-
tion), and 2) transformation of the input text into another text (call it text transformation).
Here, we illustrate the prompts for the former and consider the prompts for the latter in the
following discussion.

A simple example of text completion is continuing to write a story starting with a few
given sentences.

You are a writer who is great at writing stories. You are provided with a few
sentences to start with. Please continue the story from the provided sentences.

Start of the story:
One sunny afternoon, Lily discovered a tiny, golden key hidden under a rock
in her backyard. Curious, she picked it up and wondered what it might unlock.
Just then, her cat, Whiskers, began to meow excitedly, leading her towards
the old oak tree at the edge of the garden.

Lily followed Whiskers, her heart pounding with excitement and a touch
of nervousness. The old oak tree had always seemed mysterious to her, its
gnarled branches casting long shadows even on the brightest days. As they
reached the tree, Whiskers darted ahead and started pawing at something
buried beneath a pile of autumn leaves ...
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Likewise, we can create a conversation given the conversational context.

You are provided with a conversation between a tourist and a taxi driver.
Please complete the conversation.

Tourist: Could you take me to the downtown museum, please?

Taxi Driver: Of course! First time in the city?

Tourist: Yes, any must-see places around?

Taxi Driver: Definitely check out the botanical gardens after the museum.
They’re nearby and quite beautiful.

Tourist: Great, thanks for the tip!

Taxi Driver: No problem. Enjoy your visit!

Another application of text completion is generating text based on user requirements. The
requirements can include style, tone, length, and any specific content that the text should con-
tain. For example, users may need a formal report, a creative story, or a piece of programming
code. Here is a prompt for generating a five-character regulated Chinese poem.

You are a poet. Please write a traditional Chinese poem. Here is the require-
ment.

Theme: Spring’s rejuvenation

Structure: Five-character regulated poem

Emotion: Convey a sense of happiness and renewal through vivid spring
imagery.

春意盎然

翠柳风中舞，

红花雨后新。

山明水又绿，

天宽鸟自频。

If the LLM is trained to generate language and code, we can prompt it to perform code
completion tasks. Here is an example.



9.1 General Prompt Design 21

Please write a Python function to calculate the average of a list of numbers.

def calculate_average(numbers):
if numbers: # Check if the list is not empty
return sum(numbers) / len(numbers)
else:
return 0 # Return 0 if the list is empty

4. Text Transformation

Typical text transformation tasks include machine translation, summarization, text style transfer,
and so on. The prompts used to perform these tasks are not significantly different from the
ones presented previously. Here, we present a few examples to showcase these prompts.

Translate the following text from English to Spanish.

Text:

The quick brown fox jumps over the lazy dog.

El rápido zorro marrón salta sobre el perro perezoso.

Summarize the following article in no more than 50 words:

Article:

In recent years, urban areas have been facing significant challenges related to
sustainability and environmental management. Cities are experiencing higher
rates of pollution, increased traffic congestion, and greater demands on infras-
tructure. This growth has led to numerous environmental issues, including
elevated levels of air and water pollution, increased waste production, and
strained public services ...

Urban areas are grappling with sustainability challenges, such as rising
pollution, traffic congestion, and infrastructure demands ...
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Rewrite this text in a formal tone.

Text:

Hey, what’s up? Long time no see!

Hello, how have you been? It has been quite some time since we last met!

5. Question Answering

The question-answering format is inherently simple. For a given question, there is an answer
that corresponds to it. For example, in open-domain question answering, we expect the
system to return an answer in response to a user-submitted question. Prompt templates for
general-purpose question answering can be:

{∗question∗}

Question: {∗question∗}
Answer:

Q: {∗question∗}
A:

Question answering is important in NLP because many problems can be framed as question-
answering tasks. In particular, many recent reasoning tasks are defined in the form of question
answering. For example, in the MMLU benchmark [Hendrycks et al., 2021], each example
consists of a multiple-choice question, and LLMs are required to select the correct answer. See
the following for an example prompt for answering a question in this dataset.
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(Z,∗) is a group with a∗ b= a+ b+1 for all a, b in Z. The inverse of a is

(A) 0

(B) −2

(C) a−2

(D) (2+a)∗−1

D

Another widely-used benchmark is the GSM8K dataset [Cobbe et al., 2021]. It consists of
thousands of grade school math word problems. For each problem, we use LLMs to return
a solution in natural language. For example, the following is a prompt used for solving a
problem in GSM8K.
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DEMO Q: Jerry’s two daughters play softball on different teams. They each
have 8 games this season. Each team practices 4 hours for every game
they play. If each game lasts for 2 hours, how many hours will Jerry
spend at the field watching his daughters play and practice altogether?

A: Jerry will spend 8 games * 2 hours per game = ≪ 8∗2 = 16≫ 16

hours watching one daughter play her games. He will spend 16∗2=≪
16 ∗ 2 = 32 ≫ 32 hours watching both daughters play their games.
He will spend 8 games * 4 hours of practice = ≪ 8 ∗ 4 = 32 ≫ 32

hours watching one daughter practice. He will spend 32 ∗ 2 =≪
32 ∗ 2 = 64 ≫ 64 hours watching both daughters practice. He will
spend a total of 32 hours watching games + 64 hours watching practice
=≪ 32+64 = 96≫ 96 hours. #### 96

Q: Mary bought six apples from the store. From the apples she bought,
for each that Mary ate, she planted two trees from the remaining ones.
How many apples did Mary eat?

A: She planted eight trees. This means she used half of that amount of
apples, which is 8 trees /2 trees/apple =≪ 8/2 = 4≫ 4 apples. That
means that she planted four of the six apples she bought, leaving only
6 apples − 4 apples =≪ 6−4 = 2≫ 2 apples to be eaten. #### 2

USER Q: Boris has 100 apples. Beck has 23 fewer apples than Boris. If
Boris gives Beck 10 apples, how many fewer apples does Beck have
than Boris now?

A: Boris starts with 100 apples and gives Beck 10 apples, leaving
him with 100 apples −10 apples =≪ 100−10 = 90≫ 90 apples.
Initially, Beck has 23 fewer apples than Boris, giving him a
starting count of 100−23 =≪ 100−23 = 77≫ 77 apples. After
receiving 10 apples from Boris, Beck’s total comes to 77 apples +10

apples =≪ 77+10 = 87≫ 87 apples. Consequently, Beck now has
90−87 =≪ 90−87 = 3≫ 3 fewer apples than Boris. #### 3

Here a few-shot prompt is adopted. The LLM learns from these demonstrations of problem-
solution pairs not only the way of problem-solving but also the way of formatting the output.
For example, the final result of calculation follows the #### token, and ≪ ...≫ annotates the
detailed calculation steps (called calculation annotation)4.

4During prediction, a calculator is used when we see ≪ ...≫. More specifically, once the LLM encounters “=”
in a ≪ ...≫, then the calculator calculates the expression on the left-hand side of “=”. This method helps reduce
the calculation errors made by LLMs.
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9.2 Advanced Prompting Methods

So far in this chapter, we have introduced the basic concepts related to LLM prompting
and presented a number of prompts for NLP tasks. We now consider several techniques for
enhancing the effectiveness of prompting.

9.2.1 Chain of Thought

We have encountered the concept of chain of thought (CoT) several times in this chapter and
previous ones [Wei et al., 2022; Chowdhery et al., 2022]. CoT methods provide a simple way to
prompt LLMs to generate step-by-step reasoning for complex problems, thereby approaching
tasks in a more human-like manner. Rather than coming to a conclusion directly, the CoT
methods instruct LLMs to generate reasoning steps or to learn from demonstrations of detailed
reasoning processes provided in the prompts. To illustrate CoT, we consider the problem
of algebraic calculation, as commonly described in the literature. Suppose we are given an
algebraic problem

Calculate the average of the numbers 2, 4, and 6.

We can consider it as the question and prompt an LLM to answer it.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: The answer is 6.

It seems difficult for the LLM to directly give a correct answer. A simple improvement is
to add demonstrations of similar problems in the prompt, and thus the LLM can learn from
these demonstrations.

Q: Please calculate the average of the numbers 1, 3, 5, and 7.

A: The answer is 4.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: The answer is 7.

The problem here is that, although we have shown a similar question-answer pair, it remains
difficult for the LLM to reason out the correct answer. In CoT, not only can LLMs learn from
the correspondence between questions and answers but they may gain more from detailed
problem-solving steps that are used to derive the answers. To do this, we can incorporate some
reasoning steps into the prompt to obtain a CoT prompt.
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Q: Please calculate the mean square of the numbers 1, 3, 5, and 7.

A: Calculate the square of each number: 12 = 1, 32 = 9, 52 = 25, and 72 = 49.
Sum the squares, 1+9+25+49 = 84. There are 4 numbers in total. Divide
the sum by the number of items, 84/4 = 21. The answer is 21.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: Calculate 2+4+9, which equals 15. There are three numbers. Divide the
total sum by the count, resulting in 15/3 = 5. The answer is 5.

Here we highlight the reasoning steps in green. By providing a detailed reasoning process for
a similar problem, the LLM learns to reason and thereby generates a problem-solving path that
leads to the correct answer.

There are several benefits of using CoT prompting. First, CoT allows LLMs to decompose
complex problems into smaller, sequential reasoning steps. This somewhat mirrors human
problem-solving behaviors, making it particularly effective for tasks requiring detailed, multi-
step reasoning. Second, CoT makes the reasoning process more transparent and interpretable.
Since all reasoning steps are visible, we can understand and interpret how a conclusion was
reached. Third, if users can follow the logic behind the reasoning process, they will be more
likely to trust the predictions of an LLM. This is particularly important when applying LLMs
in fields like medicine, education, and finance. Fourth, CoT is an in-context learning approach,
and thus, it is applicable to most well-trained, off-the-shelf LLMs. Moreover, CoT provides
efficient ways to adapt LLMs to different types of problems. It can even inspire more creative
solutions by exploring various alternative reasoning paths, which might not be obvious when
arriving at a conclusion directly.

The method described above requires providing one or more examples of CoT reasoning,
typically called the few-shot CoT method. By contrast, the zero-shot CoT method does not
require such examples. It instead prompts LLMs to reason step-by-step by incorporating
specific instructions in prompts. For example, below is a zero-shot CoT prompt.

Q: Please calculate the average of the numbers 2, 4, and 9.

A: Let’s think step-by-step.

We have three numbers: 2, 4, and 9. Add these numbers together,
2+4+9 = 15. Determine how many numbers there are, which in this case
is three. The average is calculated by dividing the total sum by the number
of elements. Completing the division gives 15/3 = 5. So the answer is 5.

Following the instruction “Let’s think step by step”, the LLM is prompted to generate
detailed reasoning steps. As discussed in Kojima et al. [2022]’s work, prompting with such
instructions may result in LLMs generating only the reasoning steps without a clear conclusion.
In this case, a second round of prompting can be used to extract the answer from these reasoning
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steps. For example, Kojima et al. [2022] create a second prompt which combines both the
input and output in the first round of prompting. Using this combined input, the LLM can
continue its reasoning process and then generate the correct answer. Furthermore, it is possible
to prompt LLMs to reason using instructions other than “Let’s think step by step”, such as
“Let’s think logically” and “Please show me your thinking steps first”.

While we have illustrated CoT methods using an algebraic reasoning problem, these
methods can be applied to a variety of different problems. Typical problem-solving scenarios
for CoT include mathematical reasoning, logical reasoning, commonsense reasoning, symbolic
reasoning, code generation, and so on. See Figure 9.1 for more examples of applying CoT in
various tasks.

CoT today is one of the most active fields of prompt engineering. This has not only led
to improved performance for LLM prompting but has opened the door to a wide range of
methods for studying and verifying reasoning capabilities of LLMs. Although we have focused
on the basic idea of CoT in this section, it can be improved in several ways. For example,
we can consider the reasoning process as a problem of searching through many possible
paths, each of which may consist of multiple intermediate states (i.e., reasoning steps). In
general, we wish the search space to be well-defined and sufficiently large, so that we are
more likely to find the optimal result. For this reason, an area of current LLM research is
aimed at designing better structures for representing reasoning processes, allowing LLMs to
tackle more complex reasoning challenges. These structures include tree-based structures [Yao
et al., 2024], graph-based structures [Besta et al., 2024], and so on. By using these compact
representations of reasoning paths, LLMs can explore a wider range of decision-making paths,
analogous to System 2 thinking5. Another line of research focuses on prompting LLMs with
multi-round interactions. This involves decomposing complex problems into sub-problems,
verifying and refining model outputs, employing model ensembling, and so on. Note that these
methods and the issues involved are not limited to CoT. In fact, they are often used as more
general approaches to improving LLMs, while CoT can be seen as a way to test the capabilities
of LLMs. We will see discussions of some of these issues in the following subsections.

Before leaving our discussion of CoT, we should consider its practical limitations. One of
them is the need for detailed, multi-step reasoning demonstrations in few-shot CoT scenarios,
which may be difficult to obtain, either automatically or manually. Also, there is no standard
method for breaking down complex problems into simpler problem-solving steps. This often
heavily depends on the user’s experience. In addition, errors in intermediate steps can also
affect the accuracy of the final conclusion. For further discussion on the pros and cons of CoT,
the interested reader can refer to recent surveys on this topic [Chu et al., 2023; Yu et al., 2023;
Zhang et al., 2023a].

5System 1 and System 2 thinking, as described by Kahneman [2011], represent two different modes of cognitive
processing. System 1 is fast, automatic, intuitive, and emotional. This mode of thinking operates effortlessly and
quickly, and is often what guides our daily decisions, judgments, and impressions. System 2 is slow, deliberate,
and analytical. It is activated when we need to perform complex computations.
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Q: What home entertainment equipment
requires cable?
Answer Choices: (a) radio shack (b) sub-
station (c) television (d) cabinet
A: The answer must require cable. Of the
above choices, only television requires ca-
ble. So the answer is (c).

Q: What type of person typically contracts
illness?
Answer Choices: (a) hospital (b) head (c)
sick person (d) elderly person (e) doctor’s
office
A: The answer must be a person suscepti-
ble to illness. Of the choices, "elderly per
son" is correct because they typically have
weaker immune systems.
So the answer is (d).

Q: Do hamsters provide food for any ani-
mals?
A: Hamsters are prey animals. Prey are
food for predators. Thus, hamsters provide
food for some animals. So the answer is
yes.

Q: Can you use Microsoft Office without
internet?
A: Yes, you can use Microsoft Office appli-
cations , although features like cloud stor-
age and online collaboration require inter-
net. So the answer is yes.

(a) CSQA (b) StrategyQA

Q: Complete the rest of the sequence, mak-
ing sure that the parentheses are closed
properly. Input: [ {
A: Let’s think step by step.
0: empty stack
1: [ ; stack: [
2: { ; stack: [ {
So the answer is } ].

Q: Complete the rest of the sequence, mak-
ing sure that the parentheses are closed
properly. Input: < [ [

A: Let’s think step by step.
0: empty stack
1: < ; stack: <
2: [ ; stack: < [

3: [ ; stack: < [ [

So the answer is ] ] >.

Q: Take the last letters of the words in
"Elon Musk" and concatenate them.
A: The last letter of "Elon" is "n". The last
letter of "Musk" is "k". Concatenating them
is "nk". The answer is nk.

Q: Take the last letters of each word in
"Renata Mariela Mona Kristin" and con-
catenate them.
A: The last letter of "Renata" is "a". The
last letter of "Mariela" is "a". The last let-
ter of "Mona" is "a". The last letter of
"Kristin" is "n". Concatenating them is
"aaan". The answer is aaan.

(c) Dyck languages (d) Last Letter Concatenation

Figure 9.1: CoT in four different reasoning tasks, including CSQA, StrategyQA, Dyck lan-
guages, and Last Letter Concatenation. The CoT parts are highlighted in green.

9.2.2 Problem Decomposition

We have seen that LLMs can benefit from solving a complex problem by breaking it down
into simpler problem-solving tasks. Such an approach can be seen as an example of a broader
paradigm known as problem decomposition, which has been extensively explored and dis-
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cussed in psychology and computer science. From the psychological perspective, complex
problem-solving refers to a process of addressing a problem using knowledge that helps over-
come the barriers of the problem6. There are generally no standard or clear paths to a solution
for a complex problem. However, it is often advantageous to employ strategies that decompose
the problem, thereby making it easier to tackle the corresponding sub-problems with less effort.
For example, consider writing a blog about the risks of AI. If we simply prompt an LLM with
the instruction “Please write a blog about the risks of AI”, the LLM may generate a blog with
arbitrary structures and writing styles. A better method, instead, could be to outline the blog
and provide more detailed information about each section. Consider the following prompt

You are a blog writer. Please follow the provided outline below to write a
blog about the risks of AI.

• Introduction
Introduce AI, its relevance, and the importance of understanding its risks for
youth.

• Privacy Concerns
Discuss how AI might compromise personal privacy through interactions online.

• Misinformation
Explore AI’s role in spreading misinformation and influencing young people’s
decisions.

• Cyberbullying
Highlight how AI tools can be utilized in cyberbullying and the impact on mental
health.

• Tips for Safe AI Use
Offer guidelines for responsible AI usage and promote critical thinking.

• Conclusion
Recap main points and encourage proactive engagement with AI ethics.

Here we give the title and major points for each section. Then, the LLM can use this structure
to break down the writing task by filling in content for these sections. Note that the way to
structure the blog can be provided by humans or even generated automatically. For example,
we can use the LLM to first generate the outline, and then ask it to follow this outline to
complete the writing.

In computer science, decomposing complex problems is a commonly used strategy in soft-
ware and hardware system design. A well-known example is the divide-and-conquer paradigm,
which is often used to design algorithms for computation problems that can be reduced to
simpler, more manageable problems. For example, consider a problem of determining whether

6A relatively formal definition can be found in Frensch and Funke [2014]’s book: complex problem-solving
occurs to overcome barriers between a given state and a desired goal state by means of behavioral and/or cognitive,
multi-step activities.
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a document discusses the risks of AI. We can instruct the LLM with the following prompt.

You are provided with a text. Please determine whether it discusses the risks
of AI.

{∗document∗}

If the document is long, the computation will be expensive. Alternatively, we can divide
the document into relatively short segments and perform the same task on each segment. These
segments can be processed in parallel to further reduce the computational cost. Next, we
determine the relevancy of each segment to the topic of AI risks. The final output is then
generated using another prompt.

Your task is to determine whether a text discusses the risks of AI. This text
has been divided into segments, and you have obtained the relevancy of each
segment to the topic of AI risks. Based on this, please provide your final
result.

Segment 1: {∗relevancy-to-the-topic1∗}
Segment 2: {∗relevancy-to-the-topic2∗}
Segment 3: {∗relevancy-to-the-topic3∗}
...

Now let us return to a more general discussion of problem decomposition in prompting.
While problem decomposition can be applied to various NLP problems, it has been more
extensively discussed and tested in reasoning tasks recently. For complex reasoning tasks,
we often need a multi-step reasoning path to reach a correct conclusion. We can use LLMs
to achieve this in three different ways. First, LLMs can directly reach the conclusion. In
other words, they can predict without explicit reasoning processes, and there is a hidden and
uninterpretable reasoning mechanism. Second, LLMs are prompted to generate a multi-step
reasoning path that leads to the conclusion, like CoT. However, we run LLMs just once, and all
intermediate steps in reasoning are generated in a single prediction. Third, we break down the
original problem into a number of sub-problems, which are either addressed in separate runs
of LLMs or tackled using other systems. Here we focus our attention on the third approach,
which is closely related to problem decomposition. Note, however, that a more comprehensive
discussion could cover all these approaches, while the first two have been discussed to some
extent in this chapter.

A general framework for problem decomposition involves two elements.
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• Sub-problem Generation. This involves decomposing the input problem into a number
of sub-problems.

• Sub-problem Solving. This involves solving each sub-problem and deriving intermedi-
ate and final conclusions through reasoning.

These two issues can be modeled in different ways, leading to various problem decom-
position methods. One approach is to treat them as separate steps in a two-step process. For
example, consider the blog writing task described at the beginning of this subsection. In the
first step, we decompose the entire problem into sub-problems all at once (i.e., outline the
blog). In the second step, we solve the sub-problems either sequentially or in another order
(i.e., fill in content for each section as needed). The final output of this process combines the
results from solving each sub-problem. While this method is simple and straightforward, it
assumes that the problem is compositional, making it more suitable for tasks like writing and
code generation.

However, many real-world problems require complex reasoning. One key characteristic
of these problems is that the reasoning steps may not be fixed. The reasoning path can vary
for different problems, and each step of reasoning may depend on the outcomes of prior
steps. In such cases, it is undesirable to use fixed sub-problem generation in advance. Instead,
sub-problems should be generated dynamically based on the input problem, and, if possible,
generated on the fly during the reasoning process. This makes problem decomposition more
challenging compared with designing divide-and-conquer algorithms. Ideally, we would like
to jointly design both the systems for sub-problem generation and sub-problem solving. But
a more practical and widely used approach is to adopt separate models for these tasks. A
straightforward way to achieve this is to adapt an LLM for these tasks by either prompting or
tuning the model.

Here we consider a method based on the above idea, called least-to-most prompting
[Zhou et al., 2023a]. The motivation for this method arises from the challenges of solving
difficult reasoning problems — those that cannot be addressed by simply generalizing from
a few examples. For these problems, a more effective problem-solving strategy is to follow
a progressive sequence of sub-problems that systematically lead to the conclusion. More
specifically, in the least-to-most prompting method, sub-problem generation is performed by
prompting an LLM with instructions and/or demonstrations. For example, below is a 2-shot
prompt for sub-problem generation in least-to-most prompting.
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TASK Your task is to decompose a problem into several sub-problems. You
will be given a few examples to illustrate how to achieve this.

DEMO Q: In a community, 5% of the population are infants, 15% are children,
40% are adults, and 40% are seniors. Which group makes up the largest
portion of the population?

A: To answer the question “Which group makes up the largest portion of
the population?”, we need to know: “How many percent are infants?”,
“How many percent are children?”, “How many percent are adults?”,
“How many percent are seniors?”.

Q: Alice, Bob, and Charlie brought beads for their group project in their
craft class. Alice has twice as many beads as Bob, and Bob has five
times as many beads as Charlie. If Charlie has 6 beads, how many beads
can they use for their craft project?

A: To answer the question “How many beads can they use for their craft
project?”, we need to know: “How many beads does Bob have?”, “How
many beads does Alice have?”.

USER Q: The environmental study conducted from 2015 to 2020 revealed that
the average temperature in the region increased by 2.3 degrees Celsius.
What was the duration of the environmental study?

A: To answer the question “What was the duration of the environmental
study?”, we need to know: “When did the environmental study start?”,
“When did the environmental study end?”.

By learning from the examples, the LLM can generate two sub-problems for answering
the new problem “What was the duration of the environmental study?” (highlighted in blue
and orange). Given these sub-problems, we solve them sequentially. For each sub-problem,
we take all previously-generated QA pairs as context, and then produce the answer. For the
example above, we need to answer the first sub-problem by prompting the LLM, like this

The environmental study conducted from 2015 to 2020 revealed
that the average temperature in the region increased by 2.3 degrees
Celsius.

SUB-PROB1 Q: When did the environmental study start?

A: The environmental study started in 2015.

Once we have the answer to the first sub-problem, we proceed to the second one. This
time, we include both the first sub-problem and its corresponding answer in the input.
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The environmental study conducted from 2015 to 2020 revealed
that the average temperature in the region increased by 2.3 degrees
Celsius.

SUB-PROB1 Q: When did the environmental study start?

A: The environmental study started in 2015.

SUB-PROB2 Q: When did the environmental study end?

A: The environmental study ended in 2020.

Finally, we use the LLM to solve the original problem given the answers to all the sub-
problems.

The environmental study conducted from 2015 to 2020 revealed
that the average temperature in the region increased by 2.3 degrees
Celsius.

SUB-PROB1 Q: When did the environmental study start?

A: The environmental study started in 2015.

SUB-PROB2 Q: When did the environmental study end?

A: The environmental study ended in 2020.

FINAL Q: What was the duration of the environmental study?

A: The duration of the environmental study was 5 years.

The least-to-most method offers a basic approach to prompting LLMs to generate and
solve sub-problems separately. We can improve it in several ways. One simple improvement
is to apply various advanced prompting techniques, which do not require changes to the
problem decomposition framework. For example, we can incorporate CoT into the prompting
to enhance the reasoning performance of sub-problem generation and solving.

Another improvement is to explore methods for better decomposing problems and organiz-
ing problem-solving paths. To describe these approaches, we will use the symbol p0 to denote
the input problem, and use the symbols {p1, ...,pn} to denote the sub-problems corresponding
to p0. For least-to-most prompting, we decompose p0 into {p1, ...,pn}, given by

{p1, ...,pn} = G(p0) (9.2)

where G(·) denotes the function of sub-problem generation. Then, we solve the sub-problems
{p1, ...,pn} sequentially, resulting in a sequence of answers {a1, ...,an}. For answering the
i-th sub-problem pi, we include both the original problem p0 and all previously-seen problem-



34 Chapter 9. Prompting

answer pairs in the context for prediction. The answer ai is given by

ai = Si(pi,{p0,p<i,a<i}) (9.3)

where p<i = {p1, ...,pi−1} and a<i = {a1, ...,ai−1}. Si(·) denotes the function that solves the
sub-problem pi given the context {p0,p<i,a<i}. The last step is to generate the answer to the
original problem p0, which can be expressed in a similar manner to Eq. (9.3).

a0 = S0(p0,{p≤n,a≤n}) (9.4)

One way to refine this model is to modify the G(·) function so that the model can dynami-
cally generate answers. Instead of generating all sub-problems at one time, we can generate
each of them during problem-solving [Dua et al., 2022]. To do this, we can replace Eq. (9.2)
with

pi = Gi(p0,{p<i,a<i}) (9.5)

Hence we obtain a sub-problem generation model that operates in a step-by-step manner. At
each step i, we first generate the sub-problem pi by prompting an LLM with the original
problem p0 and the problem-solving history {p<i,a<i}. We then generate the answer ai for
this sub-problem using the same or a different LLM, based on the same contextual information
(see Eq. (9.3)). This method effectively expands the reasoning capacity of LLMs by allowing
them to dynamically generate and solve sub-problems in intermediate reasoning steps. As a
result, the reasoning paths are not fixed in advance, and the models can choose and adapt their
reasoning strategies during problem-solving.

Another way to improve the above model is to focus on developing better sub-problem
solvers. In our previous discussion, we restricted Si(·) to LLMs that are prompted to solve the
sub-problem pi. In fact, we can expand this function to any system that is capable of addressing
the sub-problem. For example, Si(·) could make calls to IR systems, thereby allowing us
to access a broader range of data for problem-solving. Another example is using Si(·) as a
calculator to accurately compute results in mathematical problem-solving. If the sub-problem
pi is complex and requires multiple intermediate problem-solving steps, it is also possible
to further decompose pi into smaller sub-problems. For example, Si(·) can be defined as a
recursive program that generates and solves sub-problems. This incorporates recursion into
problem-solving and allows us to address problems by iteratively decomposing them. As a
result, we can define a hierarchical structure for problem-solving [Khot et al., 2023].

If we generalize the above formulation a bit further, we can consider it as a reinforcement
learning problem. A typical method is to model a problem-solving process as a decision
making process. In each step of this process, an action is taken based on the current state.
These actions can include all functions for sub-problem generation and solving (i.e., Gi(·) and
Si(·)). Thus, the action sequence corresponds to a problem-solving path. Since the discussion
of reinforcement learning problems is beyond the scope of this chapter, we skip the precise
description of this learning task. Nevertheless, developing an agent or controller to determine
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when and how to generate and solve a sub-problem is also a natural choice.
In NLP, problem decomposition is related to a long line of research on multi-hop question

answering [Mavi et al., 2024]. This task requires the system to gather and combine information
from multiple pieces of text to provide an accurate answer to a complex question. For example,
to answer the question “What is the capital of the country where Albert Einstein was born?”,
we need to know “Where Albert Einstein was born?” and “What’s the capital of Germany?”.
Earlier work in this area and related ones has investigated the issue of problem decomposition,
though the methods might not be based on LLMs. For example, a popular method is to develop
an additional neural model to generate simpler questions that address different aspects of the
original question [Andreas et al., 2016; Talmor and Berant, 2018; Min et al., 2019]. This
question generator can create questions in a batch or sequential manner.

Broadly speaking, problem decomposition is also related to the compositionality issue in
NLP [Drozdov et al., 2022; Press et al., 2023]. For example, in semantic parsing, we map
natural language sentences into structured meaning representations by breaking them down
into constituent parts and understanding the sentences based on the meanings of these parts and
the rules used to combine them. In early studies of this field, highly compositional sentences
were considered easier for testing systems, as it is relatively straightforward to decompose
such sentences and compose the meanings of their parts. However, the task becomes much
more difficult when more generalization is required for modeling compositionality in new data.
In this case, we want systems to have improved abilities of compositional generalization.
In more recent research on LLMs, this issue has been frequently discussed in compositional
reasoning tasks, such as SCAN7, as it is considered an important aspect of testing the language
understanding and reasoning abilities of LLMs. This also presents new tasks for developing
and examining problem decomposition methods.

In LLMs, one interesting application of problem decomposition is tool use. In some cases,
it is necessary to integrate external tools into LLMs to access accurate data not available during
training or fine-tuning. For example, LLMs can integrate with APIs to fetch real-time data such
as weather updates, stock market prices, or news feeds, enabling them to provide up-to-date
responses to user queries. When using tools, LLM predictions might include markers that
indicate where and how to call external APIs. This requires decomposing the problem into
sub-problems, with some handled by the LLMs and others by external tools. More detailed
discussions on this topic will be presented in Section 9.2.5.

9.2.3 Self-refinement

In many cases, predictions of LLMs can be inaccurate or incorrect. Given that current LLMs
can perform tasks like refinement and correction, it makes sense to explore methods for these
models to self-refine their outputs. Self-refinement is a common phenomenon in human
psychological activities and daily behavior. For example, when designing a product, a designer

7The SCAN tasks (Simplified versions of the CommAI Navigation tasks) are designed to evaluate the ability of
LLMs to perform compositional generalization [Lake and Baroni, 2018]. They involve translating natural language
commands into a sequence of actions. For example, a command “jump opposite left and walk thrice” can be
translated into the action sequence “LTURN LTURN JUMP WALK WALK WALK”.
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might first create a basic prototype, then refine the design after evaluation and testing to
enhance user experience and functionality. The refinement can be iterated several times until
the design is satisfactory. The idea of predict-then-refine can also be found in NLP. One early
example is Brill’s tagger [Brill, 1992], where an initial POS tagging result of a sentence can be
iteratively refined using a rule-based system. In the era of deep learning, a good deal of work
on sequence-to-sequence problems, such as grammar correction and text rewriting, can also be
seen as examples on this theme.

We can prompt LLMs to do self-refinement. Consider a simple example where we first use
an LLM to translate a text from Chinese to English and then use the same model to refine the
translation. Here is how we can prompt the model to translate:

Translate the following text from Chinese to English:

Chinese:

一系列考古发现奠定红山文化在中华文明起源研究中的重要地位。最

新公布的研究成果认为，大约从距今5800年开始，中华大地上各个区
域相继出现较为明显的社会分化，进入文明起源的加速阶段。

English:

A series of discoveries have cemented the significant role of the Hongshan
culture in studies on the origins of Chinese civilization. The latest research
findings suggest that, starting from around 5800 years ago, many regions
across China began to experience noticeable social differentiations, entering
an accelerated phase in the origin of civilization.

Then, we can prompt it to refine the translation:

NiuTrans
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You are provided with a Chinese text along with its English translation. Please
refine the translation to improve its accuracy and fluency if necessary.

Chinese:

一系列考古发现奠定红山文化在中华文明起源研究中的重要地位。最

新公布的研究成果认为，大约从距今5800年开始，中华大地上各个区
域相继出现较为明显的社会分化，进入文明起源的加速阶段。

English:

A series of discoveries have cemented the significant role of the Hongshan
culture in studies on the origins of Chinese civilization. The latest research
findings suggests that, starting from around 5800 years ago, many regions
across China began to experience noticeable social differentiations, entering
an accelerated phase in the origin of civilization.

Refinement:

A series of archaeological discoveries have cemented the significant role
of the Hongshan culture in studies on the origins of Chinese civilization.
The latest research findings suggest that, starting from around 5800 years
ago, various regions across China began to experience noticeable social
differentiations, entering an accelerated phase in the origin of civilization.

Here modifications to the input translation are highlighted in green. This process can be
iterative: at each step, we use the translation from the previous step as input, and prompt the
LLM to produce a potentially better translation.

In the above example, the refinement of the initial model output was achieved by prompting
the LLM with a simple instruction like “Please refine it!”. However, the refinement is based
solely on the instruction-following ability of the LLM, and there is no guidance or supervision
on how and where to improve the model output. A more effective approach would be to
consider feedback on specific aspects that need refinement. For example, we can prompt the
LLM with “Please correct all the grammatical errors in the translation”, so that the model can
focus more on grammatical error correction during refinement.

A general framework of self-refinement with LLMs involves three steps [Madaan et al.,
2024].

• Prediction. We use an LLM to produce the initial model output.

• Feedback Collection. We obtain feedback on the model output.

• Refinement. We use the LLM to refine the model output based on the feedback.

The last two steps can be repeated multiple times, which leads to an iterative self-refinement
process. In this framework, receiving accurate and detailed feedback is critical as it guides the
subsequent refinement step. In general, feedback can be obtained in various ways [Fernandes
et al., 2023; Pan et al., 2024]. We can manually examine the model’s predictions to identify
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issues. Also, we can use a feedback model to automatically generate feedback. For instance, a
reward model trained on some labeled data can help evaluate the model output and return a
score indicating its quality.

Since the focus of this chapter is on LLM prompting, we consider using LLMs to provide
feedback. To illustrate, let us consider an example of generating good responses to user
questions:

• First, we prompt an LLM to answer the input question, as usual.

Generate a response to the question: “What are some major environ-
mental concerns today?”

Response:

Major environmental concerns today include climate change, air
and water pollution, deforestation, loss of biodiversity, and ocean
degradation.

• Then, using the following prompt, we prompt the same LLM again to get feedback on
the generated response.

You will be provided with a question and its corresponding response.
Evaluate the accuracy and depth of this response, and identify any
factual inaccuracies or areas where additional details could enhance
understanding.

Question:

What are some major environmental concerns today?

Response:

Major environmental concerns today include climate change, air and
water pollution, deforestation, loss of biodiversity, and ocean degrada-
tion.

Feedback:

The response provided is accurate and highlights key environmental
concerns. However, it would benefit from more specific and detailed
descriptions of these concerns. Here are suggestions for improvement:

1. Include specific examples of environmental issues.
2. Add information about major pollutants.
3. Specify the regions most affected.

• Given the feedback the LLM produces, we prompt it to refine the response.
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You will be provided with a question, its corresponding response, and
some feedback on this response.

Question:

What are some major environmental concerns today?

Response:

Major environmental concerns today include climate change, air and
water pollution, deforestation, loss of biodiversity, and ocean degrada-
tion.

Feedback:

The response provided is accurate and highlights key environmental
concerns. However, it would benefit from more specific and detailed
descriptions of these concerns. Here are suggestions for improvement:

1. Include specific examples of environmental issues.
2. Add information about major pollutants.
3. Specify the regions most affected.

Now refine the response based on the provided feedback.

Refined Response:

Key environmental concerns include climate change, evidenced by
rising global temperatures and severe weather patterns; significant
air and water pollution in urban and industrial areas; rampant
deforestation in regions like the Amazon, causing biodiversity loss;
and ocean degradation, highlighted by coral reef bleaching and
widespread overfishing.

Ideally, if a strong LLM is adopted, we would like to have it perform all three steps without
extra training. On the other hand, if we have enough labeled data for the task of interest, we can
enhance the performance of the LLM using supervised learning. For example, we can fine-tune
the LLM to better adapt it to refinement tasks, or alternatively, use task-specific models, which
may not necessarily be based on LLMs [Welleck et al., 2023; Schick et al., 2023]. In a broader
sense, improving LLMs for self-refinement tasks can be seen as an alignment issue. For
example, it has been found that some self-correction abilities can be activated through RLHF
[Ganguli et al., 2023]. However, discussing these issues is beyond the scope of this chapter.
Further discussion can be found in Chapter 10.

In LLMs, self-refinement is related to several concepts that reveal the psychological aspects
of these models, such as the ability to self-reflect. A view is that if LLMs are capable of
self-reflection, their predictions can become more accurate and even possess self-correcting
capabilities. This self-reflection can be activated in various ways, for example, by prompting
these LLMs to engage in more in-depth and careful thinking, or by providing examples from
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which the models can learn and reflect. To illustrate, we consider here the deliberate-then-
generate (DTG) method presented in Li et al. [2023a]’s work, where LLMs are prompted to
deliberate. In DTG, we are given an initial model output which may contain errors. LLMs are
then prompted to identify the error types of this model output and provide an improved output.
Below is a template of DTG prompting for Chinese-to-English translation tasks.

Given the Chinese sentence: {∗source∗}
The English translation is: {∗target∗}

Please first detect the type of error, and then refine the translation.

Error Type:

We aim to first predict the error type (red), and then produce a refined translation (blue).
This process of deliberation is guided by the instruction “Please first detect the type of error,
and then refine the translation”. It encourages LLMs to initially engage in thoughtful analysis
and then give better results. Since error type prediction and refinement are performed in a
single run of LLMs, this method incorporates both steps of feedback and refinement into one
process.

In the above prompts, we assume that the LLM we use is able to review the input translation
and correctly identify its error types. However, this raises new difficulties as the model may not
be good at finding errors in translations. This will in turn result in extra fine-tuning or prompting
engineering efforts. So a simpler method is to reduce the burden of error identification and use
LLMs for deliberation only. To do this, we can replace the input translation with a random
translation and assign a default error type. An example of such a prompt is shown below.

Given the Chinese sentence:

一系列考古发现奠定红山文化在中华文明起源研究中的重要地位。

The English translation is:

A variety of innovative techniques have redefined the importance of modern
art in contemporary cultural studies.

Please first detect the type of error, and then refine the translation.

Error Type: Incorrect Translation

In this example, the input translation is not generated by LLMs but is instead randomly
sampled from the dataset. So it is simply an incorrect translation for the source sentence, and
we can set the error type accordingly. The LLMs then generate a new translation by taking
both the source sentence and the incorrect translation as input. The design of this prompt
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can also be considered as activating the learning capabilities of LLMs through “negative
evidence” [Marcus, 1993], thereby enabling them to reflect and produce better outcomes
through contrastive analysis. Nevertheless, this method does not rely on any feedback and can
enhance the performance of a single LLM prediction via simple prompting.

Note that while DTG is non-iterative, iterative learning and refinement are commonly used
in NLP. An advantage of these iterative approaches is that they mimic human learning and
problem-solving, where continuous feedback and adjustments lead to progressively improved
outcomes. Iterative methods can be applied to a range of LLM prompting problems. For
example, in problem decomposition, one can incorporate new sub-problems and their solutions
into the context at each step, and thus LLMs can progressively approach the solution of the
original problem. On the other hand, iterative methods raise several issues that are absent in
non-iterative methods, for example, errors in earlier steps may negatively impact subsequent
problem-solving, and determining when to stop iterating often requires additional engineering
effort.

9.2.4 Ensembling
Model ensembling for text generation has been extensively discussed in the NLP literature.
The idea is to combine the predictions of two or more models to generate a better prediction.
This technique can be directly applicable to LLMs. For example, we can collect a set of LLMs
and run each of them on the same input. The final output is a combined prediction from these
models.

For LLM prompting, it is also possible to improve performance by combining predictions
based on different prompts. Suppose we have an LLM and a collection of prompts that address
the same task. We can run this LLM with each of the prompts and then combine the predictions.
For example, below are three different prompt templates for text simplification.

Make this text simpler.

{∗text∗}

Condense and simplify this text.

{∗text∗}

Rewrite for easy reading.

{∗text∗}
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Each of these prompts will lead to a different prediction, and we can consider all three
predictions to generate the final one.

Formally, let {x1, ...,xK} be K prompts for performing the same task. Given an LLM
Pr(·|·), we can find the best prediction for each xi using ŷi = argmaxyi

Pr(yi|xi). These
predictions can be combined to form a “new” prediction:

ŷ = Combine(ŷ1, ..., ŷK) (9.6)

Here Combine(·) is the combination model, which can be designed in several different ways.
For example, we can select the best prediction by voting or by identifying the one that overlaps
the most with others. Another method for model combination is to perform model averaging
during token prediction. Let ŷj be the predicted token at the j-th step for model combination.
The probability of predicting ŷj is given by

ŷj = argmax
yj

K∑
k=1

logPr(yj |xk, ŷ1, ..., ŷj−1) (9.7)

The interested reader can refer to Chapter 5 for more details of these methods.

In ensembling for LLM prompting, it is generally advantageous to use diverse prompts
so that the combination can capture a broader range of potential responses. This practice is
common in ensemble learning, as diversity helps average out biases and errors that may be
specific to any single model or configuration. From the Bayesian viewpoint, we can treat
the prompt x as a latent variable, given the problem of interest, p. This allows the predictive
distribution of y given p to be written as the distribution Pr(y|x) marginalized over all possible
prompts

Pr(y|p) =

∫
Pr(y|x)Pr(x|p)dx (9.8)

The integral computes the total probability of y by considering all possible values of x,
weighted by their likelihoods given p. Here Pr(y|x) is given by the LLM, and Pr(x|p) is
the prior distribution of prompts for the problem. This is a good model because the integral
effectively accounts for the uncertainty in the choice of x, ensuring that the final predictive
distribution Pr(y|p) is robust and encompasses all potential variations and biases in the
prompts. However, computing this integral directly can be computationally infeasible due to
the potentially infinite space of x. One approach to addressing this issue is to employ methods
like Monte Carlo sampling, which approximate the integral using a manageable, finite number
of prompts.

While the Bayesian treatment is mathematically well-defined, it is common practice in NLP
to assume a non-informative or uniform prior and focus instead on constructing a set of diverse
prompts. Consequently, the output can be computed using a straightforward combination
model, as described in Eq. (9.6). The issue of creating high-quality, diverse prompts has
been studied in CoT and other in-context learning areas. Most of the research focuses on
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incorporating a variety of demonstration examples across different prompts. Here, we list some
of these methods.

• Given a problem, we manually create a number of demonstrations and use different ones
for different prompts.

• Given a problem, we use LLMs to automatically generate demonstrations and prompts.

• Given a prompt, we create different prompts by changing the order of demonstrations in
the prompt.

• Given a prompt, we use LLMs to generate a number of similar prompts.

• Given a prompt, we transform it into other forms, e.g., translating it into other languages.

Of course, in practice, we can combine these methods to achieve greater diversity. An
underlying assumption here is that diverse prompts can lead to diverse model outputs. This
is particularly the case when the problem we deal with is relatively new and difficult. For
stronger and more robust LLMs, the variance in output for similar prompts might not be large.
In this case, the benefit of involving multiple prompts can be modest.

In addition to providing diverse prompts for LLMs, another approach is to make use of
the inherent variance in the outputs of LLMs. One simple way to generate multiple outputs
is to sample outputs from the hypothesis space. This is straightforward for LLMs because
their search algorithms are naturally suited to producing multiple results. For example, if
beam search is used, we can easily collect all the complete hypotheses in the beam to generate
multiple output candidates. Also, we can modify the search algorithms to implement more
powerful sampling methods and explore a wider range of high-quality hypotheses.

The next question is how to combine diverse model predictions. This leads us back to the
model combination issue as described in Eq. (9.6). Here we consider the self-consistency
method, which outputs not the prediction with the highest probability, but rather the one that
best aligns with other predictions [Wang et al., 2022; 2023]. First, an LLM is prompted with
CoT as usual and generates multiple reasoning paths by sampling. Then, the frequency of each
answer is counted across these reasoning paths. The final output is the answer that has the
highest count. Below shows three different predictions by prompting an LLM with CoT.

Prediction 1 (Correct):

Q: Three friends play a game where they flip a fair coin. Each friend flips the
coin once. What is the probability that exactly one of them flips heads?

A: Let’s think step by step.

Each coin flip is an independent event with a 50% chance of landing heads
(H) and 50% tails (T). Consider the possible outcomes for three flips: HHH,
HHT, HTH, HTT, THH, THT, TTH, TTT. Out of these, only HHH, HHT,
HTH, and THH are relevant. We are only interested in scenarios with exactly
one head: HTT, THT, and TTH. There are 3 such outcomes out of 8 total,
giving a probability of 3/8.
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Prediction 2 (Correct):

Q: Three friends play a game where they flip a fair coin. Each friend flips the
coin once. What is the probability that exactly one of them flips heads?

A: Let’s think step by step.

Using a binomial probability formula, where p (success or heads) is 0.5, and
each of the 3 trials (flips) is independent, we look for exactly one success
(head). The formula for exactly k successes in n trials is given by the
binomial coefficient formula

(
n
k

)
pk(1−p)n−k. Plugging in the values, we

get
(
3
1

)
(0.5)1(0.5)3−1 = 3 ·0.5 ·0.25 = 0.375.

Prediction 3 (Wrong):

Q: Three friends play a game where they flip a fair coin. Each friend flips the
coin once. What is the probability that exactly one of them flips heads?

A: Let’s think step by step.

Since each coin flip has a 50% chance of landing heads and a 50% chance of
landing tails, and we are looking for the case where only one of the three flips
results in heads, we might initially think this is simply a matter of picking
which flip is the heads. There are three flips, so one might incorrectly assume
that the chance of picking one specific outcome like this would be 1 out of
3. Thus, they might conclude that the probability of exactly one head is
1/3 = 33.3%.

Predictions 1 and 2 correctly identify the three cases where exactly one head is flipped,
both obtaining a probability of 37.5%. The reasoning in Prediction 3 fails to account for the
total number of outcomes possible with three coin flips, thus giving a wrong answer of 33.3%.
Therefore, we select 37.5% as the final answer because it is the consensus.

Self-consistency provides a criterion for determining the best prediction in a pool of
candidates. Since the prompt and the model are fixed in this method, it is not strictly a prompt
ensembling method. Instead, it can be seen as an instance of output ensembling methods, also
known as hypothesis selection methods, which have long been explored in NLP, particularly for
text generation problems [Xiao et al., 2013]. In these methods, multiple outputs are generated
by varying model architectures or parameters. Each output is then assigned a score by some
criterion, and the outputs are re-ranked based on these scores. There are various ways to define
the scoring function, such as measuring the agreement between an output and others, and
using a stronger model to rescore each output8. Figure 9.2 shows a comparison of different

8An interpretation of self-consistency is to view it as a minimum Bayes risk search process. It searches for the
best output by minimizing the Bayes risk. More specifically, a risk function R(y,yr) is defined on each pair of
outputs (denoted by (y,yr)), representing the cost of replacing y with yr . Given a set of outputs Ω, the risk of an
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ensembling methods for LLMs.
Now, let us briefly review the methods we have discussed so far in this section, such

as problem decomposition and self-refinement. It is apparent that these methods enhance
decision-making by introducing more “choices” into the reasoning process. To some extent,
they all involve evaluating and providing feedback on the results of LLMs. For example, in
self-refinement, we need to offer suggestions for improving the prediction of LLMs, and in
output ensembling, we select the optimal output from a pool of candidates. In this sense, these
methods fall under the broader category of predict-then-verify approaches, where predictions
are initially made, then verified and refined. The fundamental problem here involves verifying
and evaluating the reasoning results or intermediate steps. This issue is somewhat related to
the problem of training reward models in RLHF, although RLHF addresses a different aspect.
In fact, the development of verifiers has been explored and implemented in reasoning with
LLMs. Most work, rather than developing heuristic-based inference-time algorithms, focuses
on learning verifiers in a supervised manner. A straightforward method is to train verifiers as
binary classifiers, such as classifying an answer as correct or incorrect, although these verifiers
are typically used as scoring models. Given a reasoning path for a problem, the verifiers
can be used to score either the entire path (called outcome-based approaches) [Cobbe et al.,
2021], or each individual reasoning step (called process-based approaches) [Uesato et al., 2022;
Lightman et al., 2024].

9.2.5 RAG and Tool Use
RAG is generally employed when standard LLMs, which rely solely on pre-trained knowledge,
lack accuracy and depth in the generated text. By drawing from external databases and
documents, RAG can significantly improve the quality of responses, ensuring they are both
contextually relevant and factually correct. Such an approach is particularly useful in scenarios
that require high factual accuracy and up-to-date information, such as complex question
answering.

The concept of RAG has been mentioned several times in the previous sections and chapters.
For completeness, we outline the key steps involved in RAG here.

• We prepare a collection of texts which are treated as an additional source of knowledge
we can access.

• We retrieve relevant texts for a given query.

• We input both the retrieved texts and the query into an LLM, which is then prompted to
produce the final prediction.

Steps 1 and 2 can be implemented by using an external information retrieval system. For
example, we can store the collection of texts in a vector database and then retrieve the most
similar texts through vector-based search techniques. Since information retrieval is not the

output y ∈Ω is given by

Risk(y) = Eyr∼Pr(yr|x)R(y,yr)

=
∑

yr∈Ω

R(y,yr) ·Pr(yr|x) (9.9)
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Figure 9.2: Ensembling methods for LLMs. In standard model ensembling (a), multiple
LLMs varying in architectures or parameters are used. Each LLM receives the same prompt
and produces a prediction. These predictions are combined to generate the final prediction.
In prompt ensembling (b), we have one LLM and multiple prompts. The LLM produces a
prediction for each prompt, and these predictions are combined as usual. In output ensembling
(c), the LLM samples multiple predictions over the prediction space given a prompt. It can
be seen as a method to boost the performance of the LLM itself. Note that these ensembling
methods can be combined to increase the diversity of predictions. For example, we can use
both prompt ensembling and output ensembling to obtain more diverse predictions.

focus of this chapter, we will assume that such systems are available off-the-shelf and use them
directly.

Here we present how to prompt LLMs to make use of retrieved texts. To illustrate, consider
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an example of using LLMs to answer the following question.

Where will the 2028 Olympics be held?

We can simply input this question into an online search engine. It will then return the
relevant pieces of text found on the internet, for example,

(Wikipedia)
The 2028 Summer Olympics, officially the Games of the XXXIV Olympiad and
commonly known as Los Angeles 2028 or LA28, is an upcoming international multi-
sport event scheduled to take place from July 14-30, 2028, in the United States. ...

(The Sporting News)
In 2028, Los Angeles will become the third city, following London and Paris respec-
tively, to host three Olympics after hosting the Summer Games in 1932 and 1984. It
will also be the first time the United States has hosted an Olympic Games since the
2002 Winter Games in Salt Lake City. ...

...

We can use these retrieved texts as additional context, and prompt an LLM to generate a
response based on these texts. Below is an example RAG prompt.

Your task is to answer the following question. To help you with this, relevant
texts are provided. Please base your answer on these texts.

Question:

Where will the 2028 Olympics be held?

Relevant Text 1:

The 2028 Summer Olympics, officially the Games of the XXXIV Olympiad
and commonly known as Los Angeles 2028 or LA28 ...

Relevant Text 2:
In 2028, Los Angeles will become the third city, following London and Paris
respectively, to host three Olympics after ...

...

The 2028 Olympics will be held in Los Angeles.

This prompt assumes that the provided texts are relevant to the question and expects the
LLM to generate a faithful response using these texts. However, the information retrieval
system may sometimes provide irrelevant or incorrect texts, which may lead the LLM to
produce an incorrect answer. One straightforward way to address this issue is to improve the
accuracy of the information retrieval system. Nevertheless, as with most AI systems, errors
may still occur. Therefore, it is also necessary to enhance the robustness of the LLM, so that it
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can make reasonable predictions even when the input is inaccurate. Below is a new prompt
that enables the LLM to be more faithful to the facts, and allows it to choose not to answer
questions when the information provided is inaccurate.

Your task is to answer the following question. To help you with this, relevant
texts are provided. Please base your answer on these texts.

Please note that your answers need to be as accurate as possible and faithful to
the facts. If the information provided is insufficient for an accurate response,
you may simply output "No answer!".

Question:

Where will the 2028 Olympics be held?

Relevant Text 1:

The 2024 Summer Olympics, officially the Games of the XXXIII Olympiad
and branded as Paris 2024, were an international multi-sport event ...

...

No answer!

In this example, the LLM refuses to answer because the provided information is insufficient
and irrelevant to the question.

Both RAG and fine-tuning are common methods for adapting LLMs using task-specific
data. Standard RAG is training-free and can be directly applied to LLMs. To further improve
RAG, it is also possible to fine-tune LLMs, though this will require some training effort. For
example, we can fine-tune LLMs using human-labelled data to supervise them in learning
to refuse to answer. Note that, while the examples shown above seem simple, RAG is not
trivial. From the prompt engineering perspective, different use cases may require different
prompts, though our somewhat “greedy” goal is to develop a universal prompting strategy
that can adapt to different tasks. In many cases, we need to control how much we depend on
the retrieved context to make predictions. Sometimes, LLMs must derive responses strictly
from the provided texts, while at other times, they may need to generate responses using their
pre-trained knowledge if the provided texts are insufficient. There are many aspects of RAG,
such as improvements to the retrieval systems, that cannot be covered in this chapter. Interested
readers can refer to surveys of RAG techniques for more information [Li et al., 2022; Gao
et al., 2023b].

One reason we discuss RAG here is that it can be broadly regarded as an instance of the
general problem decomposition framework (see Section 9.2.2). RAG divides problem-solving
into two steps. In the first step, we collect relevant and supporting information for a given
query from various knowledge sources. In the second step, we use LLMs to generate responses
based on the collected information. If we extend the concept of problem decomposition further,
we will find that many tasks requiring the use of external systems or tools can be treated as
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similar problems. One such example is tool use in LLMs. In many applications, LLMs need to
employ external databases, APIs, and even simulation tools to generate accurate responses.
For example, LLMs can access real-time data from financial markets to provide up-to-date
investment advice or integrate with healthcare databases to offer personalized medical insights.
This integration extends the capabilities of LLMs by allowing them to interact with, and in
some contexts, influence or control external systems. Consequently, LLMs function more as
autonomous agents rather than mere text generators [Franklin and Graesser, 1996].

The issue of tool use is broad and vast. Here we narrow our discussion to tasks that can be
facilitated by calling external APIs to solve some of the sub-problems [Parisi et al., 2022; Gao
et al., 2023a]. Consider again the example of asking an LLM to answer “Where will the 2028
Olympics be held?”. Suppose the LLM can access a web search tool. We can then prompt the
LLM to answer the question with web search, like this

Your task is to answer the following question. You may use external tools,
such as web search, to assist you.

Question:

Where will the 2028 Olympics be held?

The information regarding this question is given as follows:

{tool: web-search, query: "2028 Olympics"}

So the answer is: Los Angeles

Here {tool: web-search, query: "2028 Olympics"} indicates a request to
the web search system using the query “2028 Olympics”. When the LLM sees this string, it
executes a web search and uses the result to replace the string. Then, in subsequent steps of
prediction, the LLM uses this web search result as context to produce the correct answer.

Consider another example where we ask the LLM to solve a mathematical problem.
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Problem:

A swimming pool needs to be filled with water. The pool measures 10 meters
in length, 4 meters in width, and 2 meters in depth. Calculate the volume
of the pool in cubic meters and then determine how many liters of water are
needed to fill it (considering 1 cubic meter equals 1000 liters).

Solution:
To solve this problem, the LLM needs to first calculate the volume of the
pool by using the formula for the volume of a rectangular prism: Length×
Width×Depth. Therefore, The volume is 10m×4m×2m = {tool:

calculator, expression: 10 * 4 * 2} m3. Next, to find out how
many liters of water are needed, the LLM multiplies the volume in cubic
meters by 1000 (since 1 cubic meter equals 1000 liters). Thus, 80 ×1000

= {tool: calculator, expression: 80*1000} liters.

Here the string {tool: calculator, expression: 10 * 4 * 2} triggers the
invocation of a mathematical interpreter to calculate the result of the expression. Note that
the result (i.e., 80) will replace {tool: calculator, expression: 10 * 4 *
2} and can be referred to in the following token predictions. For example, in the last step of
problem-solving, 80 is used instead of {tool: calculator, expression: 10

* 4 * 2}.

A key difference between the tool use examples here and the previously discussed RAG
examples is that in tool use, external functions can be called during inference. In contrast, in
RAG, the retrieved texts are provided before the prediction process begins. However, from the
language modeling perspective, they are actually doing the same thing: before generating the
final result, we use external tools, either manually or automatically, to obtain sufficient and
relevant context. A high-level interpretation of these approaches is that they both rely on an
“agent” that can determine where and how to call external functions to generate the context
necessary for prediction.

An issue with tool use is that the original LLMs are not trained to generate the necessary
markers for tool use. Therefore, we need to fine-tune the LLMs to adapt them for these tasks
[Schick et al., 2024]. As this chapter focuses on prompting, we will not present the details of
this fine-tuning process. To put it simply, we first need to annotate data. For each fine-tuning
example, we replace parts of the output that require the use of external tools with predefined
commands or markers. Then, we use this labeled data to fine-tune the parameters of the LLM
as usual. As a result, the LLM can gain the ability to generate commands for calling external
tools. During inference, we can execute these tool use commands in the model outputs to get
assistance from external tools.
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9.3 Learning to Prompt
So far in this chapter, we have considered several basic prompting strategies and various
refinements to them. However, all the prompts we have discussed were designed manually.
This leads to a number of problems: First, designing high-quality prompts is inherently difficult
and requires substantial manual effort. For example, extensive experimentation with different
prompts is often needed to identify the most effective ones. Since different LLMs may respond
better to certain types of prompts, developing universally effective prompts can be even more
resource-intensive. Second, manual prompt design relies heavily on human expertise, which
can limit the diversity of approaches and overlook potentially effective prompts that are not
immediately obvious to humans. Third, prompts created by humans can be complex and
redundant, leading to longer inputs for LLMs and higher computational costs.

In this section, we discuss techniques for automated prompting. These methods aim to
automatically create, optimize, and represent prompts so that the downstream tasks can be
addressed more effectively and efficiently. In particular, we consider three issues here.

• How can we automate the process of designing and optimizing prompts for LLMs?

• Are there other forms of representing prompts beyond strings, and how can we learn
such representations?

• How can we make prompts more concise and compact, thereby reducing their complexity
and length?

Note that there are many settings in which we can investigate these issues. For example,
we might specify that prompts are developed specifically for a particular LLM, or that the
development is independent of the LLM used. These settings can lead to different methods
and application scenarios, but these methods may overlap in some ways. In the following
discussion, we will cover several different scenarios and discuss the connections between
various methods.

9.3.1 Prompt Optimization
Given that prompt design is difficult and labor-intensive, it is desirable to use machine learning
models to discover the optimal prompt for a specific task (call it automatic prompt design or
prompt optimization). This approach can broadly be regarded as an instance of automated
machine learning (AutoML), which aims to reduce or eliminate the need for expert-driven
manual design of machine learning models. Although our focus here is on the design of
prompts, prompts themselves are discrete structures. Therefore, designing prompts is very
similar to designing machine learning models, such as discrete model architectures. Perhaps
one of the most related fields is neural architecture search (NAS), where the most optimal
neural networks are identified by exploring a space of possible neural networks [Zoph and Le,
2016; Elsken et al., 2019]. If we consider prompt optimization as a search process, then we
can describe a general prompt optimization framework involving the following components:

• Prompt Search Space. This defines all possible prompts that the algorithms can explore.
For example, one can edit some seed prompts to generate a set of diverse candidate
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prompts.

• Performance Estimation. Once a prompt is chosen, it needs to be evaluated. For
example, a straightforward way is to input it to an LLM and measure its performance on
a validation set.

• Search Strategy. The search process is generally the same as that used in many AI
systems. At each step, the system explores a set of promising prompts in the search
space and evaluates them. This process continues as more prompts are explored. The
outcome of the search is the best-performing prompt observed until the search stops.

This is a very general framework, and different prompt optimization systems can vary
in their design of each component. A widely-used approach is to use LLMs as the basis to
develop these components. Initially, a few prompts are provided. Then, the following process
is iterated until a stopping criterion is met: 1) the prompts are evaluated on a validation set;
2) a candidate pool is maintained by keeping only the most promising prompts; and 3) new
prompts are created by employing LLMs to infer similar prompts from this candidate pool.
One benefit of this approach is that it allows us to use off-the-shelf LLMs to perform the tasks
mentioned above without the need for substantial system development. To achieve this, we can
prompt or fine-tune LLMs to adapt them to these tasks. Here we consider Zhou et al. [2023b]’s
method for illustrating LLM-based prompt optimization. It involves the following steps.

• Initialization. Let C represent the pool of the candidate prompts we intend to explore.
The first step is to add initial prompts into C. We can do this in several ways. A simple
method is to create such prompts by hand for a given task. However, in many cases
where humans have limited knowledge about how to write effective prompts for the task,
developing prompts becomes challenging. In these cases, it is desirable to use LLMs
to generate prompts. For example, we can directly instruct LLMs to produce prompts,
providing them with a description of the task.

You are given a task to complete using LLMs. Please write a prompt to
guide the LLMs.

{∗task-description∗}

This method is straightforward, but it still requires a human-provided description of the
task. An alternative method is to use LLMs to generate prompts given examples of the
input and output of the task. Here is a prompt template.
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You are provided with several input-output pairs for a task. Please
write an instruction for performing this task.

Input: {∗input1∗} Output: {∗output1∗}
Input: {∗input2∗} Output: {∗output2∗}
...

As such, LLMs can infer the corresponding instruction for the task from the provided
inputs and outputs.

• Evaluation. Once we obtain the candidate pool C, we need to evaluate the prompts
in C. One method is to feed each prompt into an LLM and assess the results on the
downstream task. For example, we can evaluate the output of the LLM given an input
using a pre-defined metric, or alternatively, use the log-likelihood of the output as a
measure of the quality of the prompt.

• Pruning. If C contains a large number of prompts, it is reasonable to prune the
unpromising prompts within it, thus reducing the computational burden in subsequent
steps. This is a standard pruning problem. Given the evaluation score for each prompt, a
simple method is to keep only a certain percentage of the prompts and discard the rest.

• Expansion. Expansion is a key operation in search algorithms used to explore different
states in the search space. The expansion operation here can be defined as a function

C ′ = Expand(C,f) (9.10)

where C ′ is the set of new prompts generated from C using the model f . If we consider
f as an LLM, we can perform the expansion operation by instructing f to generate new
and relevant prompts based on C. Below is an example.

Below is a prompt for an LLM. Please provide some new prompts to
perform the same task.

Input: {∗prompt∗}

Then, we replace C with C ′. The steps of evaluation, pruning and expansion can be
repeated, and so we can gradually explore a wider range of prompts.

In prompt optimization, the expansion step plays a key role, as it defines how we explore
the search space, and our goal is to find optimal results with minimal effort. One improvement
to this step is to treat the problem as a paraphrasing task. A simple method is to apply off-the-
shelf paraphrasing systems, either based on LLMs or other models, to transform input prompts
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into semantically equivalent forms [Jiang et al., 2020]. Alternatively, we can define specific edit
operations, such as insertions and modifications, for each token. A given prompt can be edited
into new prompts by applying these operations [Prasad et al., 2023]. Also, further evaluation
and pruning can be applied to filter out low-quality prompts. In addition to framing prompt
generation as a paraphrasing problem, we can improve the quality of prompts during expansion
by learning from feedback [Pryzant et al., 2023]. This approach is somewhat related to the
self-refinement issue discussed in Section 9.2.3. An LLM can be used to generate feedback on
an input prompt, which is then revised based on this feedback. This feedback-and-revision
cycle can be repeated multiple times until the result converges or the desired outcome is
achieved.

Another approach to prompt optimization is to apply classic optimization techniques. For
example, the problem can be framed as an evolutionary computation problem, where prompts
are treated as candidates that evolve generation by generation as the optimization progresses
[Guo et al., 2024]. Since many powerful optimization algorithms have been developed in
related fields, they can be directly applied to this problem.

In practice, we might be tempted to use existing LLM APIs to implement the steps
described above. Such an approach, however, would be strongly dependent on the inference
and in-context learning abilities of the LLMs. If these LLMs are not strong and lack adaptation
to the tasks, they may introduce errors into search, for example, generating incorrect prompts
during expansion. In such cases, it is preferable to train models that are better suited to the
tasks. One approach in this research direction appeals to reinforcement learning, which has
been widely used in solving discrete decision making and optimization problems. For example,
Deng et al. [2022] developed a prompt generator by integrating an FFN-based adaptor into an
LLM. The prompt generator is trained as a typical policy network, but only the parameters
of the adaptor are updated while the remaining parameters of the model are kept unchanged.
During training, the reward is obtained by testing the generated prompts using another LLM,
similar to the evaluation method as discussed above. Once the training is complete, the prompt
generator is then employed to generate new prompts.

Note that, in our discussion here, prompts are simply seen as sequences of tokens, and
the output of prompt optimization is such a sequence. However, in a strict sense, prompts
have complex structures and include different fields such as user input, instruction, and
demonstration. While our discussed approaches are mostly general, much work in prompt
optimization has focused on learning better instructions for prompting. Specifically, the goal
is to generate instructions that effectively guide LLMs based on a given task. Of course,
the concept of prompt optimization can also be extended to learning other parts of prompts.
For example, there has been substantial research interest in learning to select or generate
demonstrations in CoT [Liu et al., 2022; Rubin et al., 2022; Zhang et al., 2023b]. One of the
differences between learning instructions and learning demonstrations is that generating high-
quality demonstrations using LLMs is relatively easy and the focus of learning demonstrations
is typically on how to sample appropriate demonstrations from a pool of candidates. In
contrast, the difficulty in learning instructions is partly because pre-trained LLMs are not
suited to predict the quality of instructions, and testing these instructions on downstream



9.3 Learning to Prompt 55

tasks is computationally expensive. This makes the optimization methods costly to apply, and
exploring a wide variety of instructions poses significant challenges.

9.3.2 Soft Prompts

Although developing natural language prompts, either manually or automatically, is a straight-
forward and widely applied approach, it presents some problems. One problem is that natural
language prompts can be complex and lengthy, resulting in significant computational burdens
when processed via LLMs. In many applications, users may need to perform a task repeatedly,
and inputting the same long prompt into the LLMs a large number of times is clearly inefficient.
Another problem is that while prompts are typically represented as discrete token sequences
(call them hard prompts) in regular LLM input, the LLMs encode them as low-dimensional
real-valued vectors. This raises the question of whether there are more compact and efficient
ways to represent prompts.

In this subsection, we introduce the concept of soft prompts, which can be viewed as
hidden, distributed representations of prompts. When prompting LLMs, we are concerned with
communicating tasks or questions to elicit the desired responses. We can define hard prompts
as explicit, predefined text sequences that users input directly into LLMs to guide the responses.
In contrast, we can think of soft prompts as implicit, adaptable prompting patterns embedded
within LLMs. Unlike hard prompts, which are expressed in natural language and should be
understandable for humans, soft prompts are encoded in a format that is more comprehensible
to the model rather than to humans. To illustrate, consider a simple prompt

Translate the sentence into Chinese.

Consider it done!

Here, the instruction “Translate the sentence into Chinese” can be seen as a hard prompt,
denoted by the token sequence c1...c5. By feeding these tokens into an LLM, they are
transformed into a sequence of real-valued vectors h1...h5, each corresponding to a token. We
can roughly think of h1...h5 as a soft prompt, as illustrated in Figure 9.3.

While the above example shows that soft prompts can be generated by transforming hard
prompts, there is not necessarily a direct correspondence between them. In fact, we do not
even need to interpret soft prompts using meaningful text. They are instead simply hidden
states in LLMs and can be learned as standard parameters of the models through continuous
optimization. Such a treatment allows us to explore prompting methods beyond text. As
another benefit, soft prompts provide dense, low-dimensional, and learnable representations
for encoding how we guide LLMs to generate specific outputs. The training and application
of these representations require significantly lower computational costs than those required
for processing long hard prompts. This approach would be of great practical value in LLM
inference applications where the same prompt is repeatedly used.
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... Translate this into Chinese . I have a cat . ...

Transformer

... hj hj+1 hj+2 hj+3 hj+4 hj+5 hj+6 hj+7 hj+8 hj+9 ...

... ... ... ... ... ... ... ... ... ... ... ...

Hard Prompt (Instruction)

Soft Prompt

Figure 9.3: Illustration of hard and soft prompts. Here the hard prompt is the instruction we
input to the LLM for performing the task. The LLM encodes this instruction as usual, and the
intermediate representations corresponding to the instruction can be viewed as some sort of
soft prompt.

1. Adapting LLMs with Less Prompting

One obvious way to adapt an LLM for a particular task is to simply fine-tune the model using
labeled data. This leads to a variety of LLM alignment methods, such as supervised fine-tuning,
which update the model parameters by aligning the responses to given prompts with supervision
signals. Fine-tuned LLMs embed task-related information in model parameters, and thus these
models can respond correctly when dealing with similar prompts with those in fine-tuning.

If we take this idea further, we can expect LLMs to absorb the knowledge about prompting
of a task as much as possible during fine-tuning. Consequently, the prompting information
is partially captured in the model parameters, and the fine-tuned LLMs can perform the task
with less prompting. Here we consider a simple form of prompt, where only an instruction
(denoted by c) and a user input (denoted by z) are included. A prompt can be expressed using
the following tuple

x = (c,z) (9.11)

Given a set of prompt-response pairs D = {(x,y)}, the objective of fine-tuning is to
minimize the total loss incurred over this set. A popular method is to minimize the negative
log-likelihood (i.e., maximize the log-likelihood) with respect to the model parameters θ:

θ̂ = argmax
θ

∑
(x,y)∈D

logPrθ(y|x)

= argmax
θ

∑
(x,y)∈D

logPrθ(y|c,z) (9.12)
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where Prθ(·|·) is the probability predicted by an LLM with the parameters θ9.

In general, the instruction in each fine-tuning example should follow the guideline of
prompt design, for example, a good instruction should be as clear as possible and provide a
detailed description of the task. However, the method described in the above equation does not
restrict the instruction to any particular form. This flexibility allows us to instruct LLMs in
any way that we want. Consider an example where we intend to instruct LLMs to translate an
English sentence into Chinese. Of course, as mentioned earlier in this chapter, we can prompt
LLMs using the instruction

Translate the following sentence from English to Chinese.

If we want the instruction to be simpler, we may rephrase it into a simpler form

Translate this into Chinese.

Even, we can define the instruction as a single phrase

Translate!

With certain fine-tuning effort, we can adapt LLMs to follow any of these instructions.
From an efficient prompting perspective, there are computational advantages in simplifying
instructions in prompting. For example, we can use simple instructions like “Translate!” to
perform tasks that would typically require more complex and detailed instructions. This can
make subsequent prompting during inference much easier. On the other hand, fine-tuning
LLMs with overly simplified instructions may be harmful to the generalization of the models.
Since simplified instructions can lead to a loss of information, it is more likely that the LLMs
will overfit the fine-tuning data and fail to generalize beyond those instructions. In scenarios
involving both complex and simplified instructions for fine-tuning, this problem is more severe
because the labeled data available for fine-tuning is usually limited, and accommodating a
variety of instructions is costly.

An alternative way to adapt LLMs for simplified instructions is through knowledge distilla-
tion. As an example, we consider the context distillation method [Snell et al., 2022]. The goal
of this method is to learn a student model that can make use of simplified instructions from
a well-trained instruction-following teacher model. Figure 9.4 shows an illustration of this
approach. Building the teacher model follows a standard fine-tuning process: we first collect a
certain amount of data that includes instructions, user inputs, and correct responses, and then
we continue to train a pre-trained model with this dataset. For building the student model, we
need to construct a new dataset D′ where each sample is a tuple consisting of an instruction, a
corresponding simplified instruction, and a user input, denoted by x′ = (c,c′,z). Knowledge
distillation is performed by minimizing a loss function defined on the outputs of the teacher

9In practice, we initialize θ with the parameters obtained from pre-training, and then adjust θ moderately to
ensure that the results after fine-tuning do not deviate too much from the pre-trained results.
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Full Context User Input+ Prt(y|c,z)

c z y

Teacher Model:

Simplified Context User Input+ Prs(y|c′,z)

c′ z y

Student Model:

Loss

Figure 9.4: Illustration of context distillation [Snell et al., 2022]. The teacher model is a
standard LLM, which takes both the context and the user input as model input and produces a
prediction as model output. Then, we simplify the context (e.g., simplifying the instruction in
prompting) and use the student model to make predictions based on the simplified context and
the user input. The student model is trained by minimizing the loss between the predictions
produced by the two models.

and student models

θ̂ = argmin
θ

∑
x′∈D′

Loss(Prt(·|·), Prsθ(·|·), x′) (9.13)

where Prt(·|·) denotes the pre-trained teacher model, and Prsθ(·|·) denotes the student model
with the parameters θ. To keep the notation simple we will write Loss(Prt(·|·), Prsθ(·|·), x)
as Loss for short. A commonly-used loss is the sequence-level loss, which has the basic form:

Loss =
∑
y

Prt(y|c,z) logPrsθ(y|c′,z) (9.14)

But this function is computationally infeasible because it requires summing over an
exponentially large number of outputs. A variant of this method is to train the student model
using outputs generated by the teacher model. For each sample, we use the teacher model to
produce an output ŷ= argmaxy logPr

t(y|c,z). Then we consider ŷ as the target for learning,
and the loss function is given by

Loss = logPrsθ(ŷ|c′,z) (9.15)

Alternatively, we can minimize the distances between the probability distributions outputted
by the two models [Askell et al., 2021]. For example, the loss function can be defined as the
KL divergence between the two output distributions

Loss = KL(Pt || Ps
θ) (9.16)
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where

Pt = Prt(·|c,z) (9.17)

Ps
θ = Prsθ(·|c′,z) (9.18)

Although we have restricted ourselves to knowledge distillation for instructions, the
approaches discussed here are general. By learning from the outputs of the teacher model, the
knowledge in prompting can be distilled into the parameters of the student model. Therefore,
the distilled model can be considered as encoding some sort of soft prompt. This method can
be applied to many other problems in prompt learning, such as compressing long contexts and
learning soft prompts as specific components of LLMs.

2. Learning Soft Prompts for Parameter-efficient Fine-tuning

Updating all parameters is a common method for adapting LLMs to tasks of interest. Although
fine-tuning is considered computationally cheaper than pre-training, it is still costly to apply
in practice. This issue motivates the development of parameter-efficient fine-tuning methods,
which aim to minimize the number of parameters that need to be updated.

One approach, known as prefix fine-tuning, is to append a series of trainable vectors, or
prefixes, at the beginning of the input of each Transformer layer [Li and Liang, 2021]. These
prefixes can be thought of as soft prompts that serve as additional context to guide the behavior
of the model under specific tasks. During fine-tuning, we need only to learn the prefixes for
embedding task-specific knowledge. Thus, this method is efficient because it only modifies a
small part of the model rather than adjusting the entire set of model parameters.

Specifically, let the input of a layer at depth l be denoted by Hl = hl
0h

l
1...h

l
m. The output

of the layer can be expressed as

Hl+1 = Layer(Hl) (9.19)

In prefix fine-tuning, we extend the sequence hl
0h

l
1...h

l
m by adding a few vectors at the

beginning, which we denote as pl
0p

l
1...p

l
n. Hence Hl can be written in the form

Hl = pl
0 p

l
1 ... p

l
n︸ ︷︷ ︸

trainable

hl
0 h

l
1 ... h

l
m︸ ︷︷ ︸

previous layer output

(9.20)

The output of the layer is the last m+1 representations.

H
l+1

= Layer(Hl)[−m−1 :]

= hl+1
0 hl+1

1 ... hl+1
m (9.21)

where [−m− 1 :] denotes the slicing operation that extracts the last m+1 elements of a
sequence. Given H

l+1, the input of the next layer can be expressed in the same form of Eq.
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(9.20):

Hl+1 = pl+1
0 pl+1

1 ... pl+1
n H

l+1

= pl+1
0 pl+1

1 ... pl+1
n hl+1

0 hl+1
1 ... hl+1

m (9.22)

Here each pi ∈Rd can be seen as a learnable parameter. During training, pl
0p

l
1...p

l
n are trained

as usual, and the parameters of the original Transformer model are kept fixed.
Figure 9.5 shows an illustration of prefix fine-tuning for a translation task. Here, only the

prefix vectors pl
0 and pl

1 are updated by receiving the error gradients from the output (i.e.,
the Chinese translation). By adjusting these vectors for the translation task, the model adapts
accordingly. This makes pl

0 and pl
1 serve as prompts which activate the LLM to perform

the task without needing explicit input prompts like “Translate the following sentence from
English to Chinese”. At test time, we prepend the optimized pl

0 and pl
1 to the layer, and the

LLM will then translate the input sentence. Note that prefix fine-tuning introduces additional
L×n×d parameters, where L is the number of layers, n is the number of prefixes, and d is
the dimensionality of each prefix. However, this number is much smaller compared to the total
number of parameters in the LLM, making the fine-tuning process highly efficient.

While prefix fine-tuning is simple, it still requires modifications to LLMs. Alternatively,
separating soft prompts from the LLMs allows us to preserve the original model architecture,
making it more efficient for deployment across different tasks without the need to adjust the
core model. One such method is prompt tuning [Lester et al., 2021]. Like prefix fine-tuning,
prompt tuning incorporates trainable vectors so that LLMs can adapt to given tasks by adjusting
these vectors. However, prompt tuning differs in that it modifies only the embedding layer.

Recall that in LLMs each input token zi is represented by an embedding ei. These
embeddings are generally learned through a token embedding model and are then used as the
real inputs to the LLMs, replacing the symbolically represented tokens. In prompt tuning, a
number of pseudo embeddings p0...pn are added at the beginning of the token embedding
sequence. So the actual input to the LLMs can be expressed as

p0 p1 ... pn︸ ︷︷ ︸
trainable

e0 e1 ... em︸ ︷︷ ︸
token embeddings

Note that a pseudo embedding needs not to correspond to any token in natural language. Instead
these embeddings can be seen as “soft prompt embeddings” that serve to condition the LLMs.
By training soft prompt embeddings on task-specific data, they learn to interact adaptively with
the token embeddings e0...em and guide the behavior of LLMs. Since prompt tuning does
not change the underlying parameters of pre-trained LLMs, it is considered a lightweight and
efficient method of fine-tuning, improving task-specific performance while maintaining their
generalization capabilities. See Figure 9.6 for an illustration of prompt tuning.

Since p0 p1 ... pn is itself a sequence, we can employ sequence models to better represent
it. For example, a Transformer model can encode this sequence, and the resulting representation
can then be used as the input to the LLM. In other words, we can develop an additional model
for encoding soft prompts. Another way to improve prompting is by combining soft and
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pl
0 pl

1 hl
0 hl

1 hl
2 hl

3 hl
4

Layer l

pl−1
0 pl−1

1 hl−1
0 hl−1

1 hl−1
3 hl−1

4 hl−1
5

Layer l−1

pl+1
0 pl+1

1 hl+1
0 hl+1

1 hl+1
3 hl+1

4 hl+1
5

Layer l+1

· · · · · · · · · · · · · · ·

Loss Loss

· · · · · · · · · · · · · · ·

Look out ! 小心 !

trainable prefixes

User Input LLM PredictionSoft Prompt

Figure 9.5: Illustration of prefix fine-tuning for a translation task (Look out! → 小心!). For
each layer, we add two prefixes pl

0 and pl
1 at the beginning. The LLM is trained to minimize

the loss on the predictions given the input. During this process, only the prefixes are optimized
while the rest of the parameters remain fixed. Therefore, the model can adapt to the given task
in a very efficient manner. At inference time, the LLM works with optimized prefixes, and can
perform the task without the need of explicit hard prompts.

hard prompts, thereby taking advantage of both types [Liu et al., 2023b]. In the embedding
sequence, we can arrange or intersperse these prompts. This would result in different prompt
patterns. For example, a simple pattern that uses both two types of prompt is

p0 p1 · · · pn q0 q1 · · · qm′ e0 e1 · · · em

c0 c1 · · · cm′ z0 z1 · · · zm

Soft Prompt Hard Prompt User Input and Response

where c0...cm′ denotes the hard prompt and q0...qm′ denotes the corresponding embedding
sequence.

Here we have considered methods for inserting soft prompts in LLMs. But we skip the
details of training these soft prompts and assume that the reader is familiar with the standard
supervised learning process, that is, maximizing the likelihood of the correct model output
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Layer l−1

Layer l

Layer l+1

· · · · · · · · · · · · · · · · · · · · ·

p0 p1 e0 e1 e2 e3 e4

· · · · · · · · · · · · · · · · · · · · ·

Loss Loss

Look out ! 小心 !

trainable prompt
embeddings

User Input LLM PredictionSoft Prompt

Figure 9.6: Illustration of prompt tuning for a translation task (Look out! → 小心!). Instead
of using fixed textual prompts, soft prompts are learnable embeddings that are added at the
beginning of the embedding sequence. During fine-tuning, only these prompt embeddings
are optimized to efficiently adapt the LLM to the given task. Once optimized, the prompt
embeddings are used to instruct the LLM to perform the task as new data arrives.

given the model input. In fact, learning soft prompts can be related to many issues in LLM
fine-tuning. For example, if we consider it as a context compression problem, we can apply
the knowledge distillation methods described previously. In Mu et al. [2024]’s work, prompts
are compressed and represented as a few pseudo tokens, which are appended to each input
sequence. The embeddings of these pseudo tokens are optimized to mimic the predictions of a
standard-prompted model. In other words, the prompting knowledge is distilled from a teacher
model into the pseudo tokens.

Broadly speaking, many parameter-efficient fine-tuning methods can be thought of as
learning some sort of soft prompt [Lialin et al., 2023]. When we fine-tune a part of an LLM
for a task, this process can essentially be seen as injecting task-related prompting information
into that specific part of the model. Another widely-used approach to parameter-efficient fine-
tuning is to add an adaptor layer between the existing model layers. This approach allows us to
fine-tune only the adaptor layer on specific tasks without altering the underlying architecture
or retraining the entire model. In this sense, adaptor layers can be viewed as soft prompts that
encode prompting and task-related information and interact with the original LLM to help
it adapt. To summarize, Figure 9.7 shows a comparison of different methods of using soft
prompts in LLMs.



9.3 Learning to Prompt 63

LLM

(a) Soft Prompts as Prefixes

LLM

(b) Soft Prompts as Inputs (Embeddings)

LLM
Layer

(c) Fine-tuning Parts of the Model

LLM
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pt
or

(d) Fine-tuning the Adaptor

Figure 9.7: Illustrations of using soft prompts in LLMs. Here tunable soft prompts are shown
in blue, and components whose parameters are fixed during fine-tuning are shown in gray. In
sub-figure (a), soft prompts are prefixes appended to each layer of the LLM. In sub-figure
(b), soft prompts are used as input embeddings for the LLM. In sub-figures (c) and (d), soft
prompts are broadly treated as components of the model that are fine-tuned for task adaptation.

3. Learning Soft Prompts with Compression

Another approach to learning soft prompts is from the perspective of compression. As a
simple example, consider the problem of approximating a long context using a continuous
representation [Wingate et al., 2022]. Suppose we have a user input z and its context c (such as
long instructions and demonstrations). Now we want to develop a compressed representation
of the context, denoted by σ, such that the prediction based on z and σ is as close as possible
to the prediction based on z and c. This goal can be expressed in the form

σ̂ = argmin
σ

s(ŷ, ŷσ) (9.23)

where ŷ = argmaxyPr(y|c,z) and ŷσ = argmaxyσ
Pr(y|σ,z) are the LLM predictions

given the full context and the compressed context, respectively. The function s(·, ·) typically
represents a loss or similarity measure, aiming to minimize the difference in predictions
between the two context representations.

One general framework for achieving this is knowledge distillation, where ŷ and ŷσ can
be seen as the predictions of the teacher model and the student model, respectively. This
formalization links our discussion to the context distillation problem discussed earlier. The
training objective can be obtained by analogy with Eqs. (9.15) and (9.16). For example, a
simple training objective is given by

σ̂ = argmax
σ

logPr(ŷ|σ,z) (9.24)
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Alternatively, we can minimize the KL divergence between the output distributions, giving

σ̂ = argmin
σ

KL(Pr(·|c,z) || Pr(·|σ,z)) (9.25)

The difference with the models in Eqs. (9.15) and (9.16) is that here the compressed context
is represented as real-valued vectors (call them prompt embeddings), rather than as normal
tokens. By applying the above methods, we distill the context from the token sequence c into
the embeddings σ. Note that the teacher model Pr(·|c,z) and the student model Pr(·|σ,z)
may not share the same architecture or model settings. In practice, we generally wish for the
teacher model to be stronger, while the student model should be smaller and more efficient.

While compressing full context into continuous representations is a straightforward ap-
proach to learning soft prompts, it requires a teacher model that can deal with long input
sequences. In many cases, however, the context is so long that applying an LLM is too costly or
infeasible. Modeling long input sequences can fall under the broad family of efficient methods
for long-context LLMs. Many techniques have been developed to address this issue. For
example, one can use a fixed-size KV cache to store the past information at each step during
inference. Efficient Transformer architectures and long-context LLMs have been intensively
discussed in this book. For more detailed discussions of these topics, interested readers can
refer to Chapters 6 and 8.

There are also methods specifically designed to compress long context into soft prompts.
Here we consider Chevalier et al. [2023]’s method as an example. The basic idea is that
we learn soft prompts gradually by accumulating the fixed-size context representation over
the context sequence. Given a long context, we first divide it into a number of segments
z1, ...,zK . We then process these segments in sequence, each time generating a representation
of the context we have processed so far, denoted by σ<i+1. To do this, a few summary tokens
⟨g1⟩, ...,⟨gκ⟩ are introduced. At each step, we take a segment zi = zi1...z

i
mi

, along with the
previous context representation σ<i and the summary tokens ⟨g1⟩, ...,⟨gκ⟩ as input, and use
an LLM to produce the corresponding hidden representation sequence at the last Transformer
layer. An example of this process is illustrated in Figure 9.8.

Here σ<i is essentially a memory. The model operates in an RNN fashion. Each time
we take a segment and update this memory by encoding both the previous memory state and
the segment. Therefore, the σ<i produced at the last segment is a representation of the entire
context sequence. The Transformer model for learning these representations can be a standard
LLM but we need to fine-tune it to adapt to this context representation task.

Note that here we simply consider prompt and context as similar terms, even though they
are not the same. Although we are somewhat “misusing” the concept prompt, we can often
view it as a type of context. From this perspective, the methods discussed here can be applied
to general text compression problems.

9.3.3 Prompt Length Reduction
While soft prompts provide dense, hidden representations, they are not directly interpretable.
The lack of interpretability can be a significant barrier for users trying to understand how their
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σ<i
1 σ<i

2 ei1 ei2 ei3 ei4 ⟨e1⟩ ⟨e2⟩

zi1 zi2 zi3 zi4 ⟨g1⟩ ⟨g2⟩

Transformer Layers

h<i
1 h<i

1 h1 h2 h3 h4 σ<i+1
1 σ<i+1

2

Soft Prompts
at Step i−1

Soft Prompts
at the Current Step

Figure 9.8: Illustration of compressing a context segment into soft prompts (κ= 2 and mi = 4).
The input to the LLM includes the soft prompts from the previous step (σ<i

1 and σ<i
2 ), the

tokens of the segment (z1,z2,z3, and z4), and the summary tokens (⟨g1⟩ and ⟨g2⟩). Given
these, the LLM operates as usual. We then extract the outputs at the last Transformer layer
that correspond to the summary tokens. These outputs can be viewed as the soft prompts that
accumulated up to this segment.

inputs influence LLM outputs. Moreover, although soft prompts are efficient for fine-tuning
and deployment, they are inflexible and do not allow for easy adjustments without extensive
fine-tuning or modification. This inflexibility can limit their utility in dynamic environments
where prompt changes are frequently needed.

One alternative way to develop efficient prompts is to simplify the text used for prompting.
For example, below is a prompt for answering questions on healthcare and finance.

The task involves developing a language model capable of understanding
and responding to user inquiries across various domains, with a particular
emphasis on healthcare and finance. Considering the broad range of potential
queries, from the specifics of medical diagnoses to the nuances of finan-
cial regulations, the model must ensure a comprehensive understanding and
accurate responses.

Question:

What are the best practices for using artificial intelligence in diagnosing
cardiovascular diseases?

We can simplify the task description by deleting the unimportant parts.
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The task involves developing a language model capable of understanding
and responding to user inquiries across various domains, with a particular
emphasis on healthcare and finance. Considering the broad range of
potential queries, from the specifics of medical diagnoses to the nuances
of financial regulations, The model must ensure a comprehensive under-
standing and accurate responses.

We can also paraphrase it as a shorter text.

The task involves developing a language model focused on healthcare and
finance, capable of understanding and accurately responding to a wide
range of user inquiries.

This problem can be viewed as a classic NLP issue — text simplification. So the methods
used can be general and not restricted to the problem of simplifying prompts. There are
many ways to achieve this. One simple method is to define some heuristics and identify
redundant words that can be eliminated without losing essential information. For example,
we can examine each token in a sequence in terms of its contribution to the overall meaning
and remove those that provide minimal value [Li et al., 2023b; Jiang et al., 2023]. Another
method involves framing the problem as a sequence-to-sequence task. With labeled data for
text simplification, we can train an encoder-decoder model to transform each input text into
its simplified form. In addition, given that many LLMs have been fine-tuned and aligned to
perform text simplification tasks, it is straightforward to use these models to simplify prompts.
For example, we can prompt an LLM to simplify a text under certain constraints, such as
limiting the length of the simplified text.

9.4 Summary
In this chapter, we have discussed a variety of issues related to LLM prompting. Our discussion
has focused mainly on two aspects:

• How to design basic prompts to guide the predictions of LLMs and refine these prompts
for more effective and efficient problem-solving?

• How to automate the design and representation of prompts?

Solutions to these issues involve both general prompt designs and more advanced techniques,
such as CoT and prompt learning, which have been explored extensively in recent research.

In NLP, prompting can be viewed as a technology that has evolved along with LLMs, and
in a sense, it has opened the door to the practical application of these models in an impressive
range of problem domains. In fact, if we expand the concept of prompts to some extent, it can
be traced back to the early days of machine learning and NLP. For example, many NLP systems
use hand-crafted features and templates to “prompt” specific tasks. Imagine developing a
feature to indicate whether a text is formal or informal. We can feed this feature into a machine
translation system to condition the translation on the type of the input text.
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The widespread use of the modern concept of prompts began with the rise of large pre-
trained models in the field of NLP. Initially, these models, such as BERT, were adapted to
specific downstream tasks mainly through fine-tuning. However, researchers soon discovered
that by designing specific "prompts" — adding certain words or sentences to the input — the
models could be triggered to respond to specific tasks without extensive fine-tuning. This
motivated the NLP community to develop and apply universal foundation models that can
be prompted to address various tasks without changing the underlying architecture and the
pre-training procedure.

Prompting approaches were first experimented with smaller models and later demonstrated
impressive capabilities with large models like GPT-3, which could generate high-quality text
in response to simple prompts across various tasks. As prompting technology evolved, prompt
engineering emerged as a critical area of research. As discussed in this chapter, it broadly
involves designing effective prompts to maximize model performance, encompassing both
hand-crafted and automatically generated prompts. More recent research has explored how to
enhance the effectiveness of prompting through techniques like few-shot learning, zero-shot
learning, and CoT reasoning, enabling LLMs to work effectively across a wide range of
scenarios. A general discussion of prompting can be very broad, and we cannot cover all
details in this chapter. For more advanced techniques of prompting, the reader can refer to
recent surveys. Topics include in-context learning [Li, 2023; Dong et al., 2022], CoT [Chu
et al., 2023; Yu et al., 2023; Zhang et al., 2023a], efficient prompting [Chang et al., 2024], and
general prompt engineering [Liu et al., 2023c; Chen et al., 2023].

Note that although we would ideally like to develop general prompting methods without
adjusting model architectures and parameters, the results of prompting generally depend heavily
on the quality and size of the given LLMs. For stronger models, such as commercialized online
LLMs, simple prompts may be sufficient to instruct these models to perform tasks correctly. In
this case, prompt engineering is relatively easy, though we still need certain efforts to make
LLMs work properly. By contrast, if the LLMs are not powerful enough, we may need to
carefully design the prompts to achieve the desired results. In many cases, fine-tuning is still
necessary to adapt the models to sophisticated prompting strategies.
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