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Chapter 8

Generative Models

One of the most significant advances in NLP in recent years might be the development of large
language models (LLMs). This has helped create systems that can understand and generate
natural languages like humans. These systems have even been found to be able to reason,
which is considered a very challenging AI problem. With these achievements, NLP made big
strides and entered a new era of research in which difficult problems are being solved, such as
building conversational systems that can communicate with humans smoothly.

The concept of language modeling or probabilistic language modeling dates back to early
experiments conducted by Shannon [1951]. In his work, a language model was designed to
estimate the predictability of English — how well can the next letter of a text be predicted
when the preceding N letters are known. Although Shannon’s experiments were preliminary,
the fundamental goals and methods of language modeling have remained largely unchanged
over the decades since then. For quite a long period, particularly before 2010, the dominant
approach to language modeling was the n-gram approach [Jurafsky and Martin, 2008]. In
n-gram language modeling, we estimate the probability of a word given its preceding n−1

words, and thus the probability of a sequence can be approximated by the product of a series
of n-gram probabilities. These probabilities are typically estimated by collecting smoothed
relative counts of n-grams in text. While such an approach is straightforward and simple,
it has been extensively used in NLP. For example, the success of modern statistical speech
recognition and machine translation systems has largely depended on the utilization of n-gram
language models [Jelinek, 1998; Koehn, 2010].

Applying neural networks to language modeling has long been attractive, but a real
breakthrough appeared as deep learning techniques advanced. A widely cited study is Bengio
et al. [2003]’s work where n-gram probabilities are modeled via a feed-forward network and
learned by training the network in an end-to-end fashion. A by-product of this neural language
model is the distributed representations of words, known as word embeddings. Rather than
representing words as discrete variables, word embeddings map words into low-dimensional
real-valued vectors, making it possible to compute the meanings of words and word n-grams
in a continuous representation space. As a result, language models are no longer burdened
with the curse of dimensionality, but can represent exponentially many n-grams via a compact
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4 Chapter 8. Generative Models

and dense neural model.
The idea of learning word representations through neural language models inspired sub-

sequent research in representation learning in NLP. However, this approach did not attract
significant interest in developing NLP systems in the first few years after its proposal. Starting
in about 2012, though, advances were made in learning word embeddings from large-scale
text via simple word prediction tasks. Several methods, such as Word2Vec, were proposed
to effectively learn such embeddings, which were then successfully applied in a variety of
NLP systems [Mikolov et al., 2013a;b]. As a result of these advances, researchers began to
think of learning representations of sequences using more powerful language models, such
as LSTM-based models [Sutskever et al., 2014; Peters et al., 2018]. And further progress
and interest in sequence representation exploded after Transformer was proposed. Alongside
the rise of Transformer, the concept of language modeling was generalized to encompass
models that learn to predict words in various ways. Many powerful Transformer-based models
were pre-trained using these word prediction tasks, and successfully applied to a variety of
downstream tasks [Devlin et al., 2019].

Indeed, training language models on large-scale data has led NLP research to exciting
times. While language modeling has long been seen as a foundational technique with no direct
link to the goals of artificial intelligence that researchers had hoped for, it helps us see the
emergence of intelligent systems that can learn a certain degree of general knowledge from
repeatedly predicting words in text. Recent research demonstrates that a single, well-trained
LLM can handle a large number of tasks and generalize to perform new tasks with a small
adaptation effort [Bubeck et al., 2023]. This suggests a step towards more advanced forms of
artificial intelligence, and inspires further exploration into developing more powerful language
models as foundation models.

In this chapter, we consider the basic concepts of generative LLMs. For simplicity, we
use the terms large language models or LLMs to refer to generative models like GPT, though
this term can broadly cover other types of models like BERT. We begin by giving a general
introduction to LLMs, including the key steps of building such models. We then discuss two
scaling issues of LLMs: how LLMs are trained at scale, and how LLMs can be improved to
handle very long texts. Finally, we give a summary of these discussions.

8.1 A Brief Introduction to LLMs
In this section we give an introduction to the basic ideas of LLMs as required for the rest of this
chapter and the following chapters. We will use terms word and token interchangeably. Both
of them refer to the basic units used in language modeling, though their original meanings are
different.

Before presenting details, let us first consider how language models work. The goal
of language modeling is to predict the probability of a sequence of tokens occurring. Let
{x0,x1, ...,xm} be a sequence of tokens, where x0 is the start symbol ⟨s⟩ (or ⟨SOS⟩)1. The

1The start symbol can also be [CLS] following BERT models.
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probability of this sequence can be defined using the chain rule

Pr(x0, ...,xm) = Pr(x0) ·Pr(x1|x0) ·Pr(x2|x0,x1) · · ·Pr(xm|x0, ...,xm−1)

=
m∏
i=0

Pr(xi|x0, ...,xi−1) (8.1)

or alternatively in a logarithmic form

logPr(x0, ...,xm) =
m∑
i=0

logPr(xi|x0, ...,xi−1) (8.2)

Here Pr(xi|x0, ...,xi−1) is the probability of the token xi given all its previous tokens
{x0, ...,xi−1} 2. In the era of deep learning, a typical approach to language modeling is
to estimate this probability using a deep neural network. Neural networks trained to accom-
plish this task receive a sequence of tokens x0, ...,xi−1 and produce a distribution over the
vocabulary V (denoted by Pr(·|x0, ...,xi−1)). The probability Pr(xi|x0, ...,xi−1) is the value
of the i-th entry of Pr(·|x0, ...,xi−1).

When applying a trained language model, a common task is to find the most likely token
given its previous context tokens. This token prediction task can be described as

x̂i = argmax
xi∈V

Pr(xi|x0, ...,xi−1) (8.3)

We can perform word prediction multiple times to generate a continuous text: each time
we predict the best token x̂i, and then add this predicted token to the context for predicting
the next token x̂i+1. This results in a left-to-right generation process implementing Eqs. (8.1)
and (8.2). To illustrate, consider the generation of the following three words given the prefix
‘⟨s⟩ a’, as shown in Table 8.1. Now we discuss how LLMs are constructed, trained, and
applied.

8.1.1 Decoder-only Transformers
As is standard practice, the input of a language model is a sequence of tokens (denoted
by {x0, ...,xm−1}). For each step, an output token is generated, shifting the sequence one
position forward for the next prediction. To do this, the language model outputs a distribution
Pr(·|x0, ...,xi−1) at each position i, and the token xi is selected according to this distribution.
This model is trained by maximizing the log likelihood

∑m
i=1 logPr(xi|x0, ...,xi−1)

3.
Here, we focus on the decoder-only Transformer architecture, as it is one of the most

popular model architectures used in LLMs. The input sequence of tokens is represented by a
sequence of de-dimensional vectors {e0, ...,em−1}. ei is the sum of the token embedding of
xi and the positional embedding of i. The major body of the model is a stack of Transformer

2We assume that when i = 0, Pr(xi|x0, ...,xi−1) = Pr(x0) = 1. Hence Pr(x0, ...,xm) =
Pr(x0)Pr(x1, ...,xm|x0) = Pr(x1, ...,xm|x0).

3Note that
∑m

i=1 logPr(xi|x0, ...,xi−1) =
∑m

i=0 logPr(xi|x0, ...,xi−1) since logPr(x0) = 0.
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Context Predict Decision Rule Sequence Probability

⟨s⟩ a b argmaxx2∈V Pr(x2|⟨s⟩ a) Pr(⟨s⟩) ·Pr(a|⟨s⟩)· Pr(b|⟨s⟩ a)
⟨s⟩ a b c argmaxx3∈V Pr(x3|⟨s⟩ a b) Pr(⟨s⟩) ·Pr(a|⟨s⟩) ·Pr(b|⟨s⟩ a)·

Pr(c|⟨s⟩ a b)
⟨s⟩ a b c d argmaxx4∈V Pr(x4|⟨s⟩ a b c) Pr(⟨s⟩) ·Pr(a|⟨s⟩) ·Pr(b|⟨s⟩ a)·

Pr(c|⟨s⟩ a b)· Pr(d|⟨s⟩ a b c)

Table 8.1: Illustration of generating the three tokens b c d given the prefix ⟨s⟩ a via a
language model. In each step, the model picks a token xi from V so that Pr(xi|x0, ...,xi−1) is
maximized. This token is then appended to the end of the context sequence. In the next step,
we repeat the same process, but based on the new context.

blocks (or layers). Each Transformer block has two stacked sub-layers, one for self-attention
modeling and one for FFN modeling. These sub-layers can be defined using the post-norm
architecture

output = LNorm(F (input)+ input) (8.4)

or the pre-norm architecture

output = LNorm(F (input))+ input (8.5)

where input and output denote the input and output, both being an m×d matrix. The i-th
rows of input and output can be seen as contextual representations of the i-th token in the
sequence.

F (·) is the core function of a sub-layer. For FFN sub-layers, F (·) is a multi-layer FFN. For
self-attention sub-layers, F (·) is a multi-head self-attention function. In general, self-attention
is expressed in a form of QKV attention

Attqkv(Q,K,V) = Softmax(
QKT

√
d

+Mask)V (8.6)

where Q, K and V ∈ Rm×d are the queries, keys, and values, respectively. It is important to
note that only previous tokens are considered when predicting a token. So a masking variable
Mask ∈ Rm×m is incorporated into self-attention to achieve this. The entry (i,k) of Mask

has a value of 0 if i≤ k, and a value of − inf otherwise.

Given a representation H ∈ Rm×d, the multi-head self-attention function can be defined as

F (H) = Merge(head1, ...,headτ )W
head (8.7)

where Merge(·) representees a concatenation of its inputs, and Whead ∈ Rd×d represents a
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x0 x1 ... xm−1

e0 e1 ... em−1

hL
0 hL

1
... hL

m−1
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Pr(x1|x0)

Pr(x2|x0x1)

Pr(xm|x0x1...xm−1)

x1 x2 ... xm

Language Model

z0 z1 ... zm−1

Post-norm or Pre-norm

Post-norm or Pre-norm

Self-attention

FFN

L
B

lo
ck

s

Figure 8.1: The Transformer-decoder architecture for language modeling. The central com-
ponents are L stacked Transformer blocks, each comprising a self-attention sub-layer and an
FFN sub-layer. To prevent the model from accessing the right-context, a masking variable
is incorporated into self-attention. The output layer uses a Softmax function to generate a
probability distribution for the next token, given the sequence of previous tokens. During
inference, the model takes the previously predicted token to predict the next one, repeating
this process until the end of the sequence is reached. {z0, ...,zm−1} denote the inputs of a
Transformer block, and {hL

0 , ...,h
L
m−1} denote the outputs of the last Transformer block.

parameter matrix. headj is the output of QKV attention on a sub-space of representation

headj = Attqkv(Q
[j],K[j],V[j]) (8.8)

Q[j],K[j],and V[j] are the queries, keys, and values projected onto the j-th sub-space via linear
transformations

Q[j] = HWq
j (8.9)

K[j] = HWk
j (8.10)

V[j] = HWv
j (8.11)

where Wq
j , Wk

j , and Wv
j ∈ Rd× d

τ are the parameter matrices of the transformations.

Suppose we have L Transformer blocks. A Softmax layer is built on top of the output of
the last block. The Softmax layer outputs a sequence of m distributions over the vocabulary,



8 Chapter 8. Generative Models

like this 
Pr(·|x0, ...,xm−1)

...
Pr(·|x0,x1)
Pr(·|x0)

 = Softmax(HLWo) (8.12)

where HL is the output of the last Transformer block, and Wo ∈ Rd×|V | is the parameter
matrix.

Figure 8.1 shows the Transformer architecture for language modeling. Applying this
language model follows an autoregressive process. Each time the language model takes a token
xi−1 as input and predicts a token xi that maximizes the probability Pr(xi|x0, ...,xi−1). It is
important to note that, despite different implementation details, many LLMs share the same
architecture described above. These models are called large because both their depth and width
are significant. Table 8.2 shows the model sizes for a few LLMs, as well as their model setups.

8.1.2 Training LLMs

Now suppose that we are given a training set D comprising K sequences. The log-likelihood
of each sequence x= x0...xm in D can be calculated using a language model

Lθ(x) =

m∑
i=1

logPrθ(xi|x0, ...,xi−1) (8.13)

Here the subscript θ affixed to L(·) and Pr(·) denotes the parameters of the language model.
Then, the objective of maximum likelihood training is defined as

θ̂ = argmax
θ

∑
x∈D

Lθ(x) (8.14)

Training Transformer-based language models with the above objective is commonly viewed
as a standard optimization process for neural networks. This can be achieved using gradient
descent algorithms, which are widely supported by off-the-shelf deep learning toolkits. Some-
what surprisingly, better results were continuously yielded as language models were evolved
into more computationally intensive models and trained on larger datasets [Kaplan et al., 2020].
These successes have led NLP researchers to continue increasing both the training data and
model size in order to build more powerful language models.

However, as language models become larger, we confront new training challenges, which
significantly change the problem compared to training relatively small models. One of these
challenges arises from the need for large-scale distributed systems to manage the data, model
parameters, training routines, and so on. Developing and maintaining such systems requires a
significant amount of work in both software and hardware engineering, as well as expertise in
deep learning. A related issue is that when the training is scaled up, we need more computing
resources to ensure the training process can be completed in an acceptable time. For example,
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LLM # of Parameters Depth L Width d # of Heads
(Q/KV)

GPT-1 [Radford et al., 2018] 0.117B 12 768 12/12
GPT-2 [Radford et al., 2019] 1.5B 48 1,600 25/25
GPT-3 [Brown et al., 2020] 175B 96 12,288 96/96

LLaMA2 [Touvron et al., 2023b]
7B 32 4,096 32/32

13B 40 5,120 40/40
70B 80 8,192 64/64

LLaMA3/3.1 [Dubey et al., 2024]
8B 32 4,096 32/8

70B 80 8,192 64/8
405B 126 16,384 128/8

Gemma2 [Team et al., 2024]
2B 26 2,304 8/4
9B 42 3,584 16/8

37B 46 4,608 32/16

Qwen2.5 [Yang et al., 2024]
0.5B 24 896 14/2

7B 28 3,584 28/4
72B 80 8,192 64/8

DeepSeek-V3 [Liu et al., 2024a] 671B 61 7,168 128/128

Falcon [Penedo et al., 2023]
7B 32 4,544 71/71

40B 60 8,192 128/128
180B 80 14,848 232/232

Mistral [Jiang et al., 2023] 7B 32 4,096 32/32

Table 8.2: Comparison of some LLMs in terms of model size, model depth, model width, and
number of heads (a/b means a heads for queries and b heads for both keys and values).

it generally requires hundreds or thousands of GPUs to train an LLM with tens of billions of
parameters from scratch. This requirement drastically increases the cost of training such models,
especially considering that many training runs are needed as these models are developed. Also,
from the perspective of deep learning, the training process can become unstable if the neural
networks are very deep and/or the model size is very large. In response, we typically need to
modify the model architecture to adapt LLMs to large-scale training. In Section 8.2 we will
present more discussions on these issues.

8.1.3 Fine-tuning LLMs
Once we have pre-trained an LLM, we can then apply it to perform various NLP tasks.
Traditionally language models are used as components of other systems, for example, they
are widely applied to score translations in statistical machine translation systems. By contrast,
in generative AI, LLMs are considered complete systems and are employed to address NLP
problems by making use of their generation nature. A common approach is to describe the task
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we want to address in text and then prompt LLMs to generate text based on this description.
This is a standard text generation task where we continue or complete the text starting from a
given context.

More formally, let x = x0...xm denote a token sequence of context given by users, and
y = y1...yn denote a token sequence following the context. Then, the inference of LLMs can
be defined as a problem of finding the most likely sequence y based on x:

ŷ = argmax
y

logPr(y|x)

= argmax
y

n∑
i=1

logPr(yi|x0, ...,xm,y1, ...,yi−1) (8.15)

Here
∑n

i=1 logPr(yi|x0, ...,xm,y1, ...,yi−1) essentially expresses the same thing as the right-
hand side of Eq. (8.2). It models the log probability of predicting tokens from position m+1,
rather than position 0. Throughout this chapter and subsequent ones, we will employ separate
variables x and y to distinguish the input and output of an LLM, though they can be seen as
sub-sequences from the same sequence. By adopting such notation, we see that the form of the
above equation closely resembles those used in other text generation models in NLP, such as
neural machine translation models.

To illustrate how LLMs are applied, consider the problem of determining the grammatical-
ity for a given sentence. We can define a template like this

{*sentence*}
Question: Is this sentence grammatically correct?
Answer:

Here represents the text we intend to generate. {*sentence*} is a placeholder variable that
will be replaced by the actual sentence provided by the users. For example, suppose we have a
sentence “John seems happy today.”. We can replace the {*sentence*} in the template with
this sentence to have an input to the language model

John seems happy today.
Question: Is this sentence grammatically correct?
Answer:

To perform the task, the language model is given the context x=“John seems happy today
.\n Question : Is this sentence grammatically correct?\n Answer :”4. It then generates the
following text as the answer, based on the context. For example, the language model may
output “Yes” (i.e., y= “Yes”) if this text is the one with the maximum probability of prediction
given this context.

4\n is a special character used for line breaks.
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Likewise, we can define more templates to address other tasks. For example, we can
translate an English sentence into Chinese using the following template

{*sentence*}
Question: What is the Chinese translation of this English sentence?
Answer:

or using an instruction-like template

{*sentence*}
Translate this sentence from English into Chinese.

or using a code-like template.

[src-lang] = English [tgt-lang] = Chinese [input] = {*sentence*}
[output] =

The above templates provide a simple but effective method to “prompt” a single LLM to
perform various tasks without adapting the structure of the model. However, this approach
requires that the LLM can recognize and follow the instructions or questions. One way to do
this is to incorporate training samples with instructions and their corresponding responses into
the pre-training dataset. While this method is straightforward, building and training LLMs from
scratch is computationally expensive. Moreover, making instruction-following data effective
for pre-training requires a significant amount of such data, but collecting large-scale labeled
data for all tasks of interest is very difficult.

A second method, which has been a de facto standard in recent research, is to adapt LLMs
via fine-tuning. As such, the token prediction ability learned in the pre-training phase can
be generalized to accomplish new tasks. The idea behind fine-tuning is that some general
knowledge of language has been acquired in pre-training, but we need a mechanism to activate
this knowledge for applying it to new tasks. To achieve this, we can slightly fine-tune the model
parameters using instruction-following data. This approach is called instruction fine-tuning.

An instruction fine-tuning sample, which is represented by a sequence of tokens, can
be seen as a tuple consisting of an input and the desired output. Here, the input includes
instructions, system information (or system prefix), and any other user-provided information5.
To illustrate, consider the following examples (blue text = input and underlined text = output).

5System information refers to a sequence of tokens added at the beginning of an input in order to guide the
behavior of an LLM, such as, you are a helpful assistant and should not output toxic content.
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Read the following sentence, and answer whether it is grammatically correct.
LLMs are powerful models but are expensive to build.

Yes

LLMs are powerful models but are expensive to build.
Does this sentence make sense grammatically?
Answer Option
- Yes
- No

Yes

Yes or No? Yes = the following sentence is grammatically correct. No = it
contains grammatical errors.
LLMs are powerful models but are expensive to build.

Yes

All these samples describe the same binary classification task, but with different instruc-
tions. To increase the diversity in the fine-tuning data and make LLMs generalize, we can
define more tasks using instructions.

Write a short story about three characters.
Character 1: A boy whose name is Andy.
Character 2: Andy’s dog.
Character 3: Andy’s friend, Jane.

In the heart of a bustling city, Andy, his loyal dog Rocket, and his friend
Jane discovered a hidden garden beneath the glow of twilight. Surrounded by
ancient trees and whispering winds, they shared dreams and secrets, forging
an unbreakable bond. As the night deepened, they made a pact under the
stars to always find magic in the mundane. Together, they realized that true
adventure lay in the moments spent with friends, and every day was a treasure
waiting to be discovered.
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Show me a recipe for making ice cream.

Ingredients:
2 cups heavy cream; 1 cup milk; 3/4 cup sugar; 2 tsp vanilla extract;
Pinch of salt.
Steps:
1. Whisk all ingredients until sugar dissolves.
2. Chill mixture for 2 hours in the fridge.
3. Freeze in a shallow dish, stirring every 30 minutes, 3-4 times.
4. Freeze solid for 2 hours.
5. Serve your homemade ice cream.

If you buy 5 apples and each apple costs $1.20, how much do you spend in
total?

$6.00

Write a Python program to calculate the sum of squares of the following
numbers.
1 , 2 , 10 , -9 , 78

numbers = [1,2,10,-9 ,78]
sum_of_squares = sum(x**2 for x in numbers)
print(sum_of_squares)

To acquire instruction-following abilities, a certain amount of fine-tuning data is required.
This data may include diverse instructions and possible responses. It has been found that
scaling the number of fine-tuning tasks is beneficial for improving the performance of LLMs
[Chung et al., 2022]. Note that although more fine-tuning data is favorable, the amount of this
data is generally orders of magnitude smaller than that of the pre-training data. For example,
LLMs can be fine-tuned with tens or hundreds of thousands of samples, or even fewer if these
samples are of high quality [Zhou et al., 2023; Chen et al., 2023a], whereas pre-training such
models may require billions or trillions of tokens, resulting in significantly larger computational
demands and longer training times [Touvron et al., 2023a].

It is also worth noting that we should not expect the fine-tuning data to cover all the
downstream tasks to which we intend to apply LLMs. A common understanding of how the pre-
training + fine-tuning approach works is that LLMs have gained knowledge for understanding
instructions and generating responses in the pre-training phase. However, these abilities are not
fully activated until we introduce some form of supervision. The general instruction-following
behavior emerges as we fine-tune the models with a relatively small amount of labeled data.
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As a result, we can achieve some level of zero-shot learning: the fine-tuned models can
handle new tasks that they have not been explicitly trained or fine-tuned for [Sanh et al., 2022;
Wei et al., 2022a]. This zero-shot learning ability distinguishes generative LLMs from earlier
pre-trained models like BERT, which are primarily fine-tuned for specific tasks.

Once we have prepared a collection of instruction-described data, the fine-tuning process
is relatively simple. This process can be viewed as a standard training process as pre-training,
but on a much smaller training dataset. Let Dtune be the fine-tuning dataset and θ̂ be the model
parameters optimized via pre-training. We can modify Eq. (8.14) to obtain the objective of
fine-tuning

θ̃ = argmax
θ̂+

∑
sample∈Dtune

Lθ̂+(sample) (8.16)

Here θ̃ denotes the optimal parameters. The use of notation θ̂+ means that the fine-tuning
starts with the pre-trained parameters θ̂.

For each sample∈Dtune, we divide it into an input segment xsample and an output segment
ysample, that is,

sample = [ysample,xsample] (8.17)

We then define the loss function to be

Lθ̂+(sample) = − logPrθ̂+(ysample|xsample) (8.18)

In other words, we compute the loss over the sub-sequence ysample, rather than the entire
sequence. In a practical implementation of back-propagation for this equation, the sequence
[ysample,xsample] is constructed in the forward pass as usual. However, in the backward pass,
error gradients are propagated back only through the parts of the network that correspond to
ysample, leaving the rest of the network unchanged. As an example, consider a sequence

⟨s⟩ Square this number . 2 .︸ ︷︷ ︸
Context (Input)

The result is 4 .︸ ︷︷ ︸
Prediction (Output)

The loss is calculated and back propagated only for The result is 4 ..
Instruction fine-tuning also requires substantial engineering work. In order to achieve

satisfactory results, one may experiment with different settings of the learning rate, batch size,
number of fine-tuning steps, and so on. This typically requires many fine-tuning runs and
evaluations. The cost and experimental effort of fine-tuning remain critical and should not be
overlooked, though they are much lower than those of the pre-training phase.

While we focus on instruction fine-tuning for an illustrative example here, fine-tuning
techniques play an important role in developing various LLMs and are more widely used.
Examples include fine-tuning LLMs as chatbots using dialog data, and adapting these models
to handle very long sequences. The wide application of fine-tuning has led researchers to
improve these techniques, such as designing more efficient fine-tuning algorithms. While the
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research on fine-tuning is fruitful, in this section we just give a flavour of the key steps involved.
We will see more detailed discussions on this topic in the following chapters.

8.1.4 Aligning LLMs with the World

Instruction fine-tuning provides a simple way to adapt LLMs to tasks that can be well defined.
This problem can broadly be categorized as an alignment problem. Here, alignment is referred
to as a process of guiding LLMs to behave in ways that align with human intentions. The
guidance can come from labeled data, human feedback, or any other form of human preferences.
For example, we want LLMs not only to be accurate in following instructions, but also to be
unbiased, truthful, and harmless. So we need to supervise the models towards human values
and expectations. A common example is that when we ask an LLM how to build a weapon, it
may provide a list of key steps to do so if it is not carefully aligned. However, a responsible
model should recognize and avoid responding to requests for harmful or illegal information.
Alignment in this case is crucial for ensuring that LLMs act responsibly and in accordance
with ethical guidelines.

A related concept to alignment is AI safety. One ultimate goal of AI is to build intelligent
systems that are safe and socially beneficial. To achieve this goal we should keep these systems
robust, secure, and subjective, in any conditions of real-world use, even in conditions of misuse
or adverse use. For LLMs, the safety can be increased by aligning them with appropriate
human guidance, such as human labeled data and interactions with users during application.

Alignment is difficult as human values and expectations are diverse and shifting. Some-
times, it is hard to describe precisely what humans want, unless we see the response of LLMs
to user requests. This makes alignment no longer a problem of tuning LLMs on predefined
tasks, but a bigger problem of training them with the interactions with the real world.

As a result of the concerns with controlling AI systems, there has been a surge in research
on the alignment issue for LLMs. Typically, two alignment steps are adopted after LLMs are
pre-trained on large-scale unlabeled data.

• Supervised Fine-tuning (SFT). This involves continuing the training of pre-trained
LLMs on new, task-oriented, labelled data. A commonly used SFT technique is instruc-
tion fine-tuning. As described in the previous subsection, by learning from instruction-
response annotated data, LLMs can align with the intended behaviors for following
instructions, thereby becoming capable of performing various instruction-described
tasks. Supervised fine-tuning can be seen as following the pre-training + fine-tuning
paradigm, and offers a relatively straightforward method to adapt LLMs.

• Learning from Human Feedback. After an LLM finishes pre-training and supervised
fine-tuning, it can be used to respond to user requests if appropriately prompted. But
this model may generate content that is unfactual, biased, or harmful. To make the
LLM more aligned with the users, one simple approach is to directly learn from human
feedback. For example, given some instructions and inputs provided by the users, experts
are asked to evaluate how well the model responds in accordance with their preferences
and interests. This feedback is then used to further train the LLM for better alignment.
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A typical method for learning from human feedback is to consider it as a reinforcement
learning (RL) problem, known as reinforcement learning from human feedback (RLHF)
[Ouyang et al., 2022]. The RLHF method was initially proposed to address general sequential
decision-making problems [Christiano et al., 2017], and was later successfully employed
in the development of the GPT series models [Stiennon et al., 2020]. As a reinforcement
learning approach, the goal of RLHF is to learn a policy by maximizing some reward from the
environment. Specifically, two components are built in RLHF:

• Agent. An agent, also called an LM agent, is the LLM that we want to train. This agent
operates by interacting with its environment: it receives a text from the environment and
outputs another text that is sent back to the environment. The policy of the agent is the
function defined by the LLM, that is, Pr(y|x).

• Reward Model. A reward model is a proxy of the environment. Each time the agent
produces an output sequence, the reward model assigns this output sequence a numerical
score (i.e., the reward). This score tells the agent how good the output sequence is.

In RLHF, we need to perform two learning tasks: 1) reward model learning, which involves
training a reward model using human feedback on the output of the agent, and 2) policy
learning, which involves optimizing a policy guided by the reward model using reinforcement
learning algorithms. Here is a brief outline of the key steps involved in RLHF.

• Build an initial policy using pre-training and instruction fine-tuning.

• Use the policy to generate multiple outputs for each input, and then collect human
feedback on these outputs (e.g., comparisons of the outputs).

• Learn a reward model from the human feedback.

• Fine-tune the policy with the supervision from the reward model.

Figure 8.2 shows an overview of RLHF. Given that this section serves only as a brief
introduction to concepts of LLMs, a detailed discussion of RLHF techniques will not be
included. We instead illustrate the basic ideas behind RLHF using a simple example.

Suppose we have trained an LLM via pre-training and instruction fine-tuning. This LLM
is deployed to respond to requests from users. For example, a user may input

How can I live a more environmentally friendly life?

We use the LLM to generate 4 different outputs (denoted by {y1, ...,y4}) by sampling the
output space
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Figure 8.2: An overview of RLHF. There are 4 key steps involved: a) training an initial LLM
(i.e., policy) using pre-training and supervised fine-tuning; b) collecting human preference data
by ranking the outputs of the LLM; c) training a reward model using the ranking results; d)
RL fine-tuning of the policy based on the reward model. Double line arrows mean training or
fine-tuning.

Output 1 (y1): Consider switching to an electric vehicle or bicycle instead of
traditional cars to reduce carbon emissions and protect our
planet.

Output 2 (y2): Adopt a minimalist lifestyle. Own fewer possessions to reduce
consumption and the environmental impact of manufacturing
and disposal.

Output 3 (y3): Go off-grid. Generate your own renewable energy and collect
rainwater to become completely self-sufficient and reduce
reliance on non-renewable resources.

Output 4 (y4): Support local farm products to reduce the carbon footprint of
transporting food, while enjoying fresh, healthy food.
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We then ask annotators to evaluate these outputs. One straightforward way is to assign a
rating score to each output. In this case, the reward model learning problem can be framed
as a task of training a regression model. But giving numerical scores to LLM outputs is not
an easy task for annotators. It is usually difficult to design an annotation standard that all
annotators can agree on and easily follow. An alternative method, which is more popular in the
development of LLMs, is to rank these outputs. For example, a possible ranking of the above
outputs is

y1 ≻ y4 ≻ y2 ≻ y3

A reward model is then trained using this ranking result. In general, a reward model in
RLHF is a language model that shares the same architecture as the target LLM, but with a
smaller model size. Given the input x and output yk, we concatenate them to form a sequence
seqk = [x,yk]. This sequence is processed from left to right using forced decoding. Since
each position can only access its left context in language modeling, the output of the top-most
Transformer layer at the first position cannot be used as the representation of the sequence.
Instead, a special symbol (e.g., ⟨\s⟩) is added to the end of the sequence, and the corresponding
output of the Transformer layer stack is considered as the representation of the entire sequence.
An output layer, such as a linear transformation layer, is built on top of this representation to
generate the reward, denoted by R(seqk) or R(x,yk).

We train this reward model using ranking loss. For example, a pair-wise ranking loss
function can be written in the form

Lossω(Dr) = −E(x,yk1
,yk2

)∼Dr
log(Sigmoid(Rω(x,yk1)−Rω(x,yk2))) (8.19)

where ω represents the parameters of the reward model, and Dr represents a set of tuples of an
input and a pair of outputs. (x,yk1 ,yk2)∼Dr is a sampling operation which draws a sample
(x,yk1 ,yk2) from Dr with some probability. As an example, suppose we first draw a model
input x with a uniform distribution and then draw a pair of model outputs with a probability of
yk1 ≻ yk2 given x (denoted by Pr(yk1 ≻ yk2 |x)). The corresponding loss function is given by

Lossω(Dr)

= −
∑

Pr(x) ·Pr(yk1 ≻ yk2 |x) · log(Sigmoid(Rω(x,yk1)−Rω(x,yk2)))

= − 1

K

∑
Pr(yk1 ≻ yk2 |x) · log(Sigmoid(Rω(x,yk1)−Rω(x,yk2))) (8.20)

where K represents the number of model inputs involved in sampling. While the form of these
functions may seem complex, their idea is simple: we penalize the model if the predicted
ranking of two outputs differs from the human-labeled ranking. By contrast, the model receives
a bonus, if the predicted ranking matches the human-labeled ranking.

We can train the reward model by minimizing the above ranking loss

ω̂ = argmin
ω

Lossω(Dr) (8.21)
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The resulting model Rω̂(·) can be employed to evaluate any given pair of input and output.
Note that although the reward model is trained using a ranking-based objective, it is used for
scoring. This allows it to provide continuous supervision signals, which is very beneficial for
training other models.

We now turn to the policy learning problem. A commonly adopted objective is to maximize
the reward on a set of input-output pairs. Following an analogous form of Eq. (8.16), we obtain
a simple training objective for RL fine-tuning

θ̃ = argmax
θ̂+

E(x,yθ̂+ )∼Drlft
Rω̂(x,yθ̂+) (8.22)

where the optimal parameters θ̃ are obtained by fine-tuning the pre-trained parameters θ̂. Drlft

is the RL fine-tuning dataset. For each sample (x,yθ̂+), x is sampled from a prepared dataset
of input sequences, and yθ̂+ is sampled from the distribution Prθ̂+(y|x) given by the policy.

In practice, more advanced reinforcement learning algorithms, such as proximal policy
optimization (PPO), are often used for achieving more stable training, as well as better
performance. We leave the detailed discussion of reinforcement learning algorithms to the
following parts of this book where RLHF is extensively used for alignment.

An interesting question arises here: why not consider learning from human preferences as
a standard supervised learning problem? This question is closely related to our aforementioned
discussion on the difficulty of data annotation. Often, describing human values and goals is
challenging, and it is even more difficult for humans to provide outputs that are well aligned.
As an alternative, annotating the preferences of a given list of model outputs offers a simpler
task. By doing so, we can create a model that understands human preferences, which can then
be used as a reward model for training policies. From the perspective of machine learning,
RLHF is particularly useful for scenarios where the desired behavior of an agent is difficult
to demonstrate but can be easily recognized by humans. Another advantage of RLHF is its
ability to explore the sample space. By employing sampling techniques, models trained with
reinforcement learning can venture beyond the annotated data set to explore additional samples.
This exploratory ability allows RLHF to discover potentially beneficial policies that are not
immediately apparent from the labeled data alone.

8.1.5 Prompting LLMs
We have so far shown that LLMs can be used to perform various tasks by giving them
appropriate prompts. There are no restrictions on these prompts, which can include any
information we wish to ask or communicate with LLMs, such as natural language instructions
and the context of conversations. Since this approach requires no additional training or tuning,
adapting LLMs becomes highly efficient once they are developed. This somewhat influences
the paradigms in NLP: we no longer need to develop specific systems for individual tasks but
can instead use a single, well-trained LLM to perform different tasks by prompting it. An
appealing aspect of LLM prompting arises as a result: users can easily have “customized”
systems by designing their own prompts for LLMs. Given the important role played by
prompting in LLMs, prompting engineering has become a very active area of research in
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NLP.

The term prompt is used in many different ways in the literature. In this chapter, this
term refers to the entire input to LLMs, and so we use the terms prompt and model input
interchangeably. Before discussing prompting further, let us first see a few examples where
the prompts are more complex than those presented in the previous subsections. Note that
this subsection is not aimed at writing high-quality prompts but rather at highlighting some
interesting issues in prompting LLMs.

One of the popular ways to use LLMs is to assign them a “role” played in generating
responses. For example, LLMs can act as a psychologist when answering questions.

Please explain what delayed gratification is?

Note, you are a researcher with a deep background in psychology. Your own
field of study is developmental psychology in children, with a focus on aspects
of control and intelligence. You are very familiar with the concept of delayed
gratification and have applied it to your own research. You have published
papers on delayed gratification and conducted related experiments.

Delayed gratification is the process of resisting an immediate reward in
anticipation of receiving a more valuable reward in the future. It is a
significant concept in developmental psychology, especially in relation to how
children learn self-control and develop cognitive abilities. Research shows
that the ability to delay gratification is associated with positive outcomes in
academic performance, social competence, and emotional well-being. Studies
and experiments in this area highlight the importance of cultivating this skill
early in life to support long-term success and resilience.

Another example is the use of LLMs in detecting and correcting errors such as syntactic or
semantic mistakes in text. For an LLM which is trained on both code and natural language
data, we may use it for code debugging6.

6In this example, the code is not tokenized for easier reading.
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Fix the bugs in this C language program.

#include <stdio.h>
int main() {

printg("Hello, World!")
return 0;

}

1. The function name ’printg’ is incorrect . It should be ’printf’.
2. There is a missing semicolon at the end of the ’printf’ function call.

Here is the corrected version of the program:

#include <stdio.h>
int main() {

printf("Hello, World!");
return 0;

}

Also, LLMs can be fine-tuned to act as a conversation partner 7.

Hi! I’m an assistant. How can I help you?

Who won the FIFA World Cup 2022?

Argentina won the FIFA World Cup 2022.

Where was it held?

The 2022 FIFA World Cup was held in Qatar.

How many times has Argentina won the World Cup?

Argentina has won the FIFA World Cup three times.

...

These examples and previous ones have shown that appropriate responses can be generated
via prompts involving clear instructions and questions. However, when problem solving
requires knowledge that is not explicitly specified, LLMs may make mistakes, even though the
instructions are sufficiently clear and precise. A family of challenging tasks for LLMs involves
arithmetic reasoning and commonsense reasoning. For example, we can ask an LLM to solve
primary school math problems presented in natural language.

7To fine-tune an LLM for multi-turn dialogue, one needs to consider conversation history in the context for
predicting the response in the current round of conversation. This makes the actual prompt used in response
generation relatively longer than that used in single-turn dialogue.
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Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?

The answer is 10.

The correct answer should be 7, so the model output is incorrect.

One approach to addressing such issues is to incorporate learning into prompts, called
in-context learning or (ICL). The idea of ICL is to demonstrate the ways to solve problems in
prompts, and condition predictions on these demonstrations. Here is an example where a similar
problem and the corresponding answer are presented in the prompt (green = demonstrations).

Tom has 12 marbles. He wins 7 more marbles in a game with his friend but
then loses 5 marbles the next day. His brother gives him another 3 marbles as
a gift. How many marbles does Tom have now?

The answer is 17.

Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?

The answer is 12.

But the LLM still made mistakes this time. A reason for this might be that solving math
problems does not only involve problem-answer mappings but also, to a larger extent, the
underlying logical inference in multiple steps. A method to improve the inference abilities of
LLMs is chain-of-thought prompting (COT prompting) [Wei et al., 2022c]. In COT prompt-
ing, we decompose complex reasoning problems into multiple problem-solving intermediate
steps. These steps are demonstrated in prompts so that LLMs can be prompted to learn to
mimic the underlying thought processes in solving the problems. COT prompting has been
found to be very useful for achieving good results on challenging tasks, such as the GSM8K
mathematical reasoning benchmark.

Consider the above demonstration example Tom has 12 marbles. He wins 7 more marbles
in a game with his friend but then loses 5 marbles the next day. His brother gives him another
3 marbles as a gift. How many marbles does Tom have now ?. The corresponding logical
reasoning steps can be structured:

1. Tom starts with 12 marbles.

2. He wins 7 more marbles in a game, so we add those to his initial count: 12 marbles + 7
marbles = 19 marbles.

3. The next day, Tom loses 5 marbles, so we subtract those from his current total: 19
marbles - 5 marbles = 14 marbles.
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4. His brother gives him 3 more marbles, so we add those to his current total: 14 marbles +
3 marbles = 17 marbles.

5. After all these events, Tom has 17 marbles.

We can add these reasoning steps into the prompt, and get the correct answer.

Tom has 12 marbles. He wins 7 more marbles in a game with his friend but
then loses 5 marbles the next day. His brother gives him another 3 marbles as
a gift. How many marbles does Tom have now?

Tom initially has 12 marbles. After winning a game, he gains 7 more, increasing
his total to 19 marbles. He loses 5 marbles the next day, bringing his total
down to 14 marbles. His brother gifts him 3 more marbles, increasing his total
to 17 marbles. Therefore, Tom now has 17 marbles. So the answer is 17.

Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?

Jack starts with 7 apples. He eats 2 apples for dinner, so we subtract 2 from
7, leaving him with 5 apples. His mom gives him 5 more apples, adding 5 to
his current total. Now he has 5 + 5 = 10 apples. The next day, Jack gives 3
apples to his friend John. Subtracting 3 from 10, Jack is left with 7 apples.
Therefore, Jack has 7 apples left. So the answer is 7.

This approach is also called one-shot COT prompting. Likewise, we can add more
demonstrations to have a few-shot COT prompting approach.

Furthermore, a special kind of COT, zero-shot COT, introduces instructions that provoke
LLMs to think, without presenting any intermediate reasoning steps in the prompts [Kojima
et al., 2022]. An interesting example is that by appending a simple sentence “Let’s think step
by step.” to the end of a prompt, LLMs can generate reasoning steps to reach the final answer.
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Jack has 7 apples. He ate 2 of them for dinner, but then his mom gave him 5
more apples. The next day, Jack gave 3 apples to his friend John. How many
apples does Jack have left in the end?
Let’s think step by step.

1. Initial Quantity: Jack starts with 7 apples.
2. After Dinner: He eats 2 apples, so 7−2 = 5 apples remain.
3. His Mom Gives More: His mom gives him 5 more apples, so 5+5 = 10

apples are now with him.
4. Giving to John: The next day, Jack gives 3 apples to his friend John,

so 10−3 = 7 apples are left.
In the end, Jack has 7 apples left.

Zero-shot, one-shot, and few-shot learning are common concepts in the area of in-context
learning for LLMs and are not restricted to COT prompting. Broadly speaking, any prompting
that involves only simple instructions without any demonstrations can be considered a form of
zero-shot learning. This zero-shot learning ability emerges as LLMs are pre-trained and/or
fine-tuned. Also, one-shot and few-shot learning methods are more often considered when
LLMs do not acquire the corresponding zero-shot learning ability. These methods are therefore
important for in-context learning when addressing new tasks. Examples include those for
performing various NLP tasks by demonstrating task-formatted samples. See the following
examples for sentiment sentence classification and phrase translation via few-shot learning.

Given the following text snippets, classify their sentiment as Positive, Negative,
or Neutral.

Example 1: “I had an amazing day at the park!”
Sentiment: Positive

Example 2: “The service at the restaurant was terrible.”
Sentiment: Negative

Example 3: “I think it’s going to rain today.”
Sentiment: Neutral

Text: “This movie was a fantastic journey through imagination.”
Sentiment: Positive
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Translate the following Chinese phrases into English.

Example 1: “你好”
Translation: “Hello”

Example 2: “谢谢你”
Translation: “Thank you”

Phrase to translate: “早上好”
Translation: “Good Morning”

Above, we have presented examples to illustrate the fundamental in-context learning
capabilities of prompting LLMs. This section, however, does not include more advanced
prompting techniques in order to keep the content concise and compact. More discussions on
prompting can be found in Chapter 9.

8.2 Training at Scale
As a first step in developing LLMs, we need to train these models on large amounts of data.
The training task is itself standard: the objective is to maximize the likelihood, which can be
achieved via gradient descent. However, as we scale up both the model size and the amount of
data, the problem becomes very challenging, for example, large models generally make the
training unstable. In this section, we discuss several issues of large-scale training for LLMs,
including data preparation, model modification, and distributed training. We also discuss the
scaling laws for LLMs, which help us understand their training efficiency and effectiveness.

8.2.1 Data Preparation
The importance of data cannot be overstated in NLP. As larger neural networks are developed,
the demand for data continues to increase. For example, developing LLMs may require trillions
of tokens in pre-training (see Table 8.3), orders of magnitude larger than those used in training
conventional NLP models. In general, we may want to gather as much training data as possible.
However, larger training datasets do not mean better training results, and the development of
LLMs raises new issues in creating or collecting these datasets.

A first issue is the quality of data. High-quality data has long been seen as crucial
for training data-driven NLP systems. Directly using raw text from various sources is in
general undesirable. For example, a significant portion of the data used to train recent LLMs
comes from web scraping, which may contain errors and inappropriate content, such as toxic
information and fabricated facts. Also, the internet is flooded with machine-generated content
due to the widespread use of AI, presenting further challenges for processing and using web-
scraped data. Researchers have found that training LLMs on unfiltered data is harmful [Raffel
et al., 2020]. Improving data quality typically involves incorporating filtering and cleaning
steps in the data processing workflow. For example, Penedo et al. [2023] show that by adopting
a number of data processing techniques, 90% of their web-scraped data can be removed for
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LLM # of Tokens Data

GPT3-175B [Brown et al., 2020] 0.5T Webpages, Books, Wikipedia

Falcon-180B [Almazrouei et al., 2023] 3.5T Webpages, Books, Conversations,
Code, Technical Articles

LLaMA2-65B [Touvron et al., 2023a] 1.0T ∼ 1.4T Webpages, Code, Wikipedia,
Books, Papers, Q&As

PaLM-450B [Chowdhery et al., 2022] 0.78T Webpages, Books, Conversations,
Code, Wikipedia, News

Gemma-7B [Gemma Team, 2024] 6T Webpages, Mathematics, Code

Table 8.3: Amounts of training data used in some LLMs in terms of the number of tokens.

LLM training. In addition to large-scale web-scraped data, LLM training data often includes
books, papers, user-generated data on social media, and so on. Most of the latest LLMs are
trained on such combined datasets, which are found to be important for the strong performance
of the resulting models.

A second issue is the diversity of data. We want the training data to cover as many types
of data as possible, so that the trained models can adapt to different downstream tasks easily.
It has been widely recognized that the quality and diversity of training data both play very
important roles in LLMs. An interesting example is that incorporating programming code into
training data has been found to be beneficial for LLMs. The benefits are demonstrated not
only in enhancing the programming abilities of LLMs, but also in improving reasoning for
complex problems, especially those requiring COT prompting. The concept “diversity” can
be extended to include language diversity as well. For example, many LLMs are trained on
multi-lingual data, and therefore we can handle multiple languages using a single model. While
this approach shows strong abilities in multi-lingual and cross-lingual tasks, its performance on
specific languages largely depends on the volume and quality of the data for those languages.
It has been shown in some cases to provide poor results for low-resource languages.

A third issue is the bias in training data. This is not a problem that is specific to LLMs
but exists in many NLP systems. A common example is gender bias, where LLMs show
a preference for one gender over another. This can partly be attributed to class imbalance
in the training data, for example, the term nurses is more often associated with women. In
order to debias the data, it is common practice to balance the categories of different language
phenomena, such as gender, ethnicity, and dialects. The bias in data is also related to the
diversity issue mentioned above. For example, since many LLMs are trained and aligned with
English-centric data, they are biased towards the cultural values and perspectives prevalent
among English-speaking populations. Increasing language diversity in training data can
somewhat mitigate the bias.

Another issue with collecting large-scale data is the privacy concern. If LLMs are trained
on data from extensive sources, this potentially leads to risks regarding the exposure of
sensitive information, such as intellectual property and personal data. This is particularly
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concerning given the capacity of LLMs to represent patterns from the data they are trained
on, which might inadvertently involve memorizing and reproducing specific details. A simple
approach to privacy protection is to remove or anonymize sensitive information. For example,
anonymization techniques can be applied to remove personally identifiable information from
training data to prevent LLMs from learning from such data. However, in practice, erasing or
redacting all sensitive data is difficult. Therefore, many LLMs, particularly those launched for
public service, typically work with systems that can detect the potential exposure of sensitive
data, or are fine-tuned to reject certain requests that could lead to information leakage.

8.2.2 Model Modifications

Training LLMs is difficult. A commonly encountered problem is that the training process
becomes more unstable as LLMs get bigger. For example, one needs to choose a small learning
rate to achieve stable training with gradient descent, but this in turn results in much longer
training times. Sometimes, even when the training configuration is carefully designed, training
may diverge at certain points during optimization. The training of LLMs is generally influenced
by many factors, such as parameter initialization, batching, and regularization. Here, we focus
on common modifications and improvements to the standard Transformer architecture, which
are considered important in developing trainable LLMs.

1. Layer Normalization with Residual Connections

Layer normalization is used to stabilize training for deep neural networks. It is a process of
subtracting the mean and dividing by the standard deviation. By normalizing layer output in
this way, we can effectively reduce the covariate shift problem and improve the training stability.
In Transformers, layer normalization is typically used together with residual connections. As
described in Section 8.1.1, a sub-layer can be based on either the post-norm architecture, in
which layer normalization is performed right after a residual block, or the pre-norm architecture,
in which layer normalization is performed inside a residual block. While both of these
architectures are widely used in Transformer-based systems [Wang et al., 2019], the pre-norm
architecture has proven to be especially useful in training deep Transformers. Given this, most
LLMs are based on the pre-norm architecture, expressed as output = LNorm(F (input))+

input.

A widely-used form of the layer normalization function is given by

LNorm(h) = α · h−µ
σ+ ϵ

+β (8.23)

where h is a d-dimensional real-valued vector, µ is the mean of all the entries of h, and σ is the
corresponding standard deviation. ϵ is introduced for the sake of numerical stability. α ∈ Rd

and β ∈ Rd are the gain and bias terms.

A variant of layer normalization, called root mean square (RMS) layer normalization, only
re-scales the input vector but does not re-center it [Zhang and Sennrich, 2019]. The RMS layer
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normalization function is given by

LNorm(h) = α · h

σrms+ ϵ
+β (8.24)

where σrms is the root mean square of h, that is, σrms = (1d
∑d

k=1h
2
k)

1
2 . This layer normaliza-

tion function is used in LLMs like the LLaMA series.

2. Activation Functions in FFNs

In Transformers, FFN sub-layers are designed to introduce non-linearities into representation
learning, and are found to be useful for preventing the representations learned by self-attention
from degeneration8 [Dong et al., 2021]. A standard form of the FFNs used in these sub-layers
can be expressed as

FFN(h) = σ(hWh+bh)Wf +bf (8.25)

where Wh ∈ Rd×dh , bh ∈ Rdh , Wf ∈ Rdh×d, and bf ∈ Rd are the parameters, and dh is the
hidden size. σ(·) is the activation function of the hidden layer. A common choice for σ(·) is
the rectified linear unit (ReLU), given by

σrelu(h) = max(0,h) (8.26)

In practical implementations, increasing dh is helpful and thus it is often set to a larger
number in LLMs. But a very large hidden size poses challenges for both training and deploy-
ment. In this case, the design of the activation function plays a relatively more important
role in wide FFNs. There are several alternatives to the ReLU in LLMs. One of these is the
gaussian error linear unit (GeLU) which can be seen as a smoothed version of the ReLU.
Rather than controlling the output by the sign of the input, the GeLU function weights its input
by the percentile Pr(h≤ h). Here h is a d-dimensional vector whose entries are drawn from
the standard normal distribution Gaussian(0,1)9. Specifically, the GeLU function is defined
to be

σgelu(h) = hPr(h≤ h)

= hΦ(h) (8.27)

where Φ(h) is the cumulative distribution function of Gaussian(0,1), which can be imple-
mented in convenient ways [Hendrycks and Gimpel, 2016]. The GeLU function has been
adopted in several LLMs, such as BERT, GPT-3, and BLOOM.

Another family of activation functions which is popular in LLMs is gated linear unit

8Here degeneration refers to the phenomenon in which the rank of a matrix is reduced after some processing.
9Pr(h ≤ h) is an informal notation. It refers to a vector, with each entry representing the percentile for the

corresponding entry of h.
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(GLU)-based functions. The basic form of GLUs is given by

σglu(h) = σ(hW1+b1)⊙ (W2+b2) (8.28)

where W1 ∈ Rd×d, b1 ∈ Rd, W2 ∈ Rd×d, and b2 ∈ Rd are model parameters. Different
choices of σ(·) result in different versions of GLU functions. For example, if σ(·) is defined to
be the GeLU function, we will have the GeGLU function

σgeglu(h) = σgelu(hW1+b1)⊙ (W2+b2) (8.29)

This activation function has been successfully applied in LLMs like Gemma.

As another example, consider σ(·) to be the Swish function σswish(h) = h⊙Sigmoid(ch)

[Ramachandran et al., 2017]. Then, the SwiGLU function is given by

σswiglu(h) = σswish(hW1+b1)⊙ (W2+b2) (8.30)

Both the PaLM and LLaMA series are based on the SwiGLU function. For more discussions
of GLUs, the reader can refer to Shazeer [2020]’s work.

3. Removing Bias Terms

Another popular model design is to remove the bias terms in affine transformations used in
LLMs. This treatment can be applied to layer normalization, transformations of the inputs to
QKV attention, and FFNs. For example, we can modify Eq. (8.25) to obtain an FFN with no
bias terms

FFN(h) = σ(hWh)Wf (8.31)

Chowdhery et al. [2022] report that removing bias terms helps improve the training stability
of LLMs. This method has been used in several recent LLMs, such as LLaMA and Gemma.

4. Other Issues

Many LLMs also involve modifications to their positional embedding models. For example,
one can replace sinusoidal positional encodings with rotary position embeddings so that the
learned LLMs can handle long sequences better. These models will be discussed in Section
8.3.

Note that while model modifications are common in training LLMs, the stability of training
can be improved in many different ways. For example, increasing the batch size as the training
proceeds has been found to be useful for some LLMs. In general, achieving stable and efficient
large-scale LLM training requires carefully designed setups, including learning schedules,
optimizer choices, training parallelism, mixed precision training, and so on. Some of these
issues are highly engineered, and therefore, we typically need a number of training runs to
obtain satisfactory LLMs.
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8.2.3 Distributed Training

Training LLMs requires significant amounts of computational resources. A common approach
to improving training efficiency is to use large-scale distributed systems. Fortunately, alongside
the rise of neural networks in AI, deep learning-oriented software and hardware have been
developed, making it easier to implement LLMs and perform computations. For example, one
can now easily fine-tune an LLM using deep learning software frameworks and a machine
with multiple GPUs. However, scaling up the training of LLMs is still challenging, and
requires significant efforts in developing hardware and software systems for stable and efficient
distributed training.

An important consideration of distributed training is parallelism. There are several forms
of parallelism: data parallelism, model parallelism, tensor parallelism, and pipeline parallelism.
Despite different ways to distribute computations across devices, these parallelism methods
are based on a similar idea: the training problem can be divided into smaller tasks that can
be executed simultaneously. The issue of parallelism in training LLMs has been extensively
studied [Narayanan et al., 2021; Fedus et al., 2022]. Here we sketch the basic concepts.

• Data Parallelism. This method is one of the most widely used parallelism methods for
training neural networks. To illustrate, consider the simplest case where the standard
delta rule is used in gradient descent

θt+1 = θt− lr ·
∂Lθt(Dmini)

∂θt
(8.32)

where the new parameters θt+1 is obtained by updating the latest parameters θt with a
small step lr in the direction of the negative loss gradient. ∂Lθt

(Dmini)

∂θt
is the gradient of

the loss with respect to the parameters θt, and is computed on a minibatch of training
sample Dmini. In data parallelism, we divide Dmini into N smaller batches, denoted by
{D1, ...,DN}. Then, we distribute these batches to N workers, each with a correspond-
ing batch. Once the data is distributed, these workers can work at the same time. The
gradient of the entire minibatch is obtained by aggregating the gradients computed by
the workers, like this

∂Lθt(Dmini)

∂θt
=

∂Lθt(D1)

∂θt︸ ︷︷ ︸
worker 1

+
∂Lθt(D2)

∂θt︸ ︷︷ ︸
worker 2

+ · · ·+ ∂Lθt(DN )

∂θt︸ ︷︷ ︸
worker N

(8.33)

In ideal cases where the workers coordinate well and the communication overhead is
small, data parallelism can achieve nearly an N -fold speed-up for training.

• Model Parallelism. Although data parallelism is simple and effective, it requires each
worker to run the entire LLM and perform the complete forward and backward process.
As LLMs grow larger, it sometimes becomes unfeasible to load and execute an LLM
on a single device. In this case, we can decouple the LLM into smaller components
and run these components on different devices. One simple way to do this is to group
consecutive layers in the layer stack and assign each group to a worker. The workers
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operate in the order of the layers in the stack, that is, in the forward pass we process
the input from lower-level to upper-level layers, and in the backward pass we propagate
the error gradients from upper-level to lower-level layers. Consider, for example, a
Transformer decoder with L stacked blocks. To distribute the computation load, each
block is assigned to a worker. See the following illustration for a single run of the
forward and backward passes of this model.

Worker L BL (↑) BL (↓)

... ... ...

Worker 2 B2 (↑) B2 (↓)

Worker 1 B1 (↑) B1 (↓)

Here Bl denotes the computation of block l, and the symbols ↑ and ↓ denote the forward
and backward passes, respectively. Note that this parallelism method forces the workers
to run in sequence, so a worker has to wait for the previous worker to finish their job.
This results in the devices being idle for most of the time. In practical systems, model
parallelism is generally used together with other parallelism mechanisms to maximize
the use of devices.

• Tensor Parallelism. Parallelism can also be performed in a single computation step.
A common example is splitting a large parameter matrix into chunks, multiplying an
input tensor with each of these chunks separately, and then concatenating the results of
these multiplications to form the output. For example, consider the multiplication of
the representation h ∈ Rd with the parameter matrix Wh ∈ Rd×dh in an FFN sub-layer
(see Eq. (8.25)). We can slice the matrix Wh ∈ Rd×dh vertically to a sequence of M
sub-matrices

Wh =
[
W1

h W2
h ... WM

h

]
(8.34)

where each sub-matrix Wk
h has a shape of d× dh

M . The multiplication of h with Wh can
be expressed as

hWh = h
[
W1

h W2
h ... WM

h

]
=

[
hW1

h hW2
h ... hWM

h

]
(8.35)

We can perform matrix multiplications {hW1
h,hW

2
h, ...,hW

M
h } on M devices sepa-

rately. As a result, we distribute a large matrix multiplication across multiple devices,
each of which may have relatively small memory. From the perspective of the design of
modern GPUs, tensor parallelism over GPUs provides a two-level, tile-based approach
to parallel computing. First, at a higher level, we decompose a matrix multiplication
into sub-matrix multiplications that can directly fit into the memory of GPUs. Then, at
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a lower level, we execute these sub-matrix multiplications on GPUs using tile-based
parallel algorithms that are specifically optimized for GPUs.

• Pipeline Parallelism. Above, in model parallelism, we have described a simple ap-
proach to spreading groups of model components across multiple devices. But this
method is inefficient because only one device is activated at a time during processing.
Pipeline parallelism addresses this issue by introducing overlaps between computations
on different devices [Harlap et al., 2018; Huang et al., 2019]. To do this, a batch of
samples is divided into a number of micro-batches, and then these micro-batches are
processed by each worker as usual. Once a micro-batch is processed by a worker and
passed to the next one, the following micro-batch immediately occupies the same worker.
In other words, we create a pipeline in which different computation steps can overlap if
multiple jobs are given to the pipeline. The following shows an illustration of pipeline
parallelism for processing 3 micro-batches.

Worker L BL,1 BL,2 BL,3 BL,1 BL,2 BL,3

... ... ...

Worker 2 B2,1 B2,2 B2,3 B2,1 B2,2 B2,3

Worker 1 B1,1 B1,2 B1,3 B1,1 B1,2 B1,3

Here Bl,k represents the processing of the k-th micro-batch by the l-th worker. Ideally
we would like to maximize the number of micro-batches, and thus minimize the idle
time of the workers. However, in practice, using small micro-batches often reduces GPU
utilization and increases task-switching costs. This may, in turn, decrease the overall
system throughput.

The ultimate goal of parallel processing is to achieve linear growth in efficiency, that is, the
number of samples that can be processed per unit of time increases linearly with the number
of devices. However, distributed training is complicated, and influenced by many factors in
addition to the parallelism method we choose. One problem, which is often associated with
distributed systems, is the cost of communication. We can think of a distributed system as a
group of networked nodes. Each of these nodes can perform local computation or pass data
to other nodes. If there are a large number of such nodes, it will be expensive to distribute
and collect data across them. Sometimes, the time savings brought about by parallelism are
offset by the communication overhead of a large network. Another problem with large-scale
distributed systems is that the synchronization of nodes introduces additional costs. As is often
the case, some nodes may take longer to work, causing others to wait for the slowest ones.
While we can use asynchronous training to handle heterogeneity in computational resources,
this may lead to stale gradients and non-guaranteed convergence. Moreover, as more nodes
are added to the network, there is more chance to have crashed nodes during training. In this
case, we need to ensure that the whole system is fault tolerant. In many practical settings, to
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increase scalability, one needs to take into account additional issues, including architecture
design, data transfer and computation overlap, load balancing, memory bandwidth and so on.

Training LLMs is so computationally expensive that, even though distributed training
is already in use, researchers and engineers often still employ various model compression
and speed-up methods to improve training efficiency [Weng, 2021]. One example is mixed
precision training, in which low precision data (such as FP16 and FP8 data) is used for gradient
computation on each individual node, and single or double precision data (such as FP32/FP64
data) is used for updating the model [Micikevicius et al., 2018]. A key operation in this
approach is gradient accumulation where gradients need to be accumulated and synchronized
across nodes. However, due to the non-associativity of floating-point addition, this can lead to
slight numerical differences in accumulated gradients on different nodes, which may affect
model convergence and final performance. This problem is more obvious if there are a large
number of nodes involved in distributed training, especially given that low-precision numerical
computations may encounter overflow and underflow issues, as well as inconsistencies across
different hardware devices. Therefore, the design of distributed systems needs to consider
these numerical computation issues to ensure satisfactory results and convergence.

8.2.4 Scaling Laws
The success of LLMs reveals that training larger language models using more resources can
lead to improved model performance. Researchers have explained this as scaling laws of
LLMs. More specifically, scaling laws describe the relationships between the performance of
LLMs and the attributes of LLM training, such as the model size, the amount of computation
used for training, and the amount of training data. For example, Hestness et al. [2017] show
that the performance of deep neural networks is a power-law-like function of the training data
size. In the beginning, when the amount of training data is not large, the performance of the
model improves slowly. Afterward, when more training data is used, the model enters a phase
of rapid performance improvement, and the performance curve resembles a power-law curve.
Ultimately, the improvement in performance becomes slow again, and more data does not lead
to significant gains. Figure 8.3 shows an example of such curves.

In NLP, a traditional view holds that the performance gains will disappear at a certain point
as the training is scaled up. However, recent results show that, if we consider the problem on a
larger scale, scaling up training is still a very effective method for obtaining stronger LLMs.
For example, both closed-source and open-source LLMs can benefit from more data, even
though trillions of tokens have already been used for training.

With the increase in the scale of model training, LLMs exhibit new capabilities, known as
the emergent abilities of LLMs. For example, Wei et al. [2022b] studied the scaling properties
of LLMs across different model sizes and amounts of computational resources. Their work
shows that some abilities emerge when we scale the model size to certain level. The appearance
of emergent abilities has demonstrated the role of scaled training in enhancing the performance
of LLMs, and it has also, to some extent, motivated researchers to continuously attempt to
train larger models. As larger and stronger LMs continue to appear, our understanding of the
scaling laws continues to mature. This helps researchers predict the performance of LLMs
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Figure 8.3: A scaling law of test error against a variable of interest (e.g., training dataset size)
[Hestness et al., 2017]. The curve of the scaling law can be divided into three phases. At the
beginning, the number of test errors decreases slowly when more training data is used, but
this only lasts for a short period. In the second phase, the number of test errors decreases
drastically, and the curve becomes a power law curve. After that, the error reduction slows
down again in the third phase. Note that there are irreducible errors that cannot be eliminated,
regardless of the amount of training data.

during training and estimate the minimal computational resources required to achieve a given
level of performance.

To understand how model performance scales with various factors considered during
training, it is common to express the model performance as a function of these factors. For
example, in the simplest case, we can express the loss or error of an LLM as a function of a
single variable of interest. However, there are no universal scaling laws that can describe this
relationship. Instead, different functions are proposed to fit the learning curves of LLMs.

Let x be the variable of interest (such as the number of model parameters) and L(x) be the
loss of the model given x (such as the cross-entropy loss on test data). The simplest form of
L(x) is a power law

L(x) = axb (8.36)

where a and b are parameters that are estimated empirically. Despite its simplicity, this function
has successfully interpreted the scaling ability of language models and machine translation
systems in terms of model size (denoted by N ) and training dataset size (denoted by D)
[Gordon et al., 2021; Hestness et al., 2017]. For example, Kaplan et al. [2020] found that
the performance of their language model improves as a power law of either N or D after an
initial transient period, and expressed these relationships using L(N) =

(
N

8.8×1013

)−0.076 and

L(D) =
(

D
5.4×1013

)−0.095 (see Figure 8.4).
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Figure 8.4: Test loss against model size (N ) and training dataset size (D) (data points are
plotted for illustrative purposes). We plot test loss as a function of N , which is defined as
L(N) =

(
N

8.8×1013

)−0.076, and a function of D, which is defined as L(D) =
(

D
5.4×1013

)−0.095

[Kaplan et al., 2020].

An improvement to this scaling law is to add an irreducible error term to the power law.
The form of L(x) is then given by

L(x) = axb+ ϵ∞ (8.37)

where ϵ∞ is the irreducible error that accounts for the error due to unknown variables, which is
present even as x→∞. Eq. (8.37) is one of the most widely used forms for designing scaling
laws of LLMs. For example, Rosenfeld et al. [2020] developed a scaling law that involves both
model scaling and dataset scaling, like this

L(N,D) = aN b+ cDd+ ϵ∞ (8.38)

An example of such formulation is the Chinchilla scaling law. It states that the test loss per
token is the sum of the inverse proportion functions of N and D, with an additional irreducible
error term. Hoffmann et al. [2022] express this scaling law as

L(N,D) =
406.4

N0.34︸ ︷︷ ︸
model scaling

+
410.7

D0.28︸ ︷︷ ︸
dataset scaling

+ 1.69︸︷︷︸
irreducible error

(8.39)

All the scaling laws mentioned above are based on monotonic functions. So they cannot
cover functions with inflection points, such as double descent curves. In response, researchers
have explored more sophisticated functions to fit the learning curves. Examples of such
functions can be found in Alabdulmohsin et al. [2022] and Caballero et al. [2023]’s work.

The significance of scaling laws lies in providing directional guidance for LLM research:
if we are still in the region of the power law curve, using more resources to train larger models
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is a very promising direction. While this result “forces” big research groups and companies to
invest more in computational resources to train larger models, which is very expensive, scaling
laws continuously push the boundaries of AI further away. On the other hand, understanding
scaling laws helps researchers make decisions in training LLMs. For example, given the
computational resources at hand, the performance of LLMs may be predicted.

One last note on scaling laws in this section. For LLMs, a lower test loss does not always
imply better performance on all downstream tasks. To adapt LLMs, there are several steps
such as fine-tuning and prompting that may influence the final result. Therefore, the scaling
laws for different downstream tasks might be different in practice.

8.3 Long Sequence Modeling
We have already seen that, in large-scale training, larger language models can be developed
by using more data and computational resources. However, scaling up can also occur in other
directions. For instance, in many applications, LLMs are adapted to process significantly
long sequences. An interesting example is that we pre-train an LLM on extensive texts of
normal length and then apply it to deal with very long token sequences, far beyond the length
encountered in pre-training. Here we use Pr(y|x) to denote the text generation probability
where x is the context and y is the generated text. There are broadly three types of long
sequence modeling problems.

• Text generation based on long context (i.e., x is a long sequence). For example, we
generate a short summary for a very long text.

• Long text generation (i.e., y is a long sequence). For example, we generate a long story
based on a few keywords.

• Long text generation based on long context (i.e., both x and y are long sequences).
For example, we translate a long document from Chinese to English.

Recently, NLP researchers have been more interested in applying and evaluating LLMs
on tasks where extremely long input texts are involved. Imagine an LLM, which reads a
C++ source file containing tens of thousands of lines, and outlines the functionality of the
program corresponding to the source file. Such models, capable of handling extensive textual
contexts, are sometimes called long-context LLMs. In this section we will restrict ourselves
to long-context LLMs, but the methods discussed here can be applicable to other problems.

For Transformers, dealing with long sequences is computationally expensive, as the
computational cost of self-attention grows quadratically with the sequence length. This makes
it infeasible to train and deploy such models for very long inputs. Two strands of research have
tried to adapt Transformers to long-context language modeling.

• The first explores efficient training methods and model architectures to learn self-
attention models from long-sequence data.

• The other adapts pre-trained LLMs to handle long sequences with modest or no fine-
tuning efforts.
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Here, we will discuss the former briefly since Chapter 6 extensively covers many methods
in this strand. We will focus on the latter, highlighting popular methods in recent LLMs. We
will also discuss the strengths and limitations of these long-sequence models.

8.3.1 Optimization from HPC Perspectives

We begin our discussion by considering improvements to standard Transformer models from
the perspectives of high-performance computing. Most of these improvements, though not
specifically designed for LLMs, have been widely applied across various deep learning models
[Kim et al., 2023]. A commonly used approach is to adopt a low-precision implementation of
Transformers. For example, we can use 8-bit or 16-bit fixed-point data types for arithmetic
operations, instead of 32-bit or 64-bit floating-point data types. Using these low-precision data
types can increase the efficiency and memory throughput, so that longer sequences can be
processed more easily. An alternative approach is to improve Transformers by using hardware-
aware techniques. For example, on modern GPUs, the efficiency of Transformers can be
improved by using IO-aware implementations of the self-attention function [Dao et al., 2022;
Kwon et al., 2023].

Another way to handle long sequences is through sequence parallelism [Li et al., 2023;
Korthikanti et al., 2023]. Specifically, consider the general problem of attending the query qi

at the position i to the keys K and values V. We can divide K by rows and obtain a set of
sub-matrices {K[1], ...,K[nu]}, each corresponding to a segment of the sequence. Similarly,
we can obtain the sub-matrices of V, denoted by {V[1], ...,V[nu]}. Then, we assign each pair
of K[u] and V[u] to a computing node (e.g., a GPU of a GPU cluster). The assigned nodes can
run in parallel, thereby parallelizing the attention operation.

Recall that the output of the self-attention model can be written as

Attqkv(qi,K,V) =
m−1∑
j=0

αi,jvj (8.40)

where αi,j is the attention weight between positions i and j. In Transformers, αi,j is obtained
by normalizing the rescaled version of the dot product between qi and kj . Let βi,j denote the
attention score between qi and kj . We have

βi,j =
qi ·kj√

d
+Mask(i, j) (8.41)

where Mask(i, j) is the masking variable for (i, j). Then, we define the attention weight αi,j

to be

αi,j = Softmax(βi,j)

=
exp(βi,j)∑
j′ exp(βi,j′)

(8.42)
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On each computing node, we need to implement these equations. Given the keys and
values assigned to this node, computing the numerator of the right-hand side of Eq. (8.42) (i.e.,
exp(βi,j)) is straightforward, as all the required information is stored on the node. However,
computing the denominator of the right-hand side of Eq. (8.42) involves a sum of exp(βi,j′)
over all j′s, which requires transferring data to and from other nodes. To illustrate, suppose
that vj and kj are placed on node u. We can rewrite Eq. (8.42) as

αi,j

=

node u︷ ︸︸ ︷
exp(βi,j)∑

kj′∈K[1]

exp(βi,j′)

︸ ︷︷ ︸
node 1

+ · · ·+
∑

kj′∈K[u]

exp(βi,j′)

︸ ︷︷ ︸
node u

+ · · ·+
∑

kj′∈K[nu]

exp(βi,j′)

︸ ︷︷ ︸
node nu

(8.43)

where the notation kj′ ∈K[u] represents that kj′ is a row vector of K[u]. In a straightforward
implementation, we first perform the summations {

∑
kj′∈K[u] exp(βi,j′)} separately on the

corresponding nodes. Then, we collect these summation results from different nodes to
combine them into a final result. This corresponds to a collective operation in the context of
parallel processing. There are many efficient implementations of such operations, such as the
all-reduce algorithms. Hence the sum of all exp(βi,j) values can be computed using optimized
routines in collective communication toolkits.

Given the attention weights {αi,j}, we then compute the attention results using Eq. (8.40).
The problem can be re-expressed as

Attqkv(qi,K,V)

=
∑

vj′∈V[1]

αi,j′vj′

︸ ︷︷ ︸
node 1

+ · · ·+
∑

vj′∈V[u]

αi,j′vj′

︸ ︷︷ ︸
node u

+ · · ·+
∑

vj′∈V[nu]

αi,j′vj′

︸ ︷︷ ︸
node nu

(8.44)

Like Eq. (8.43), Eq. (8.44) can be implemented as a summation program in parallel pro-
cessing. First, perform the weighted summations of values on different nodes simultaneously.
Then, we collect the results from these nodes via collective operations.

Note that, although this section primarily focuses on long sequence modeling, much of
the motivation for sequence parallelism comes from the distributed training methods of deep
networks, as discussed in Section 8.2.3. As a result, the implementation of these methods can
be based on the same parallel processing library.

8.3.2 Efficient Architectures
One difficulty of applying Transformers to long sequences is that self-attention has a quadratic
time complexity with respect to the sequence length. Moreover, a key-value cache (or KV
cache for short) is maintained during inference, and its size increases as more tokens are
processed. Although the KV cache grows linearly with the sequence length, for extremely



8.3 Long Sequence Modeling 39

long input sequences, the memory footprint becomes significant and it is even infeasible
to deploy LLMs for such tasks. As a result, the model architecture of long-context LLMs
generally moves away from the standard Transformer, turning instead to the development of
more efficient variants and alternatives.

One approach is to use sparse attention instead of standard self-attention. This family of
models is based on the idea that only a small number of tokens are considered important when
attending to a given token, and so most of the attention weights between tokens are close to
zero. As a consequence, we can prune most of the attention weights and represent the attention
model in a compressed form. To illustrate, consider the self-attention model

Attqkv(Q,K,V) = α(Q,K)V (8.45)

where the attention weight matrix α(Q,K) ∈ Rm×m is obtained by

α(Q,K) = Softmax(
QKT

√
d

+Mask)

=


α0,0 0 0 ... 0

α1,0 α1,1 0 ... 0

α2,0 α2,1 α2,2 ... 0
...

...
...

. . .
...

αm−1,0 αm−1,1 αm−1,2 ... αm−1,m−1

 (8.46)

Each row vector
[
αi,0 ... αi,i 0 ... 0

]
corresponds to a distribution of attending the

i-th token to every token of the sequence. Since language models predict next tokens only
based on their left-context, we normally write the output of the attention model at position i as

Attqkv(qi,K≤i,V≤i) =
[
αi,0 ... αi,i

]v0
...
vi


=

i∑
j=0

αi,jvj (8.47)

where K≤i =

k0
...
ki

 and V≤i =

v0
...
vi

 are the keys and values up to position i.

In the original version of self-attention
[
αi,0 ... αi,i

]
is assumed to be dense, that is,

most of the values are non-zero. In sparse attention, some of the entries of
[
αi,0 ... αi,i

]
are

considered non-zero, and the remaining entries are simply ignored in computation. Suppose
G⊆ {0, ..., i} is the set of indices of the non-zero entries. For language models, the output of
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the sparse attention model at position i is given by

Attsparse(qi,K≤i,V≤i) =
∑
j∈G

α′
i,jvj (8.48)

Here {α′
i,j} are normalized over G. Hence their values are different from the original attention

weights (in fact we have α′
i,j > αi,j). The sparsity of the model is determined by how large G

is. Sparse attention models differ in the way we define G. One simple approach is to define G
based on heuristically designed patterns. For example, a widely-used pattern involves having
G cover a window of tokens located near position i [Parmar et al., 2018].

While sparse attention reduces the computation through the use of sparse operations, such
models still have significant limitations as we must keep the entire KV cache (i.e., K≤i and
V≤i) during inference. If the sequence is very long, storing this cache will become highly
memory-intensive. To address this, we can consider a different form of attention models where
the KV cache is not explicitly retained. Linear attention is one such approach [Katharopoulos
et al., 2020]. It uses a kernel function ϕ(·) to project each query and key onto points q′

i = ϕ(qi)

and k′
i = ϕ(ki), respectively. By removing the Softmax function under such transformations10,

the form of the resulting attention model is given by

Attqkv(qi,K≤i,V≤i) ≈ Attlinear(q
′
i,K

′
≤i,V≤i)

=
q′
iµi

q′
iνi

(8.49)

where µi and νi are variables that are computed in the recurrent forms

µi = µi−1+k′T
i vi (8.50)

νi = νi−1+k′T
i (8.51)

µi and νi can be seen as representations of the history up to position i. A benefit of this model
is that we need not keep all past queries and values. Instead only the latest representations µi
and νi are used. So the computational cost of each step is a constant, and the model can be
easily extended to deal with long sequences.

In fact, this sequential approach to long sequence modeling arises naturally when we adopt
a viewpoint of recurrent models. Such models read one token (or a small number of tokens)
at a time, update the recurrent state using these inputs, and then discard them before the next
token arrives. The output at each step is generated based only on the recurrent state, rather than
on all the previous states. The memory footprint is determined by the recurrent state which
has a fixed size. Recurrent models can be used in real-time learning scenarios where data
arrives in a stream and predictions can be made at any time step. In NLP, applying recurrent

10In the new space after this transformation, the Softmax normalization can be transformed into the simple
scaling normalization.
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models to language modeling is one of the earliest successful attempts to learn representations
of sequences. Although Transformer has been used as the foundational architecture in LLMs,
recurrent models are still powerful models, especially for developing efficient LLMs. More
recently, recurrent models have started their resurgence in language modeling and have been
reconsidered as a promising alternative to Transformers [Gu and Dao, 2023].

Figure 8.5 shows a comparison of the models discussed in this subsection. Since these
models, along with others not mentioned here, have been intensively discussed in Chapter 6
and in related surveys [Tay et al., 2020], a detailed discussion of them is precluded here.

8.3.3 Cache and Memory
LLMs based on the standard Transformer architecture are global models. The inference for
these models involves storing the entire left-context in order to make predictions for future
tokens. This requires a KV cache where the representations (i.e., keys and values) of all
previously-generated tokens are kept, and the cost of caching grows as the inference proceeds.
Above, we have discussed methods for optimizing this cache via efficient attention approaches,
such as sparse attention and linear attention. Another idea, which may have overlap with the
previous discussion, is to explicitly encode the context via an additional memory model.

1. Fixed-size KV Cache
A straightforward approach is to represent the keys and values using a fixed-size memory
model. Suppose we have a memory Mem which retains the contextual information. We can
write the attention operation at position i in a general form

Att(qi,Mem) = Attqkv(qi,K≤i,V≤i) (8.52)

In this model, Mem is simply the KV cache, i.e., Mem = (K≤i,V≤i). Thus the size of
Mem is determined by i. If we define Mem as a fixed-size variable, then the cost of performing
Att(qi,Mem) will be fixed. There are several alternative ways to design Mem.

• One of the simplest methods is to consider a fixed-size window of previous keys and
values. Mem is therefore given by

Mem = (K[i−nc+1,i],V[i−nc+1,i]) (8.53)

where nc denotes the size of the window. The notation K[i−nc+1,i] and V[i−nc+1,i]

denote the keys and values over positions from i−nc+1 to i.11 This model can be seen
as a type of local attention model.

• It is also possible to define Mem as a pair of summary vectors, which leads to a more
compressed representation of the history. A simple way to summarize the previous keys

11More formally, we write K[i−nc+1,i] =

ki−nc+1
...
ki

 and V[i−nc+1,i] =

vi−nc+1
...
vi

. Sometimes we

denote K[i−nc+1,i] by {ki−nc+1, ...,ki} and V[i−nc+1,i] by {vi−nc+1, ...,vi} for notation simplicity.
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(b) Sparse Attention
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⇒
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hi = f(hi−1, inputi)

(d) Recurrent Models

Figure 8.5: Illustrations of self-attention, sparse attention, linear attention and recurrent models.
Blue boxes = cached states for producing the output at position i. f(·) = a recurrent cell.

and values is to use the moving average of them. For example, Mem can be defined as
the unweighted moving average of the previous nc keys and values

Mem =
(∑i

j=i−nc+1kj

nc
,

∑i
j=i−nc+1vj

nc

)
(8.54)
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Alternatively, we can use a weighted version of moving average

Mem =
(∑i

j=i−nc+1βj−i+nckj∑nc
j=1βj

,

∑i
j=i−nc+1βj−i+ncvj∑nc

j=1βj

)
(8.55)

Here {β1, ...,βnc} are the coefficients, which can be either learned as model parameters
or determined via heuristics. For example, they can be set to increasing coefficients (i.e.,
β1 < β2 < ... < βnc−1 < βnc) in order to give larger weight to positions that are closer
to i. We can extend the moving average to include all the positions up to i. This leads to
the cumulative average of the keys and values, given in the form

Mem =
(∑i

j=0kj

i+1
,

∑i
j=0vj

i+1

)
(8.56)

In general, the cumulative average can be written using a recursive formula

Memi =
(ki,vi)+ i ·Memi−1

i+1
(8.57)

where Memi and Memi−1 denote the cumulative averages of the current and previous
positions, respectively. An advantage of this model is that we only need to store a single
key-value pair during inference, rather than storing all the key-value pairs. Note that the
above memory models are related to recurrent models, and more advanced techniques
have been used to develop alternatives to self-attention mechanisms in Transformers
[Ma et al., 2023].

• The memory Mem can also be a neural network. At each step, it takes both the previous
output of the memory and the current states of the model as input, and produces the new
output of the memory. This neural network can be formulated as the function

Mem = Update(Skv,Mempre) (8.58)

Here Mem and Mempre represent the outputs of the memory at the current step and the
previous step, respectively. Skv is a set of key-value pairs, representing the recent states
of the model. This formulation is general and allows us to develop various memory
models by selecting different Update(·) and Skv configurations. For example, if Skv
only contains the latest key-value pair (ki,vi) and Update(·) is defined as a recurrent
cell, then Eq. (8.58) can be expressed as an RNN-like model

Mem = f((ki,vi),Mempre) (8.59)

where f(·) is a recurrent cell. Recurrence can also be applied to segment-level modeling
for efficiency consideration. A simple approach is that we can divide the sequence into
segments, and treat Skv as a segment. Applying recurrent models to Update(·) will
result in memory models that operate on segments. A special example is that we define



44 Chapter 8. Generative Models

Update(·) as an FIFO function that adds Skv into the memory and removes the oldest
key-value segment from the memory, given by

Mem = FIFO(Skv,Mempre) (8.60)

Consider a memory which includes two segments, one for current segment, and one for
the previous segment. In the attention operation, each position can access the history
key-value pairs in two closest consecutive segments. This essentially defines a local
memory, but it and its variants have been widely used segment-level recurrent models
[Dai et al., 2019; Hutchins et al., 2022; Bulatov et al., 2022].

• The above memory models can be extended to involve multiple memories. An example
of this approach is compressive Transformer [Rae et al., 2019]. It employs two distinct
fixed-size memories: one for modeling local context (denoted by Mem), and the other
for modeling and compressing long-term history (denoted by CMem). The KV cache
in this model is the combination of Mem and CMem. The attention function can be
written as

Attcom(qi,Mem,CMem) = Attqkv(qi, [Mem,CMem]) (8.61)

where [Mem,CMem] is a combined memory of Mem and CMem. As with other
segment-level models, the compressive Transformer model operates on segments of the
sequence. Each segment is a sequence of ns consecutive tokens, and we denote Sk

kv

as the key-value pairs corresponding to the tokens of the k-th segment. When a new
segment arrives, Mem is updated in an FIFO fashion: we append the nc key-value pairs
in Sk

kv to Mem, and then pop the ns oldest key-value pairs from Mem, which is given
by

Mem = FIFO(Sk
kv,Mempre) (8.62)

The popped key-value pairs are then used to update the compressive memory CMem.
These ns key-value pairs are compressed into ns

c key-value pairs via a compression
network. CMem is an FIFO which appends the compressed ns

c key-value pairs to the
tail of the queue, and drops the first ns

c key-value pairs of the queue. It is given by

CMem = FIFO(Ck
kv,CMempre) (8.63)

where Ck
kv represents the set of compressed key-value pairs. Implicit in the compressive

Transformer model is that local context should be represented explicitly with minimal
information loss, while long-range context can be more compressed.

• We have already seen that both global and local contexts are useful and can be modeled
using attention models. This view motivates the extension to attention models for
combining both local and long-term memories [Ainslie et al., 2020; Zaheer et al., 2020;
Gupta and Berant, 2020]. A simple but widely-used approach is to involve the first few
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tokens of the sequence in attention, serving as global tokens. This approach is usually
applied along with other sparse attention models. An advantage of incorporating global
tokens of the sequence is that it helps smooth the output distribution of the Softmax
function used in attention weight computation, and thus stabilizes model performance
when the context size is very large [Xiao et al., 2024]. One drawback, however, is that
using a fixed-size global memory may result in information loss. When dealing with
long sequences, we need to enlarge the KV cache for sufficient representations of the
context, but this in turn increases the computational cost.

Figure 8.6 shows illustrations of the above approaches. Note that, while we focus on
optimization of the KV cache here, this issue is closely related to those discussed in the
previous section. All of the methods we have mentioned so far can broadly be categorized as
efficient attention approaches, which are widely used in various Transformer variants.

2. Memory-based Models

The modeling of memories discussed above was based on updates to the KV cache, and the
resulting models are typically referred to as internal memories. We now consider another
family of models, called external memories, which operate as independent models to access
large-scale contexts for LLMs. Many such models are based on memory-based methods
which have been extensively discussed in machine learning [Bishop, 2006]. A common
example is nearest neighbor algorithms: we store context representations in a datastore, and try
to find the most similar stored representations to match a given query. The retrieved context
representations are then used to improve attention for this query.

Here, we consider the k-nearest neighbors (k-NN) method which is one of the most
popular memory-based methods. Since our focus is language modeling in this section, we
define a sample in the datastore as a key-value pair corresponding to some context state. Note
that “context” is a broad concept here, not just a sequence prefix in text generation. One
might, for example, view the entire dataset as the context for predicting tokens. This allows
us to retrieve the closest context situation in a set of sequences, rather than a given sequence
prefix. Although we will restrict ourselves to context modeling for a single sequence, in this
subsection, we discuss a relatively more general case.

Suppose we have a set of keys {kj} with corresponding values {vj}, and suppose we store
these key-value pairs in a vector database12. For each query qi, we find its k nearest neighbours
by growing the radius of the sphere centered as qi until it contains k data points in {kj}. This
results in a set of k keys along with their corresponding values, denoted by Memknn. As before,
we denote Mem as the local memory for the query, such as the KV cache of neighboring
tokens. Our goal is to attend query qi to both the local memory Mem and the long-term
memory Memknn. There are, of course, several ways to incorporate Mem and Memknn into
the attention model. For example, we might simply combine them to form a single KV cache
[Mem,Memknn], and attend qi to [Mem,Memknn] via standard QKV attention. Or we might

12A vector database, or vector store, is a database that provides highly optimized retrieval interfaces for finding
stored vectors that closely match a query vector.
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Figure 8.6: Illustrations of fixed-size KV caches in LLMs. Blue boxes represent the keys and
values generated during LLM inference, green boxes represent the keys and values stored or
encoded in the primary memory, and orange boxes represent the keys and values stored or
encoded in the compressed memory.
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use Mem and Memknn in separate attention steps. An example of such approaches is the
model developed by Wu et al. [2021]. It linearly combines the two types of attention, given by

Att(qi,Mem,Memknn) = g⊙Attlocal+(1−g)⊙Attknn (8.64)

Attlocal = Att(qi,Mem) (8.65)

Attknn = Att(qi,Memknn) (8.66)

Here g ∈ Rd is the coefficient vector, which can be the output of a learned gate.

Given the k-NN-based memory model described above, the remaining task is to determine
which key-value pairs are retained in the datastore. For standard language modeling tasks, we
consider the previously seen tokens in a sequence as the context, so we can add the keys and
values of all these tokens into the datastore. In this case, the resulting k-NN-based attention
model is essentially equivalent to a sparse attention model [Gupta et al., 2021].

Alternatively, we can extend the context from one sequence to a collection of sequences.
For example, we might collect all key-value pairs across the sequences in a training dataset
and add them to the datastore to model a larger context. Thus, LLMs can predict tokens based
on a generalized context. A problem with this approach is that the computational cost would
be large if many sequences are involved. Since these sequences are part of our training data,
we can build and optimize an index for the vectors in the datastore before running the LLMs.
As a result, the retrieval of similar vectors can be very efficient, as in most vector databases.

In fact, all the above-mentioned methods can be viewed as instances of a retrieval-based
approach. Instead of using retrieval results to improve attention, we can apply this approach
in other ways as well. One application of k-NN-based search is k-NN language modeling
(or k-NN LM) [Khandelwal et al., 2020]. The idea is that, although it is attempting to
extend the context used in self-attention by incorporating nearest neighbors in representation
learning, in practice, similar hidden states in Transformers are often highly predictive of
similar tokens in subsequent positions. In k-NN LM, each item in the datastore is a key-value
tuple (z,w), where z represents a hidden state of the LLM at a position, and w represents
the corresponding prediction. A typical way to create the datastore is to collect the output
vector of the Transformer layer stack and the corresponding next token for each position of
each sequence in a training dataset. During inference, we have a representation hi given a
prefix. Given this representation, we first search the datastore for k closest matching data items
{(z1,w1), ...,(zk,wk)}. Here {w1, ...,wk} are thought of as reference tokens for prediction,
and thus can be used to guide the token prediction based on hi. One common way to make use
of reference tokens is to define a distribution over the vocabulary V ,

Prknn(·|hi) = Softmax(
[
−d0 · · · −d|V |

]
) (8.67)

where dv equals the distance between hi and zj if wj equals the v-th entry of V , and equals
0 otherwise. We use a linear function with a coefficient λ that interpolates between the



48 Chapter 8. Generative Models

retrieval-based distribution Prknn(·|hi) and the LLM output distribution Prlm(·|hi)

Pr(·|hi) = λ ·Prknn(·|hi)+(1−λ) ·Prlm(·|hi) (8.68)

Then, as usual, we can choose the next token y by maximizing the probability Pr(y|hi).
As with information retrieval (IR) systems, the datastore can also manage texts and provide

access to relevant texts for a query. For example, we can store a collection of text documents
in a search engine with full-text indexing, and then search it for documents that match a
given text-based query. Applying IR techniques to LLMs leads to a general framework called
retrieval-augmented generation (RAG). The RAG framework works as follows. We use
the context x as the query and find the k most relevant document pieces {c1, ...,ck} from the
datastore via efficient IR techniques13. These search results are combined with the original
context via a prompting template g(·)14, resulting in an augmented input for the LLM

x′ = g(c1, ...,ck,x) (8.69)

Then, we use x′ as the context and predict the following text using the model Pr(y|x′). One
advantage of RAG is that we need not modify the architecture of LLMs, but instead augment
the input to LLMs via an additional IR system. Figure 8.7 shows a comparison of the use of
different external memories in LLMs.

3. Memory Capacity

A memory model in LLMs, in the form of a simple key-value cache or a datastore, can broadly
be seen as an encoder of contextual information. Ideally, before we say that a memory model
is representative of the entire context in token prediction, we need to make sure that the model
can accurately represent any part of the context. The standard KV cache is one such model
that completely stores all past history. In this case, the model is said to have adequate capacity
for memorizing the context. In many practical applications, however, complete memorization
is not required. Instead, the goal is to enable LLMs to access important contextual information.
As a result, efficient and compressed memory models are developed, as described in this
section. Note that, the longer the sequence, the more difficult it becomes for a low-capacity
memory model to capture important contextual information. It is therefore common practice to
simply increase the model capacity when processing long contexts.

While high-capacity models are generally favorable, they are difficult to train and deploy.
A challenging scenario is that the tokens arrive in a stream and the context continuously grows.

13In piratical applications, queries are typically generated using a query generation system, which may expand it
with variations of tokens and query intent.

14For example, the template could be:

message = {*c1*} ... {*ck*}

input: {*x*}

output:
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Figure 8.7: Illustrations of external memories (or datastores) for language modeling.
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Developing LLMs for such tasks is difficult as we need to train Transformers on extremely long
sequences. A possible way to address this difficulty is to use non-parametric methods, such
as retrieval-based methods. For example, as discussed above, we can use a vector database
to store previously generated key-value pairs, and thus represent the context by this external
memory model. Although this approach side-steps the challenge of representing long context in
Transformers, building and updating external memory models are computationally expensive.
These models are more often used in problems where the context is given in advance and fixed
during inference, and hence unsuitable for streaming context modeling.

In cases where the size of the context continuously grows, applying fixed-size memory
models is a commonly used approach. For example, in recurrent models, a sequence of arbitrary
length can be summarized into a set of hidden states by which we have a fixed computational
cost per step. While recurrent models were initially found to be not very good at handling
long-distance dependencies in sequence modeling in early applications of deep learning to NLP,
recent advancements have shown that their variants are now effective in modeling extremely
long sequences. [Bulatov et al., 2022; Hutchins et al., 2022; Munkhdalai et al., 2024; Ma et al.,
2024].

There is no general definition of memory capacity in LLMs. A simple approach might
consider how much storage is used to retain contextual information. For example, memory
capacity could be defined by the size of the KV cache in Transformers or the vector database
used in retrieval-based methods. A related concept is model complexity. In machine learning,
there are several ways to define the model complexity of a model. One of the simplest
methods is by counting the number of parameters. However, it should be emphasized that the
memory models discussed here primarily serve to store information, rather than add trainable
parameters. Therefore, a model with a large memory capacity is not necessarily more complex.
Nevertheless, in practice determining the capacity of a memory model is not straightforward. In
general, we need to control the trade-off between maximizing the performance and controlling
the memory footprint.

8.3.4 Sharing across Heads and Layers
In Transformers, the KV cache is a data structure that can be dynamically adjusted along
multiple dimensions, such as heads, layers, and sequence length. For example, consider
an LLM with L layers. Each layer has τ attention heads, and each head produces a dh-
dimensional output. During inference, we store the keys and values for up to m tokens. The
space complexity of this caching mechanism is O(L · τ ·dh ·m). As we have seen previously,
this complexity can be reduced by caching the keys and values for fewer tokens. For example,
in sliding window attention, a fixed-size window is used to cache the keys and values in local
context. And this model has a space complexity of O(L · τ ·dh ·mw), with mw being the size
of the window.

In addition to reducing m, we can also decrease the size of the KV cache along other
dimensions. A widely-used approach is to enable sharing across heads in multi-head self-
attention. Recall from Section 8.1.1 that multi-head self-attention uses multiple sets of queries,
keys, and values (each set is called a head), each performing the QKV attention mechanism as
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usual. This can be expressed as

Output = Merge(head1, ...,headτ )W
head (8.70)

where headj ∈ Rdh is computed using the standard QKV attention function

headj =Attqkv(q
[j]
i ,K

[j]
≤i,V

[j]
≤i) (8.71)

Here, q[j]
i , K[j]

≤i, and V
[j]
≤i are the query, keys, and values that are projected onto the j-th feature

sub-space. So this model can be interpreted as performing attention on a group of feature
sub-spaces in parallel (see Figure 8.8 (b)). The KV cache needs to retain the keys and values
for all these heads, that is, {(K[1]

≤i,V
[1]
≤i), ...,(K

[τ ]
≤i,V

[τ ]
≤i)}.

One refinement to the multi-head attention model, called multi-query attention (MQA),
is to share keys and values across heads, while allowing queries to be unique for each head
[Shazeer, 2019]. In MQA, there is a single set of keys and values (K≤i,V≤i). In addition,
there are τ queries {q[1]

i , ...,q
[τ ]
i }, each corresponding to a different head. For each head, we

have

headj =Attqkv(q
[j]
i ,K≤i,V≤i) (8.72)

Figure 8.8 (c) illustrates this model. By sharing keys and values, the size of the KV cache
would be O(L ·dh ·m).

Grouped query attention (GQA) is a natural extension to multi-head attention and MQA
[Ainslie et al., 2023]. In GQA, heads are divided into ng groups, each corresponding to a shared
set of keys and values. Hence we have ng sets of keys and values {(K[1]

≤i,V
[1]
≤i), ...,(K

[ng ]
≤i ,V

[ng ]
≤i )}.

See Figure 8.8 (d) for an illustration. Let g(j) be the group id for the j-th head. The GQA
model can be expressed as

headj =Attqkv(q
[j]
i ,K

[g(j)]
≤i ,V

[g(j)]
≤i ) (8.73)

The size of the KV cache of GQA is O(L ·ng ·dh ·m). One benefit of GQA is that we can
trade-off between computational efficiency and model expressiveness by adjusting ng. When
ng = τ , the model becomes the standard multi-head attention model. By contrast, when ng = 1,
it becomes the GQA model.

Sharing can also be performed across layers. Such a method falls into the family of shared
weight and shared activation methods, which have been extensively used in Transformers
[Dehghani et al., 2018; Lan et al., 2020]. For example, one can share KV activations or
attention weights across layers to reduce both computation and memory footprints [Xiao et al.,
2019; Brandon et al., 2024]. Figure 8.8 (e) shows an illustration of this method, where a query
in a layer directly accesses the KV cache of a lower-level layer.
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Figure 8.8: Illustration of QKV attention based on different multi-head and sharing mechanisms.
(a) = single-head attention, and (b-e) = attention with multiple heads.

8.3.5 Position Extrapolation and Interpolation

Since Transformer layers are order-insensitive to input, we need some way to encode positional
information in the input tokens. To do this, it is common to add positional embeddings to token
embeddings, and then feed these combined embeddings into the Transformer layer stack as
input. In this case, the embedding at position i can be expressed as

ei = xi+PE(i) (8.74)

where xi ∈Rd denotes the token embedding, and PE(i)∈Rd denotes the positional embedding.
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In general, the token embedding xi is a position-independent vector, and so the positional
embedding PE(i) is used to encode the positional context. A straightforward approach is
to treat PE(i) as a learnable variable and train it alongside other model parameters. In this
way, we can learn a unique representation for each position, and thus distinguish the tokens
appearing at different positions of a sequence.

Representations of positions using learned vectors can work well in tasks where the
sequences at training and test times are of similar lengths. In practice, however, we often
impose length restrictions on sequences during training to prevent excessive computational
costs, but wish to apply the trained models to much longer sequences during inference. In
this case, using learned positional embeddings has obvious drawbacks, as there are no trained
embeddings for positions that are not observed in the training phase.

An alternative approach to modeling positional information is to develop positional embed-
dings that can generalize: once trained, the embedding model can be used to handle longer
sequences. Suppose that we train a positional embedding model on sequences with a maximum
length of ml, and we wish to apply the trained model to a sequence of length m (m>>ml).
If the embedding model is limited in the range of positions that we can observe from training
data, then this model will simply fail to deal with new data outside that range. See Figure 8.9
(a) for an illustration where the learned embedding model cannot model data points outside the
training domain if it lacks the ability to extrapolate.

There are several approaches to making positional embedding models generalize. They
can be grouped into two classes.

• Extrapolation. The model learned on observed data points (i.e., positions) can be
directly employed to assign meaningful values to data points beyond the original range.
For example, suppose we have a series of numbers 1,2, ...,10, and we want to understand
the meaning of a new number, 15. Knowing that these numbers are natural numbers
used for ordering, we can easily infer that 15 is a number that follows 10, even though
15 has not been observed before. Figure 8.9 (b) shows an example of this approach,
where a function is learned to fit the data points within a specific range and then applied
to estimate the values of data points outside that range.

• Interpolation. This approach maps a larger range of data points into the original
observation range. For example, suppose we have a model designed for numbers in the
range [1,10]. When given a new range of [1,20], we can scale this down by dividing
every number by 2, thereby fitting all numbers into [1,10]. This scaling allows us to use
the model trained on the range [1,10] to describe data points in the expanded range of
[1,20]. See Figure 8.9 (c) for an illustration of this approach.

In fact, positional embeddings in many systems have achieved some level of generalization.
For example, sinusoidal encoding, the most common positional embedding method, employs
sine and cosine functions that can naturally extend to sequences of any length. Although this
approach might seem direct and simple, it does not perform well when we significantly extend
the sequences for processing. In this subsection, we will discuss several alternative methods
based on either extrapolation or interpolation.
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Figure 8.9: Illustrations of different positional embedding methods for a range of positions.
Blue points represent the positions that have been observed during training, and red points
represent the positions that are newly observed at test time. In sub-figure (a), the encoding
model only memorizes the points seen during training, and cannot generalize. In sub-figures
(b) and (c), the model can generalize through extrapolation and interpolation.

1. Attention with Learnable Biases

One problem with Eq. (8.74) is that the embedding model treats each token independently
and therefore ignores the distance between different tokens. A common improvement to this
model, called relative positional embedding, is to consider the pairwise relationship between
tokens [Shaw et al., 2018]. The general idea behind this is to obtain the offset between any
pair of positions and incorporate it into the self-attention model. One of the simplest forms of
self-attention with relative positional embedding is given by

Attqkv(qi,K≤i,V≤i) =
i∑

j=0

α(i, j)vj (8.75)

α(i, j) = Softmax(
qik

T
j +PE(i, j)

√
d

+Mask(i, j)) (8.76)
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The only difference between this model and the original self-attention model is that a bias
term PE(i, j) is added to the query-key product in this new model. Intuitively, PE(i, j) can be
interpreted as a distance penalty for the pair of positions i and j. As i moves away from j, the
value of PE(i, j) decreases.

PE(i, j) can be defined in several different ways. Here, we consider the T5 version of
relative positional embedding, called the T5 bias [Raffel et al., 2020]. For each pair of query
qi and key kj , the offset between them is defined to be15

d(i, j) = i− j (8.77)

A simple design for the bias PE(i, j) is to share the same learnable variable for all query-
key pairs with the same offset, i.e., PE(i, j) = ui−j , where ui−j is the variable corresponding
to the offset i− j. However, simply assigning a unique value to each offset will restrict this
model to observed offsets. When i− j is larger than the maximum trained offset, the model
cannot generalize.

The T5 bias instead adopts a generalization of this model. Rather than assigning each query-
key offset a unique bias term, it groups difference offsets into “buckets”, each corresponding
to one learnable parameter. More specifically, the bias terms for nb+1 buckets are given as
follows.

• For buckets 0 to nb+1
2 − 1, each bucket corresponds to one offset, that is, bucket 0

↔ offset 0, bucket 1 ↔ offset 1, bucket 2 ↔ offset 2, and so on. We express this as
b(i− j) = i− j.

• For buckets nb+1
2 to nb, the size of each bucket increases logarithmically. For example,

the bucket number for a given offset i− j ≥ nb+1
2 can be defined as

b(i− j) =
nb+1

2
+ ⌊

log(i− j)− log(nb+1
2 )

log(distmax)− log(nb+1
2 )

· nb+1

2
⌋ (8.78)

where the parameter distmax is typically set to a relatively large number to indicate the
maximum offset we may encounter.

• When i− j > distmax, we place i− j in the last bucket. In other words, bucket nb
contains all the offsets that are not assigned to the previous buckets.

Together, these can be expressed as the function

b(i− j)

=

i− j 0≤ i− j < nb+1
2

min(nb,
nb+1
2 + ⌊ log(i−j)−log(

nb+1

2
)

log(distmax)−log(
nb+1

2
)
· nb+1

2 ⌋) i− j ≥ nb+1
2

(8.79)

Figure 8.10 shows an illustration of these buckets. We see that in the first half of the

15For language modeling, a query is only allowed to attend to its left-context, and so we have i− j ≥ 0. In the
more general case of self-attention, where a token can attend to all tokens in the sequence, we may have negative
offsets when i < j.
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Figure 8.10: Illustration of distributing query-key offsets into buckets in the T5 model (nb = 32
and distmax = 1024). Boxes represent buckets. In the first half of the buckets, we use a fixed
bucket size. In the second half of the buckets, we increase the bucket size logarithmically. The
last bucket contains all the query-key offsets that are not covered by previous buckets.

buckets, each bucket is associated with only one value of i− j, while in the second half,
the bucket size increases as i− j grows. The last bucket is designed to handle sequences of
arbitrarily long lengths.

All PE(i, j)s in a bucket share the same bias term ub(i−j). Substituting PE(i, j) = ub(i−j)

into Eq. (8.76), the attention weight for qi and kj becomes16

α(i, j) = Softmax(
qik

T
j +ub(i−j)√

d
+Mask(i, j)) (8.81)

The parameters {u0, ...,unb
} are learned as common parameters during training. It should

be emphasized that this model can generalize to long sequences. This is because PE(i, j)s with
similar query-key offsets share the same parameter, and this sharing strategy is particularly
important for achieving good generalization, given that large query-key offsets are rare in
training. In practice, we often set nb to a moderate number, and thus it can help control the
overfitting of positional embedding models.

2. Attention with Non-learned Biases

Relative positional embedding models are based on a set of learned biases for the query-key
product in self-attention. An alternative approach is to give these biases fixed values via
heuristics, rather than training them on a particular dataset. One benefit of this heuristics-based
approach is that it does not rely on a training process and thus can be directly applied to any
sequences once the biases are set.

One example of such an approach is Press et al. [2022]’s approach, called attention with
linear biases or ALiBi for short. In the ALiBi approach, the bias term is defined as the negative

16Note that, in Raffel et al. [2020]’s T5 model, the rescaling operation for the query-key product is removed.
The attention weight α(i, j) is then given by

α(i, j) = Softmax(qik
T
j +ub(i−j)+Mask(i, j)) (8.80)
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Entry Query-Key Bias (PE(i, j))

T5 [Raffel et al., 2020] ub(i−j)

ALiBi [Press et al., 2022] −β · ( i− j )
Kerple [Chi et al., 2022] −β1( i− j )β2 (power)

−β1 log(1+β2( i− j )) (logarithmic)

Sandwich [Chi et al., 2023]
∑d̄/2

k=1 cos
(
( i− j )/100002k/d̄

)
FIRE [Li et al., 2024] f

(
ψ( i− j )/ψ(max(mlen, i))

)
Table 8.4: Query-key biases as relative positional embeddings. β, β1, β2, d̄, and mlen are
hyper-parameters. In the T5 model, b(i− j) denotes the bucket assigned to i− j. In the FIRE
model, ψ(·) is a monotonically increasing function such as ψ(x) = log(cx+1), and f(·) is an
FFN.

scaled query-key offset

PE(i, j) = −β · (i− j)
= β · (j− i) (8.82)

where β is the scaling factor. Adding this term to the query-key product, we obtain a new form
of attention weights

α(i, j) = Softmax(
qik

T
j +β · (j− i)

√
d

+Mask(i, j)) (8.83)

This model can be interpreted as adding a fixed penalty to qik
T
j whenever j moves one

step away from i. So we do not need to adapt it to a range of sequence lengths, and can employ
it to model arbitrarily long sequences. See Figure 8.11 for a comparison of the T5 bias and the
ALiBi bias.

In general, the scalar β should be tuned on a validation dataset. However, Press et al.
[2022] found that setting β to values decreasing geometrically by a factor of 1

2a for multi-
head attention performs well on a variety of tasks. Specifically, for a self-attention sub-layer
involving nhead heads, the scalar for the k-th head is given by

βk =
1

2
8
k

(8.84)

The ALiBi approach provides a simple form of relative positional embeddings. There are
other similar methods for designing query-key biases using the offset i− j. Table 8.4 shows
a comparison of such biases. As an aside it is worth noting that the form of the right-hand
side of Eq. (8.82) is very similar to length features used in conventional feature-based systems.
For example, in statistical machine translation systems, such features are widely used to
model word reordering problems, resulting in models that can generalize well across different
translation tasks [Koehn, 2010].
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Figure 8.11: Query-key products with biases (above = the T5 bias and below = the ALiBi bias).
The color scale of the biases ranges from light blue denoting small absolute values to deep
blue denoting large absolute values.

3. Rotary Positional Embedding

As with sinusoidal embeddings, rotary positional embeddings are based on hard-coded values
for all dimensions of an embedding [Su et al., 2024]. Recall that in the sinusoidal embedding
model, positions are represented as combinations of sine and cosine functions with different
frequencies. These embeddings are then added to token embeddings to form the inputs to the
Transformer layer stack. Rotary positional embeddings instead model positional context as
rotations to token embeddings in a complex space. This leads to a model expressed in the form
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of multiplicative embeddings

ei = xiR(i) (8.85)

where R(i) ∈ Rd×d is the rotation matrix representing the rotations performed on the token
embedding xi ∈ Rd.

For simplicity, we will first consider embeddings with only two dimensions and return to
a discussion of the more general formulation later. Suppose we have a 2-dimensional token
embedding x=

[
x1 x2

]
. We can represent it as a vector in a plane, originating at the origin

(0,0) and terminating at (x1,x2). A counterclockwise rotation of this vector refers to an
operation of moving the vector around the origin while maintaining its magnitude, as shown in
Figure 8.12 (a). The degree of rotation is usually defined by a specific angle, denoted by θ.
The rotation can be expressed mathematically in the form

Ro(x,θ) = xRθ

=
[
x1 x2

][ cosθ sinθ

−sinθ cosθ

]
=

[
cosθ ·x1− sinθ ·x2 sinθ ·x1+cosθ ·x2

]
(8.86)

where Rθ =

[
cosθ sinθ

−sinθ cosθ

]
is the rotation matrix. If two or more rotations are performed

on the same vector, we can rotate the vector further. This follows from the fact that the
composition of successive rotations is itself a rotation. More formally, rotating a vector by an
angle θ for t times can be expressed as

Ro(x, tθ) = xRtθ

=
[
cos tθ ·x1− sin tθ ·x2 sin tθ ·x1+cos tθ ·x2

]
(8.87)

If we interpret t as the position of a token represented by x in a sequence, then we will
find that the above equation defines a simple positional embedding model. As shown in Figure
8.12 (b), we start moving the token from position 0. Each time we move one step forward, the
vector is rotated by the angle θ. Upon arriving at the position t, the representation of the token
with positional context is given by Ro(x, iθ). As the rotations do not change the magnitude of
the embedding, the original “meaning” of the token is retained. The positional information is
injected into the embedding, when it gets rotated.

A popular way to understand vector rotation is to define it in complex spaces. It is easy
to transform each vector x=

[
x1 x2

]
in the 2D Euclidean space R2 to a complex number

x′ = x1+ix2 in the complex space C via a bijective linear map. Then, the rotation of x with
the angle tθ corresponds to the multiplication by eitθ. Given that eitθ = cos tθ+isin tθ, the
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(c) Angles between embeddings of two tokens at different positions

Figure 8.12: Illustrations of vector rotations in a plane. Sub-figures (a) and (b) show rotations of
a vector in a single step and multiple steps, respectively. Sub-figure (c) shows the embeddings
of tokens cat and sleeping in two different sentences. We show these sentences with a subscript
affixed to each token to indicate its position. If we represent tokens as vectors, we can
add positional information by rotating these vectors. This rotation preserves the “distances”
between the vectors. For example, given that the distance between cat and sleeping is the same
in both sentences, the angle between their embeddings also remains the same during rotation.

rotation operation can be re-expressed in the form

xRtθ 7→ x′eitθ

= (x1+ix2)(cos tθ+isin tθ)

= cos tθ ·x1− sin tθ ·x2+i(sin tθ ·x1+cos tθ ·x2) (8.88)

Here we denote the token representation x′eitθ by C(x, tθ). The inner product of the represen-
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tations of the tokens at positions t and s can be written as

⟨C(x, tθ),C(y,sθ)⟩ = (x′y′)ei(t−s)θ (8.89)

where y′ is the complex conjugate of y′. As can be seen, the result of this inner product
involves a term t−s, and so it can model the offset between the two tokens.

Now we go back to representations in the 2D Euclidean space. The dot-product of Ro(x, tθ)
and Ro(y,sθ) is can be written as a function of (t−s)θ

Ro(x, tθ)[Ro(y,sθ)]T = xRtθ[yRsθ]
T

= xRtθ[Rsθ]
TyT

= xR(t−s)θy
T (8.90)

Given this result, if we consider Ro(x, tθ) and Ro(y,sθ) as the query and the key, then the
self-attention operation will implicitly involve the modeling of relative positional context.

This rotary positional embedding can be extended to multi-dimensional embeddings. For a
d-dimensional token embedding x=

[
x1 x2 ... xd

]
, we can treat it as a d

2 -dimensional

complex vector x′ =
[
x′1 x′2 ... x′d/2

]
=
[
x1+ix2 x3+ix4 ... xd−1+ixd

]
, where

each consecutive pair of items forms a complex number. Then, the rotary positional embedding
in the complex space is given by

C(x, tθ) =

d/2∑
k=1

x′ke
itθk e⃗k (8.91)

where e⃗k is the standard basis vector with a single non-zero value in the k-th coordinate and
0’s elsewhere [Biderman et al., 2021].

Although this formula involves a complicated expression, its equivalent form in the d-
dimensional Euclidean space is relatively easy to understand. We can write it as

Ro(x, tθ) =
[
x1 x2 ... xd

]

Rtθ1

Rtθ2
. . .

Rtθd/2

 (8.92)

where Rtθk =

[
cos tθk sin tθk
−sin tθk cos tθk

]
. θ =

[
θ1, ...,θd/2

]
are the parameters for controlling the

angles of rotations in different dimensions. Typically, θk is set to 10000−
2(k−1)

d , which is
analogous to the setting in sinusoidal embeddings.

In a practical implementation, Eq. (8.92) can be rewritten into a form that relies solely on
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the element-wise product and addition of vectors.

Ro(x, tθ) =


x1
x2
...

xd−1

xd



T

⊙


cos tθ1
cos tθ1

...
cos tθd/2
cos tθd/2



T

+


−x2
x1
...

−xd
xd−1



T

⊙


sin tθ1
sin tθ1

...
sin tθd/2
sin tθd/2



T

(8.93)

Finally, we rewrite Eq. (8.85) to obtain the form of the embedding at position i

ei = Ro(xi, iθ) (8.94)

4. Position Interpolation

In position interpolation, our goal is to map the positions in the new sequence to match the
observed range in training. Suppose the sequence length for training ranges from 0 to ml.
When m>ml at test time, we represent the positions in [0,m] such that our representations fit
[0,ml].

To illustrate, consider the rotary positional embedding model described above. The
embedding of each token is described by a model Ro(xi, iθ) in which θ =

[
θ1, ...,θd/2

]
are

the parameters. Ro(xi, iθ) can be cast in the form of a linear combination of two periodic
functions (see Eq. (8.93))

cos iθ =
[
cos iθ1 ... cos iθd/2

]
(8.95)

sin iθ =
[
sin iθ1 ... sin iθd/2

]
(8.96)

θk is a exponential function of k and takes the form

θk = b−
2(k−1)

d (8.97)

where b is the base. The period of cos iθk and sin iθk is

Tk = 2π · b
2(k−1)

d (8.98)

The key idea behind position interpolation is to adjust this period so that the new positions
can be encoded within the range [0,ml]. One way to achieve this is to scale up Tk by m

ml
, given

by

T ′
k =

m

ml
·2π · b

2(k−1)
d (8.99)

Hence all points in [0,m] are compressed into [0,ml]. This linear scaling can be easily realized
by modifying the input to the embedding model [Chen et al., 2023b]. The new model with
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linear positional interpolation is given by

Ro′(xi, iθ) = Ro(xi,
ml

m
iθ) (8.100)

Another method of positional interpolation is to scale the base17. Suppose that the base b is
scaled by λ. We wish the period of this new model in the last dimension of θ (i.e., dimension
d
2 ) to be equal to that of the linear positional interpolation model. This can be expressed as

2π · (λb)
2( d2−1)

d =
m

ml
·2π · b

2( d2−1)

d (8.101)

Solving this equation, we obtain

λ =
(m
ml

) d

2( d2−1)

=
(m
ml

) d
d−2 (8.102)

This gives an embedding model

Ro′(xi, iθ) = Ro(xi, iθ
′) (8.103)

where

θ′ =
[
(λb)−

0
d ,(λb)−

2
d , ...,(λb)−

d−2
d

]
(8.104)

Note that scaling the base provides a non-uniform method for scaling the periods across
different dimensions of θ. This method has been found to be helpful for extending LLMs to
longer sequences, and several improvements have been developed [Peng et al., 2024; Ding
et al., 2024].

8.3.6 Remarks
In this section, we have presented a variety of methods for long-context language modeling.
We close this section by discussing some interesting issues related to these methods.

1. Need for Long Context

One of the ultimate goals of long-context LLMs is that these models can precisely encode
infinite context. The so-called infinite context refers more to the fact that an LLM can contin-
uously read words. This motivates LLMs that can handle extremely long context or stream
data. As discussed in Section 8.3.3, it is common to use fixed-size memory models to process
continuously expanding context. Many such systems are based on recurrent architectures
or their variants, because they are inherently suited to model time series problems where

17This method was first proposed in https://www.reddit.com/r/LocalLLaMA/comments/
14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntka ware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntka ware_scaled_rope_allows_llama_models_to_have/
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the effects of past inputs continue indefinitely. Another way to achieve infinite memory is
to develop alternatives to self-attention models, for example, one can use continuous-space
attention models to encode context, which removes the dependency on context length [Martins
et al., 2022].

When studying long-context LLMs, it is natural to wonder what mechanisms may explain
the use of long context in language modeling. Can we compress the representation of infinite
context into a relatively small-sized model? Are all context tokens useful for predicting next
tokens? How do LLMs prepare for token prediction when they see the context? Can we know
in advance which contextual information will be critical for prediction? General answers to
all these questions are not obvious, but they inspire follow-on research of explainable models,
and some interesting results have been found. For example, Deletang et al. [2024] conducted
extensive experiments to show that LLMs are powerful in-context compressors. Although
viewing predictive models as compression models has long been studied in machine learning,
it also provides insights into our understanding of the LLM scaling laws. Pal et al. [2023]
and Wu et al. [2024] investigated whether the features learned up to the current step, though
not intentionally, are already sufficient for predicting tokens at the following steps. Note that
the need for long-context in language modeling is highly dependent on the problem that we
address. A related issue is where to apply LLMs and how to evaluate them. For example,
in summarization tasks we may only need to distill and focus on a few key aspects of the
text, while in retrieval-like tasks we need to “memorize” the entire context so that the relevant
information can be accessed. We will discuss the evaluation issue later in this subsection.

2. Pre-training or Adapting LLMs?

Training LLMs requires significant computational costs. Although it is straightforward to train
LLMs on long sequence data, the training becomes computationally unwieldy for large data
sets. It is common practice to pre-train LLMs on general datasets, and then adapt them with
modest fine-tuning effort. For example, LLMs with relative or rotary positional embeddings
can be directly trained on large-scale data in the pre-training phase. While the resulting
models may exhibit some abilities to extrapolate lengths in the inference phase, it may be more
effective to fine-tune them on longer sequences.

Ideally, we would like to pre-train LLMs with standard Transformer architectures and
adapt them to new tasks. This allows us to use many off-the-shelf LLMs and efficiently
adapt them to handle long sequences. However, when new architectures are adopted, it seems
inevitable that we need to train these models from scratch. This poses practical difficulties for
developing long-context LLMs, as we cannot leverage well-developed, pre-trained models and
must instead train them ourselves. On the other hand, fine-tuning is still an effective way to
adapt LLMs with certain architectures that are different from those in pre-training. An example
is models augmented with external memories. In these models, the pre-trained LLMs are fixed,
and the focus is on how to make these LLMs collaborate with the memory models. In RAG, for
instance, it is common to fine-tune LLMs to improve their use of retrieval-augmented inputs.
Another example of fine-tuning LLMs for long-context modeling is that we train an LLM with
full attention models, and then replace them with sparse attention models in the fine-tuning
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phase. The pre-trained LLM provides initial values of model parameters used in a different
model, and this model is then fine-tuned as usual.

3. Evaluating Long-context LLMs

Evaluating long-context LLMs is important, but it is a new issue in NLP. The general idea is
that, if we input a long context to an LLM, then we can check from the output of the LLM
whether it understands the entire context and makes use of it in predicting following tokens.
In conventional research of NLP, such evaluations are often aimed at examining the ability
of NLP models in handling long-range dependencies. However, the size of contexts used in
recent LLMs is much larger than that used in NLP systems a few years ago. This motivates
researchers to develop new evaluation benchmarks and metrics for long-context LLMs.

One approach is to use the perplexity metric. However, in spite of its apparent simplicity,
this method tends to reflect more on the LLMs’ ability to make use of local context rather
than global context. It is therefore tempting to develop evaluation methods that are specific
to long-context LLMs. Popular methods include various synthetic tasks where artificially
generated or modified data is used to evaluate specific capabilities of long-context LLMs. In
needle-in-a-haystack18 and passkey retrieval tasks [Mohtashami and Jaggi, 2024; Chen et al.,
2023b], for instance, LLMs are required to identify and extract a small, relevant piece of
information from a large volume of given text. The assumption here is that an LLM with
sufficient memory should remember earlier parts of the text as it processes new information.
This LLM can thus pick out the relevant details, which might be sparse and hidden among
much irrelevant information, from the text. Alternatively, in copy memory tasks (or copy tasks
for short), LLMs are used to repeat the input text or a specific segment multiple times. These
tasks were initially proposed to test the extent to which recurrent models can retain and recall
previously seen tokens [Hochreiter and Schmidhuber, 1997; Arjovsky et al., 2016], and have
been adopted in evaluating recent LLMs [Bulatov et al., 2022; Gu and Dao, 2023].

Another approach to evaluating long-context LLMs is to test them on NLP tasks that
involve very long input sequences. Examples include long-document or multi-document
summarization, long-document question answering, code completion, and so on. A benefit of
this approach is that it can align evaluations with user expectations.

Although many methods have been developed, there is still no general way to evaluate
long-context LLMs [Liu et al., 2024b]. One problem is that most of these methods focus on
specific aspects of LLMs, rather than their fundamental ability to model very long contexts.
Even though an LLM can pick out the appropriate piece of text from the input, we cannot say
that it truly understands the entire context. Instead, it might just remember some important parts
of the context, or even simply recall the answer via the model learned in pre-training. Moreover,
the data used in many tasks is small-scale and relatively preliminary, leading to discrepancies
between evaluation results and actual application performance. A more interesting issue is that
the results of LLMs are influenced by many other factors and experimental setups, for example,
using different prompts can lead to very different outcomes. This makes evaluation even more

18https://github.com/gkamradt/LLMTest_NeedleInAHaystack

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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challenging because improvements may not solely result from better modeling of long contexts,
and there is a risk of overclaiming our results. Nevertheless, many open questions remain in
the development and evaluation of long-context LLMs. For example, these models still suffer
from limitations such as restricted context length and high latency. Studying these issues is
likely to prove valuable future directions.

8.4 Summary
In this chapter, we have discussed the concept of LLMs and related techniques. This can be
considered a general, though not comprehensive, introduction to LLMs, laying the foundation
for further discussions on more advanced topics in subsequent chapters. Furthermore, we have
explored two ways to scale up LLMs. The first focuses on the large-scale pre-training of LLMs,
which is crucial for developing state-of-the-art models. The second focuses on methods for
adapting LLMs to long inputs, including optimizing attention models, designing more efficient
and compressed KV caches, incorporating memory models, and exploring better positional
embeddings.

The strength of LLMs lies in their ability to break the constraints of training NLP models
for a limited number of specific tasks. Instead, LLMs learn from large amounts of text through
the simple task of token prediction — we predict the next token in a sentence given its prior
tokens. A general view is that, by repeating this token prediction task a large number of times,
LLMs can acquire some knowledge of the world and language, which can then be applied to
new tasks. As a result, LLMs can be prompted to perform any task by framing it as a task
of predicting subsequent tokens given prompts. This emergent ability in language models
comes from several dimensions, such as scaling up training, model size, and context size. It is
undeniable that scaling laws are currently the fundamental principle adopted in developing
large language models, although simply increasing model size has yet to prove sufficient for
achieving AGI. These continuously scaled LLMs have been found to show capabilities in
general-purpose language understanding, generation, and reasoning. More recently, it has been
found that scaling up the compute at inference time can also lead to significant improvements
in complex reasoning tasks [OpenAI, 2024].

Given their amazing power, LLMs have attracted considerable interest, both in terms of
techniques and applications. As a result, the explosion of research interest in LLMs has also
led to a vast number of new techniques and models. However, we do not attempt to provide a
comprehensive literature review on all aspects of LLMs, given the rapid evolution of the field.
Nevertheless, one can still gain knowledge about LLMs from general reviews [Zhao et al.,
2023; Minaee et al., 2024] or more focused discussions on specific topics [Ruan et al., 2024].
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