
Tong Xiao

Jingbo Zhu

Natural Language Processing
Neural Networks and Large Language Models

NATURAL LANGUAGE PROCESSING LAB

NORTHEASTERN UNIVERSITY

&

NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Copyright © 2021-2025 Tong Xiao and Jingbo Zhu

NATURAL LANGUAGE PROCESSING LAB, NORTHEASTERN UNIVERSITY

&
NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Licensed under the Creative Commons Attribution-NonCommercial 4.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

June 12, 2025

Tong Xiao and Jingbo Zhu
June, 2025

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
http://creativecommons.org/licenses/by-nc/4.0

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Chapter 3

Words and Word Vectors

Words are basic units of language [Jackendoff, 1992]. Most language systems that people use
to express their feelings and communicate with others involve creating, mixing, and combining
words in some way. Before understanding how a word is used in forming larger language units,
it is worth first understanding what a word is. This involves two fundamental questions:

• What is the surface form of a word?

• What is the meaning of a word?

But these questions are difficult, of course, because there are no simple rules to describe
how a word is formed and how its meaning is defined or induced. While there are a variety of
theories to answer these questions in linguistics, NLP researchers are concerned more with
two practical issues:

• Tokenization: given a string, how to segment it into a sequence of words (also called
tokens) such that these words can be used as basic units in downstream NLP tasks?

• Word Representation Learning: given a corpus, how to learn to represent each word
in some countable form, and how to enable NLP models to “compute” on top of this
representation?

One goal of this chapter is to show how a sentence is segmented in either a linguistic
or statistical manner. Specifically, we describe several approaches to tokenizing a string of
characters into words or subwords by heuristic rules or statistical models learned from data.
The other goal here is to show how words can be represented as real-valued vectors. In
particular, we present modern approaches to learning and evaluating these word vectors. The
value of this part is not on drilling on those formulas and models but on showing the core
idea of word vector representation which is the basis of many NLP systems. In the next few
chapters, we will see a natural generation of this idea to modeling more complicated problems,
such as representing sequential and tree-like data.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

4 Chapter 3. Words and Word Vectors

Chinese
Input: 一直以来，完美的机器翻译是人类的梦想之一。

Output: 一直/以来/，/完美/的/机器翻译/是/人类/的/梦想/之一/。

Japanese
Input: 西日本や海はく晴れて、汗ばむ暑さとなる。

Output: 西日本/や/海/は/く/晴れて/、/汗ばむ/暑さ/と/なる/。

English
Input: She said, “Deep learning is not the solution to all world’s problems”.

Output: She/said/,/“/Deep/learning/is/not/the/solution/to/all/world/
’s/problems/”/.

Figure 3.1: Tokenization for different languages (slash = word boundary). For Chinese and
Japanese where there are no delimiters between words, tokenization is often called word
segmentation.

3.1 Tokenization

In computer science and related fields, the term token can be used in many different ways.
Here we simply think of a token as a word in linguistics, although it can be something different
(see Section 3.1.4). In NLP, tokenization or segmentation is a task related to morphological
analysis [Aronoff and Fudeman, 2011]. While morphological analyzers or parsers are generally
used to study the internal structure of words, tokenization is concerned with how sentences are
broken down into words. It appears that we need to know how words are composed if we want
to know how sentences are formed by words. Things are even more interesting because the
variety of languages makes it difficult to find a general system to describe the morphology of
every language. For example, analytic languages (such as Chinese) have little inflection, and
rely on word order to convey meaning. By contrast, synthetic languages (such as French) may
have rich inflection and the meaning of a word is highly influenced by morphology.

On the other hand, dividing sentences into smaller linguistic pieces is important in many
NLP tasks, even though many of the world’s languages have little morphology. For example,
Chinese is a morphologically simple language that has no explicit word boundaries. While it
also makes sense to take characters as units in understanding what a Chinese text is talking
about, it is more desirable and reasonable to consider larger units in processing the text. Note
that, even for languages having delimiters between words, such as English, we still have to
tokenize sentences such that they are standardized when serving as the input and/or output of
an NLP system.

In this section, we skip the discussion on what exactly a word is in morphology and syntax,
but simply view tokenization as a task of adding word or token boundaries to a given string
(see Figure 3.1). We will show that a sentence can be broken down into words or tokens in
either a heuristic or statistical manner. Note that this process is designed to produce some units
that can ease the processing of languages in NLP systems, not necessarily to make strictly
linguistic sense.

3.1 Tokenization 5

3.1.1 Tokenization via Rules and Heuristics

A common and simple approach to tokenization is to identify every word in a sentence by
applying a set of pre-defined rules. In general, these rules are linguistically motivated and
reflect our prior knowledge of what the form of a word should be. For example, consider the
English example in Figure 3.1. We can define the following rules for tokenizing the sentence:

• Words do not contain spaces. In this sense, we can split the sentence into “word
candidates” with space.

• Every word candidate that is made up of English letters only (i.e., a-z and A-Z) is a word.

• Every punctuation mark (i.e., quote, comma, period, etc.) should be isolated to form a
word.

• ’s is a word, indicating noun possessive.

This might be one of the smallest rule sets we can use in English tokenization. Surely,
more rules can be added to cover more linguistic phenomena, e.g., words with dashes, words
containing non-English letters, and so on. However, there are no standards to define such
a set of rules. In practice, and particularly in NLP applications, we want a minimal set of
rules to deal with most problems, and the tokenization is usually implemented by a number of
regular expressions. Here we will not discuss these rules and regular expressions in detail,
but refer the reader to a few textbooks for more details [Lawson, 2003; Friedl, 2006; Jurafsky
and Martin, 2008]1.

Also, it is common to normalize the text before tokenization so that the input of the tok-
enizer is canonical. For example, for English and other alphabetic languages, normalization
or canonicalization refers to a process of lowercasing words, normalizing character represen-
tation (e.g., Unicode characters), and so on. In addition, we can map different forms of a word
to the same form for further generalization of the tokenization. A simple way to do this is to
conflate all inflected forms of a word into its base form. In linguistics, the base form of a word
is called lemma, and the process of mapping words to lemmas is called lemmatization. Here
are some examples of lemmatization.

learn → learn

learning → learn

learns → learn

best → good

There are words that correspond to two or more different lemmas (often with different part-of-
speeches). In this case, we should select the correct lemma according to the context. In other
words, lemmatization is context-dependent.

1Tokenization scripts can be found in many open-source projects, such as Moses [Koehn et al., 2007]
(https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl) and the tokenizers in SacreBLEU (https://github.com/mjpost/sacrebleu/
tree/master/sacrebleu/tokenizers).

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/mjpost/sacrebleu/tree/master/sacrebleu/tokenizers
https://github.com/mjpost/sacrebleu/tree/master/sacrebleu/tokenizers

6 Chapter 3. Words and Word Vectors

Original She said, “Deep learning is not the solution to all world’s problems”.

Normalization she said, “deep learning is not the solution to all world’s problems”.

Tokenization she/said/,/“/deep/learning/is/not/the/solution/to/all/world/’s/problems/”/.

Lemmatization she/say/,/“/deep/learning/be/not/the/solution/to/all/world/’s/problem/”/.

Stemming she/said/,/“/deep/learn/is/not/the/solut/to/all/world/’s/problem/”/.

Figure 3.2: Normalization, lemmatization, and stemming of an English sentence. In normal-
ization, the whole sentence is lowercased. In lemmatization, every word is lemmatized and
rewritten as its lemma. In stemming, the suffixes of some words are removed.

Closely related to lemmatization is stemming, which represents a word as its stem. Like
lemmas, a stem is some base form of a word. However, unlike lemmas, a stem is not necessarily
a valid word, although there are many words whose lemmas and stems are identical. Another
difference from lemmatization is that stemming is performed on individual words, without the
need of context for disambiguation. So, stemming is context-independent. There are several
efficient algorithms for stemming. A popular one is suffix stripping [Porter, 1980]. It simply
removes the suffixes ing, ed, ion, etc., like these

remove → remov

removing → remov

removal → remov

best → best

For more examples, Figure 3.2 shows normalization, lemmatization, and stemming results for
an English sentence.

It is worth noting that the above methods are typically implemented using regular expres-
sions, dictionary lookups, and additional heuristics. While in our little exploration here it
seems that tokenization is not so difficult, much more work is needed to make it practical.
In particular, if we deal with languages with a non-alphabetic writing system, or languages
without explicit spacing between words, then tokenization would be a hard problem, and in
that case, using simple rules would not be a good strategy. In the following subsections, we
will reframe tokenization as a machine learning problem where the way to tokenize or segment
sentences is learned from data. These methods are language-independent and can be applied to
a wide range of tokenization or segmentation-like problems.

3.1.2 Tokenization as Language Modeling

Now let us move to statistical modeling of the tokenization problem. For ease of discussion, in
this subsection only languages (or more precisely writing systems) without word boundaries
are considered, but the method should be understood to cover other problems where delimiters
are used to indicate the end or beginning of a word. Let x= x1...xl be a string of characters,

3.1 Tokenization 7

and y= y1...ym be a sequence of words or tokens. We would say that y is a tokenization result
of x if y defines a segmentation on x. Consider the following Chinese sentence:

x = 机器翻译是人类的梦想之一。

We can define a segmentation on the sentence, for example2,

y = 机器翻译/是/人类/的/梦想/之一/。

=
[
“机器翻译” “是” “人类” “的” “梦想” “之一” “。”

]
(3.1)

In this way, tokenization can be framed as a problem of mapping x to y. Given an input string,
the output is the most likely segmentation:

ŷ = argmax
y

Pr(y|x)

= argmax
y

logPr(y|x) (3.2)

Eq. (3.2) describes a prediction model we have been referencing several times in this book.
However, the problem we are dealing with is easier because y contains the information of x,
and we can remove the condition from Pr(y|x) in the argmax operation:

ŷ = argmax
y

logPr(y)

= argmax
y

logPr(y1, ...,ym) (3.3)

It is easy to check that Eq. (3.3) in fact describes a language modeling problem. There
are a few different ways to estimate the joint probability Pr(y1, ...,ym). A simple method is to
rewrite logPr(y1, ...,ym) into a sum of log-scale conditional probabilities:

logPr(y1, ...,ym) = logPr(y1)+ logPr(y2|y1)+ ...+logPr(ym|y1, ...,ym−1) (3.4)

Each conditional probability Pr(yi|y1, ...,yi−1) can be approximated by

Pr(yi|y1, ...,yi−1) = Pr(yi|yi−n+1, ...,yi−1) (3.5)

that is, the generation of yi only depends on the n−1 previous context words. To compute
Pr(yi|yi−n+1, ...,yi−1), we can either use the relative frequency methods or neural networks
(see Chapter 2).

Now we can think of tokenization as a supervised learning problem. The process is outlined
here:

• Prepare some sentences that are correctly segmented.

2Following the notation used previously, we use both y= y1...ym and y=
[
y1 ... ym

]
to denote a sequence

of variables.

8 Chapter 3. Words and Word Vectors

• Learn a language model Pr(y) on these labeled sentences.

• For a new sentence, find the “best” tokenization ŷ that maximizes Pr(ŷ), as in Eq. (3.3).

While this procedure follows a standard pipeline of supervised learning, there are several
practical issues we have to iron out. First, the language model requires a vocabulary from
which yi can choose a value, but new words are always around. To handle them, one way
is to segment an unknown substring into characters, that is, we treat characters as words if
the substring yielding these characters is not contained in the vocabulary. An alternative is to
take into account all substrings that are not covered by the vocabulary, and replace them with
the <unk> tag. The <unk> trick is widely adopted in state-of-the-art language models and is
usually helpful.

Second, the language model described above has a bias towards short sequences because
Pr(y1, ...,ym) would be large if m is a small number. A general way to mitigate this bias is to
introduce a length reward (or length bonus) to the model, for example,

ŷ = argmax
y

logPr(y)+λ ·m (3.6)

or

ŷ = argmax
y

logPr(y)

mλ
(3.7)

where λ ·m and mλ reward long sequences and λ > 0 is a hyperparameter controlling how
much we rely on the reward in assessing the goodness of y. Interestingly, it is found that the
length bias is not a big problem with tokenization in practice because the variance in length is
small for those “good” tokenization results. For example, using a unigram language model
(i.e., n= 1) without any length reward works well in many real-world applications. We will
see a few examples in Section 3.1.4.

Third, performing argmax is difficult because there are exponentially many tokenization
candidates. However, the use of language models here enables efficient search algorithms.
Consider, for example, applying a unigram language model to tokenization. For the input
string x, we keep, at each position j of x , a state that describes the probability of the best
tokenization on x1...xj (denoted as p(j)) as well as the last word of this tokenization. At
position j+1, we create a new state and compute the probability of the best tokenization on
x1...xj+1 by

p(j+1) = max
1≤i≤j

p(i) ·Pr(xi+1...xj)

= max
1≤i≤j

p(i) ·Pr(w[i+1,j]) (3.8)

where Pr(w[i+1,j]) is the probability of the word spanning xi+1...xj . On the algorithmic side,
Eq. (3.8) describes a dynamic programming method that has a time complexity of O(l2) for
an input of length l. For the final output, we can trace back from the final state and dump the
word sequence along the path of the optimal tokenization.

3.1 Tokenization 9

Note that the methods here are generic and can be applied to tokenization for other
languages. For example, when applying it to English, we only need a slight update on the
format of the input: the input is not a character sequence but a sequence of the smallest possible
pieces separated out by punctuation and spaces. For example, for the sentence Is this Tom’s
laptop?, we have

x =
[
Is this Tom ’ s laptop ?

]
(3.9)

Then, the tokenization process can proceed as in Eqs. (3.2-3.7).

3.1.3 Tokenization as Sequence Labeling

One of the major ways by which NLP researchers group together consecutive linguistic pieces
is through tagging the sequence with a grouping-inspired label set, often known as sequence
labeling. Although we limit ourselves here to the problem of grouping characters to words, as
we will see in the following chapters, such a method is a good solution to many NLP problems,
such as part-of-speech tagging, named entity recognition, and so on. Since the idea of sequence
labeling has been discussed in Chapter 1, we present here how it is adapted to the tokenization
task.

The label sets used in tokenization are regular. The simplest of these is the “IB” set. The
“I” label indicates a linguistic piece inside a word, and the “B” label indicates the beginning
of a word. The label set can be enriched by adding the “E” label (i.e., the ending of a word)
and/or splitting the “B” label into sub-labels (e.g., B1 and B2 indicate the first and the second
linguistic pieces of a word) [Zhao et al., 2006]. Given an input sequence x and a tokenization
result y, transforming y to the label sequence is fairly simple. Consider again the example
used in the previous subsection. We can label the sequence in different formats:

x: 机 器 翻 译 是 人 类 的 梦 想 之 一 。

y: 机 器 翻 译 是 人 类 的 梦 想 之 一 。

{I,B} B I I I B B I B B I B I B

{I,B,E} B I I E B B E B B E B E B

{I,B1,B2,E} B1 B2 I E B1 B1 B2 B B1 B2 B1 B2 B1

Since the label sequence can be treated as another form of the tokenization, we can restate
the problem as finding the best label sequence given an input:

ĉ = argmax
c

logPr(c|x) (3.10)

where c= c1...cl is a label sequence. Many methods have been proposed to model Pr(c|x). A

10 Chapter 3. Words and Word Vectors

classic way is given by rewriting Pr(c|x) using the Bayes’ rule:

ĉ = argmax
c

log
Pr(x|c)Pr(c)

Pr(x)

= argmax
c

logPr(x|c)+ logPr(c) (3.11)

In this model, Pr(x) is a constant for all c’s, and thus can be removed from Pr(x|c)Pr(c)
Pr(x) in

search. Pr(x|c) is the probability of generating the input x (i.e., observations) given the label
sequence c (i.e., latent variables), and Pr(c) is a language model defined on the label sequence.
Simplifications are in general required for a tractable model. For example, we can make a
Markov assumption that the choice of ci is dependent only on the choice of ci−1. This leads
to the hidden Markov model (HMM) which is widely used in generative modeling for NLP
problems.

An alternative method is discriminative modeling. A common idea is to treat sequence
labeling as a series of independent classification problems. For example, we can develop a
local classifier that conditions the prediction of ci on a set of features around position i. In
more sophisticated models, such as conditional random fields (CRFs), the context of the
entire sequence can be used in the prediction. While it may be interesting to go more deeply
into the details about these sequence labeling models, we simply skip them to make the topic
in this section more concentrated. Instead, the reader is referred to [Kupiec, 1992; McCallum
et al., 2000; Lafferty et al., 2001] for thorough discussions of how these models are developed
and applied. In addition, for a comparison of generative modeling and discriminative modeling,
we refer the reader to Chapter 1.

3.1.4 Learning Subwords

It is a commonly held belief that words are the basic units in language use. This does not mean
that words are the smallest linguistic units. Rather, words can be broken down into smaller
pieces that have meanings, such as morphemes. It is this which accounts for the important
role of words in the syntactic hierarchy of a language, e.g., words are made up of morphemes,
and phrases and sentences are made up of words. It is therefore natural to think of words as
distinct components of languages that have some function in forming the structure or meaning
of a phrase or a sentence. In NLP, however, viewing sentences as sequences of words is not so
desirable sometimes. A problem is that some words are rare, making it difficult to adequately
learn a model because of data sparseness. For example, uncopyrightable is an English word
that rarely occurs. An NLP system may simply recognize it as an unknown word (i.e., an OOV
word), although we can get the meaning of this word by decomposing it into parts: un, copy,
right, and able. Another problem is that linguistics-based tokenization standards somewhat
limit the use of computers for automatically learning the way to segment the sentence into
units in a machine learning sense. In this case, it is helpful to consider identifying “new” words
that are not strictly constrained by linguistics but are better suited to NLP systems.

3.1 Tokenization 11

1. Byte Pair Encoding

Byte Pair Encoding (BPE) is one of the most successful methods to learn subword units
from a set of word sequences [Sennrich et al., 2016]. While the BPE approach stems from data
compression [Gage, 1994], it is more often used in NLP as a solution to the open vocabulary
problem. The basic idea of BPE is that we repeatedly replace the most frequent pair of bytes
in the data to form a new byte. As a result, common bytes are often involved in merging
substrings of bytes, and rare bytes are often isolated and considered unique units. The outcome
of BPE is a byte vocabulary that can be used to encode new data.

In NLP, a byte can roughly correspond to a character. And each entry of the vocabulary is
a character sequence, called a symbol or subword. BPE begins with splitting a given text into a
sequence of characters, for example, we can add a space after each occurrence of an English
letter or a punctuation mark. This in general results in a very long sequence. While BPE itself
has no restrictions on input length, a more common way is to prevent cross-word symbols for
efficiency considerations. Thus, we can represent the text as a list of space-separated words,
each being associated with the frequency of the word. For example, consider a word list:

f l o w # : 2
b l o w # : 2

f l a t # : 1
f l a g # : 4

where # is a special symbol indicating the end of a word3. From this word list, we can collect
an initial vocabulary:

f : 7 b : 2
l : 9 a : 5
o : 4 t : 1
w : 4 g : 4
: 9

Then, we count the occurrences of each symbol bigram:

3Instead of taking # as a separate symbol, another way is to concatenate # with the last character in each word,
like this

f l o w# : 2
b l o w# : 2

f l a t# : 1
f l a g# : 4

where “w#”, “t#”, and “g#” represent characters that occur at the end of a word.

12 Chapter 3. Words and Word Vectors

f l : 7 a g : 4
l a : 5 g # : 4
l o : 4 b l : 2
o w : 4 a t : 1
w # : 4 t # : 1

We merge the most frequent symbol bigram “f l” to a new symbol “fl” and replace in the
word list each occurrence of “f l” with “fl”:

fl o w # : 2
b l o w # : 2

fl a t # : 1
fl a g # : 4

Accordingly, the symbol “fl” is added to the vocabulary:

f : 7 b : 2
l : 9 a : 5
o : 4 t : 1
w : 4 g : 4
: 9 fl : 7

Then, this process is repeated again. This time, we merge the symbol bigram “fl a” and
create a new symbol “fla”. As such, we have a new word list:

fl o w # : 2
b l o w # : 2

fla t # : 1
fla g # : 4

and a new vocabulary:

f : 7 b : 2 fla : 5
l : 9 a : 5
o : 4 t : 1
w : 4 g : 4
: 9 fl : 7

We can run this process a certain number of times. The more times we perform the merge
process, the larger the vocabulary is. The entries of the final vocabulary are reordered by
symbol frequencies. For example, if we set the number of merge operations to 6, we will have
a vocabulary, like this:

3.1 Tokenization 13

l : 9 fla : 5 ow# : 4
: 9 o : 4 flag : 4
f : 7 w : 4 flag# : 4
fl : 7 g : 4 b : 2
a : 5 ow : 4 t : 1

It corresponds to the word list:

fl ow# : 2
b l ow# : 2

fla t # : 1
flag# : 4

Having obtained a vocabulary like above, we can apply it to tokenize new words. The
subword tokenization follows the same procedure of merging symbol bigrams as that used in
building the vocabulary. Given a BPE vocabulary, we first segment the input text into character
symbols. Then, we examine each symbol bigram in the sequence, and merge the one that has
the highest frequency in the vocabulary. We repeat this operation until there are no further
merges. Consider, for example, the following text:

tow a flag

It is first transformed into a character sequence:

t o w # a # f l a g #

By using the BPE vocabulary we have obtained, we can do BPE merging on this sequence,
like this

t o w # a # f l a g #
f l ⇒ fl−−−−−−−−−→ t o w # a # fl a g #

fl a ⇒ fla−−−−−−−−−→ t o w # a # fla g #
o w ⇒ ow−−−−−−−−−→ t ow # a # fla g #

ow # ⇒ ow#−−−−−−−−−→ t ow# a # fla g #

... ...

−−−−−−−−−→ t ow# a # flag#

This subword sequence can be used as some input and/or output of a downstream NLP
task, such as machine translation. Sometimes, we want to map subwords back to words. This is
simple: we keep the space after each occurrence of the # symbol, and remove all other spaces
and #. Also note that the BPE method we describe here requires word-segmented inputs, that
is, we need a pre-tokenizer to roughly tokenize the input sequence into some units. This can be
done by using the methods presented in Sections 3.1.1-3.1.3.

14 Chapter 3. Words and Word Vectors

2. WordPiece

The WordPiece method is very similar to the BPE method in that it first divides the input text
into the smallest symbols and then progressively merges pairs of consecutive symbols to form
larger symbols [Schuster and Nakajima, 2012]. The difference between them is only in the
way of selecting which symbol bigram to merge. In BPE, we merge each time the symbol
bigram with the highest frequency. Let (xi,xi+1) be a bigram in the sequence x. The merge
rule of BPE can be described as

(xî,xî+1) = argmax
i∈[1,|x|−1]

count(xi,xi+1) (3.12)

where the function count(xi,xi+1) returns the frequency of (xi,xi+1) in the corpus, and
(xî,xî+1) is the bigram with the highest frequency.

The WordPiece method, instead, adopts a maximum likelihood criterion for bigram selec-
tion. More precisely, it merges the bigram so that the likelihood of the data is maximized. This
can be formalized as:

(xî,xî+1) = argmax
i∈[1,|x|−1]

log
Pr(xi,xi+1)

Pr(xi)Pr(xi+1)

= argmax
i∈[1,|x|−1]

[logPr(xi,xi+1)− log(Pr(xi)Pr(xi+1))] (3.13)

logPr(xi,xi+1)− log(Pr(xi)Pr(xi+1)) describes the increase in log-likelihood of the
text when we replace consecutive symbols (xi,xi+1) with a single symbol xixi+1

4. Thus,
applications of such a merge rule produce a sequence of coding steps, each of which increases
the likelihood a bit on top of the last step. The outcome of this process is a code book (i.e., a
vocabulary) by which we can define the most likely code sequence for the given text.

3. SentencePiece

Both the BPE and WordPiece methods require that the input text is pre-tokenized in some
way. This makes it somewhat complicated to develop a tokenization system. As an alternative,
SentencePiece is a more general method that deals with raw texts and considers all characters
(including spaces) in tokenization [Kudo and Richardson, 2018]. The main idea of Sentence-
Piece is to scale down a big vocabulary so that the unigram probability of the text is minimized
at some level of the vocabulary size5, called the unigram method [Kudo, 2018].

The unigram method frames subword segmentation as a unigram language modeling
problem, resembling the general form of Eqs. (3.3-3.4). Let x be a sequence of characters and

4In statistics, Pr(a,b)
Pr(a)Pr(b)

is called the pointwise mutual information of variables a and b. See more details
in Section 3.3.1. Another name for this is information gain. It can be interpreted by using the Kullback-Leibler
divergence or other measures in information theory (see Chapter 1).

5The term vocabulary size may have different meanings. Here it refers to the number of entries of the vocabulary.
Sometimes, on the other hand, it is thought of as the total number of bytes used to store the vocabulary.

3.1 Tokenization 15

y be a sequence of symbols or subwords yielding x. The probability of y is given by:

Pr(y) =

|y|∏
i=1

Pr(yi) (3.14)

Then, we can write the likelihood of x in terms of the joint probability of x and y:

Pr(x) =
∑

y∈Y (x)

Pr(x,y) (3.15)

where the sum is over all possible tokenization results Y (x). Since y can be viewed as a
segmentation-annotated version of x, the model of Pr(x,y) provides no more information
than the model of Pr(y) and we have Pr(x,y) = Pr(y). Thus, we can rewrite Eq. (3.15) as:

Pr(x) =
∑

y∈Y (x)

Pr(y)

=
∑

y∈Y (x)

|y|∏
i=1

Pr(yi) (3.16)

Taking this equation, the log-likelihood of a set of strings X is given by

Pr(X) = log
∏
x∈X

∑
y∈Y (x)

|y|∏
i=1

Pr(yi)

=
∑
x∈X

log

 ∑
y∈Y (x)

|y|∏
i=1

Pr(yi)

 (3.17)

If we consider −Pr(X) as a loss function, then the task here can be stated as finding the
best estimate for each unigram probability Pr(y) so as to make Pr(X) as large as possible.
At first glance this optimization problem looks complicated. Fortunately, there are several
powerful tools to solve it. A popular method is to use the Expectation-Maximization (EM)
algorithm [Dempster et al., 1977], which is commonly used when one tries to find a statistical
model that maximizes the likelihood of the data. Note that the EM-based solution to Eq. (3.17)
is similar to those for other NLP problems, such as statistical machine translation, and has
been well discussed in those contexts. So we refer the reader to [Brown et al., 1993] for details
about these methods. In this chapter we just take EM as an off-the-shelf tool to estimate Pr(y)
given Eq. (3.17). 6

6In EM, we can view X as an observation, and Pr(X|θ) as a statistical model that describes how likely the
observation occurs. Here θ is the model parameters that we intend to determine. EM is based on an objective of
maximum likelihood estimation, that is

θ̂ = argmax
θ

Pr(X|θ) (3.18)

For the model here, we can view {Pr(y)} as model parameters. We skip the derivation details about the EM

16 Chapter 3. Words and Word Vectors

SentencePiece is essentially a “pruning” method that removes low probability entries from
the vocabulary. It starts with a big initial vocabulary V . For example, we can create the initial
vocabulary by enumerating all strings with a length constraint. Typically, cross-word strings
are excluded to reduce the vocabulary size. Then, we run the following steps:

• Estimate the probability for each entry y of V by optimizing Eq. (3.17).

• Compute the loss for each entry y of V via the remove-one strategy, that is, the loss is
the reduction in the likelihood (see Eq. (3.17)) when y is removed from the vocabulary.

• Remove a certain percentage of entries of V with large losses. For example, we keep
80% of the entries, and discard the rest.

The outcome of this process is a new vocabulary as well as the probability assigned to each
subword. We can repeat this process a number of times until the vocabulary size is reduced to
a desirable level.

SentencePiece differs from BPE and WordPiece in that it considers all possible subword
sequences for a given string (see the sum

∑
y∈Y (x) in Eq. (3.15)). From the machine learning

point of view, this can be seen as a way of regularization, that is, we can reduce the risk of
overestimating the parameters corresponding to the single-best subword sequence that may
have errors. An alternative way is to only consider some of the subword sequences in Y (x) for
the sake of efficiency. For example, we can sample k subword sequences according to Pr(y)

to form the candidate set Y (x).
Note that the SentencePiece method does not depend on word-separated input sequences.

While the BPE and WordPiece methods can also deal with raw text if updated, the Senten-
cePiece method explicitly takes the space and other delimiters as parts of the subwords. See
Figure 3.3 for a few tokenization results for tow a flag.

Given a learned vocabulary and the corresponding unigram probabilities, we can apply
them to deal with a new text. This is in fact a search problem: we find the most likely subword
sequence in terms of the unigram probability. As language modeling is a well-studied topic
in NLP, many search algorithms are directly applicable to the case here. For example, the

estimate of Pr(y) but directly present the result. The EM algorithm involves two steps.

• The Expectation Step (or the E-step): Given the current estimate of Pr(y) (say, Prt(y)), we compute
the posterior Prt(y) for each y according to Eq. (3.14). Then, we compute the fractional count of each
subword y in the vocabulary V , like this

fcount(y) =
∑
x∈X

∑
y∈Y (x)

Prt(y)

|y|∑
i=1

δ(y,yi)

 (3.19)

where δ(y,yi) returns 1 if y = yi, and 0 otherwise.
∑|y|

i=1 δ(y,yi) counts the number of times y occurs in
the subword sequence y.

• The Maximization Step (or the M-step): Given the fractional counts obtained in the E-step, we re-estimate
the unigram probabilities by the equation:

Prt+1(y) =
fcount(y)∑

y′∈V fcount(y′)
(3.20)

The two steps are iterated for a number of rounds until the parameters converge to some values.

3.2 Vector Representation for Words 17

subword sequence unigram probabilities ([subword]:probability)

t/ow_/a/_flag [t]:0.030 [ow_]:0.002 [a]:0.041 [_flag]:0.001

t/ow/_/a_/f/lag [t]:0.030 [ow]:0.005 [_]:0.113 [a_]:0.093 [f]:0.041 [lag]:0.002

t/ow/_a_/fla/g [t]:0.030 [ow]:0.005 [_a_]:0.084 [fla]:0.003 [g]:0.027

tow/_/a_/f/lag [tow]:0.001 [_]:0.113 [a_]:0.093 [f]:0.041 [lag]:0.002

t/ow_/a_/flag [t]:0.030 [ow_]:0.002 [a_]:0.093 [flag]:0.001

Figure 3.3: Different tokenization results for tow a flag. Every subword is assigned a probability
that is estimated through a unigram language model. Every whitespace is replaced with “_”
for a clear presentation.

methods presented in Section 3.1.2 are straightforwardly applicable here.

3.2 Vector Representation for Words

Words have meanings7. In the broadest sense, the meaning of a word is the way in which it
can be interpreted. This is something behind the surface form of a word but can be understood
by language speakers. For example, consider the following lines of text from a poem [Knight,
2018]:

There was a little sparrow

Who sat on a wheelbarrow,

And tweeted to all her friends around.

A cat with open jaws

And very pointed claws,

Spied her as he raced along the ground.

These words are not merely strings of English letters and punctuation marks but have
identifiable meanings that are known by English speakers. For example, “little” means small in
size, “sparrow” means a kind of bird, and “friends” means people who you like and trust. From
an NLP perspective, a word meaning (or word sense) is not just what the word expresses in
one’s brain but something computer-readable and computable.

7While we have so far discussed several linguistic elements used in NLP, such as subwords, we still use words
as the basic units in our discussion here. The methods we will present in the remaining part of this chapter could be
understood to cover other types of language units one may use in developing NLP systems, including characters,
subwords, and so on.

18 Chapter 3. Words and Word Vectors

3.2.1 One-hot Representation
A natural way to represent word meanings is to use language to describe them. For example,
we can find in a dictionary the above words with their ids and meanings. Some of them are8:

cat 511 A small animal with fur, four legs, a tail, and claws,
usually kept as a pet or for catching mice

her 5220 Used, usually as the object of a verb or preposition, to
refer to a woman, girl, or female animal that has just
been mentioned or is just about to be mentioned

jaws 6186 The mouth, including the teeth

ground 6402 The surface of the earth

sparrow 8331 A common, small, gray-brown bird

wheelbarrow 9954 A large, open container for moving things in with a wheel
at the front and two handles at the back, used especially
in the garden

To represent a word, the simplest idea may be to replace it with the id number in the
dictionary. In this way, each word representation is a unique number. An equivalent form to
this is the one-hot representation. It is a vector whose dimensionality is equal to the vocabulary
size. In this vector, only the entry corresponding to the word has a value of 1 and all other
entries have 0 values. For example, the word sparrow can be represented as a one-hot vector
based on its id (8331), like this

[0 0 ... 0 1 0 ... 0 0]

↑
id = 8331

3.2.2 Distributed Representation
However, it appears that the one-hot representation only provides the “identity” of the word
but not the “description” of what the word is. An obvious problem is that every word is
orthogonal to other words. This makes it difficult to “compute” the relationship between words
because there is no connection among the associated word vectors even though some of the
words are thought to be similar in our use of language. Here, our desire is a model in which
words are described as countable attributes and the closeness between different words is well
explained. A way to do this is to enrich the representation with the word description. Consider
again the word sparrow for example. In the dictionary, we have its meaning a common, small,
gray-brown bird. By using the tokenization and normalization methods mentioned in Section
3.1.1, this text can be transformed into a sequence of words[

a common , small , gray - brown bird
]

8All these words and their meanings are found in https://dictionary.cambridge.org/.

https://dictionary.cambridge.org/

3.2 Vector Representation for Words 19

Then, we vectorize this sequence using the bag-of-words model (see Chapter 1), leading to
a new vector of numbers

[0 0 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 1 ... 0 0]

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
, - a bird brown common gray small

where the value of an entry is 1 if the corresponding word is present, and 0 otherwise. This way
enables the sharing of content among words. We would say that two words are similar if they
have overlaps in their word vectors. Consider a new word cuckoo. We can find its meaning in
a dictionary, e.g., a grey bird with a two-note call that sounds similar to its name. It is easy
to know that sparrow and cuckoo are two words that share something similar because they
both mark the “bird” dimension as 1 and the vector similarity between the two word vectors is
greater than 09.

Treating words as vectors of numbers offers a general tool to represent words in various
different ways. We do not even have to explain a word vector from the viewpoint of semantics.
For example, we can introduce a new dimension into the vector to mark if the word belongs to
some syntactic category. In a broad sense, we can define an arbitrary function on each entry
of the vector and view the function’s output as a feature describing the word. For example, a
simple improvement to the above representation is to use a function counting the occurrences
of a word instead of the binary-valued function marking the presence of the word. More feature
functions can be found in Section 3.3.

Note that it is not necessary to constrain the feature functions to forms that make linguistic
sense although linguistically motivated designs of the feature functions are usually of interest
to NLP researchers. A more general form for word representation is simply a real-valued,
multi-dimensional vector. It is often called the distributed representation of a word, or the
word embedding. For example, the word sparrow can be represented as a vector like this

[
1.9 −7 3 −1.2 ... 2.01 −2.05

]
In the machine learning point of view, this vector can describe some underlying attributes of a
word. These attributes may not be explainable in human understanding but can be learned from
data. One of the challenges in learning such a representation is that one can hardly measure the
goodness of a vector. In general, it makes no sense to ask whether the distributed representation
of a single word is good or not. Rather, we would like to know if the representations of a
group of words are well behaved. For example, it is a common belief that similar words should
have similar representations. So, the relationship between words is often thought of as some
“distance” between the word representations in a vector space. This leads to a number of
methods to visualize and evaluate word representations. In Section 3.6, we will give a more
detailed discussion about these issues.

9The similarity of two vectors can be measured by the cosine of the angle between them.

20 Chapter 3. Words and Word Vectors

On the other hand, word representations typically do not work alone in NLP systems
but are used as some intermediate states of a model. A standard approach in NLP, to learn
distributed representations of words, is to take it as a by-product of training a “big” system.
That is, the representation model works as a component of a system, and is optimized together
with other components when the system is trained in some way. This inspires a promising
paradigm of representation learning: the representation model is learned as a sub-model in
an easy-to-train system, and can be used as a plug-in for a completely different system. In
neural language modeling, for instance, we can force the model to map each input one-hot
word vector into a real-valued, low-dimensional distributed representation. These distributed
representations are fed into a neural network that predicts a probability distribution over the
vocabulary. The mapping function or embedding function is trained so as to minimize the loss
of the language model on some data (see Section 3.4). When applying the learned embedding
function, we drop all other parts of the language model and use the function to generate the
distributed representation for each word in downstream tasks. An alternative strategy is to
specifically tailor the model to the word representation learning problem. Systems of this
kind are typically not designed to deal with standard NLP problems, but with an emphasis on
specific problems in word representation learning, such as explicitly modeling the relationship
between words (see Section 3.5).

3.2.3 Compositionality and Contextuality
While we restrict our discussion to word representation learning in NLP, studying the meanings
of words is a traditional sub-field of linguistics. In lexical semantics, for instance, researchers
are concerned with how word meanings are defined and used, and how these meanings form
the sentence meanings. In fact, the task of learning to represent words does not concern itself
with the issue of semantics in linguistics. Instead, it provides machine learning approaches
to transforming linguistic units into computer-friendly forms. However, the semantics issue
is critical when one understands and uses a language. It is therefore still worth considering
semantics and related problems in the design of word representation models. For example,

• Compositionality. Compositionality is a common concept in semantics, logic and
related fields. It often comes out with the principle of compositionality:

The meaning of a complex expression is determined by its structure
and the meanings of its constituents.

– Szabó [2020]

This offers a useful tool to describe how the meaning of a big thing is built up from
the meanings of its parts. The principle of compositionality is fundamental and exists
everywhere in the language world. For example, when you see the phrase white cat, it is
easy to know its meaning in terms of the meanings of the constituent words white and cat.
Another example at a higher level of language use is compound sentences. A compound

3.2 Vector Representation for Words 21

sentence forms its meaning by simply connecting multiple independent clauses with
conjunctions. Note that the principle of compositionality is not a simple rule by which we
use to describe how a big item is made up of smaller ones, although researchers have tried
to define it formally [Montague, 1974]. There are even disagreements and debates on
how this principle is interpreted and how it is adequately modeled by semantical theories.
Still, if we focus on NLP problems and set aside the theoretical part of linguistics,
compositionality is a very useful property that one can make use of in system design and
evaluation. Sometimes, if one finds that a problem is compositional, it implies that there
are many good methods to address it because a complex thing can be divided into smaller
and easier things. For word representation learning, we may wish that the resulting
word representations exhibit some compositionality, in response to the compositional
nature of language. In Section 3.6, we will see a few examples, e.g., the representations
learned by neural networks show meaningful results under linear algebraic operations,
though the models are themselves non-linear. However, on the other hand, the principle
of compositionality is not the principle of everything. There are many situations in
which compositionality is not held, such as collocations and idioms. In this case, natural
languages are non-compositional. This explains why the NLP problem is so challenging.

• Contextuality. Contextuality is some sort of non-compositionality. It states that a word
may have multiple possible meanings and the “true” meaning is determined by looking
at the context preceding and/or following this word. For example, consider the following
sentences10

They sat round the dinner table, arguing about politics.

Come to the table everybody - supper’s ready.

He came in with four shopping bags and dumped them on the table.

The table can help you evaluate the potential risks of investing in the Fund.

Building societies dominate the best-value tables for mortgages.

This table represents export sales.

In these example sentences, table is a polysemy with two meanings:

Sense 1: a flat surface used for putting things on.

Sense 2: an arrangement of items in rows, or columns, or blocks.

In other words, table is an ambiguous word. This ambiguity would be eliminated if we
consider the surrounding words. For example, when table follows dinner, it is easy to
figure out that it refers to sense 1. The ambiguity also exists when a word stems from a
few different forms or lexemes (call it a homonymy). For example, bear can be either a

10All these sentences are from https://dictionary.cambridge.org/dictionary/english/
table

https://dictionary.cambridge.org/dictionary/english/table
https://dictionary.cambridge.org/dictionary/english/table

22 Chapter 3. Words and Word Vectors

verb or a noun. Disambiguating a word for a given set of word senses has been studied
for decades in NLP and is commonly known as word sense disambiguation (WSD)
[Kelly and Stone, 1975]. However, the word representation problem discussed here
is more challenging because we usually do not have a pre-defined set of word senses
in hand. We instead want a contextual representation model that can generate a word
representation dependent on its context. Thus, it is important to take the idea that the
meaning of a word may not be constant. This makes the problem somewhat different
from what we discussed at the beginning of the section, as we no longer have a lookup
table for word representations, but a model that produces different representations of a
word in different contexts.

In the remaining sections of this chapter, we focus on learning vector representations of
words from their distributions in language use. We leave the discussion on the contextual
models for learning dense word representations to Chapters 4-6.

3.3 Count-based Models
We have framed the induction of word meanings as a problem of learning word vectors.
In this section, we proceed by assuming that the meaning of a word is determined by the
environment where the word is used. This is usually stated as the distributional hypothesis —
words are semantically similar if they appear in similar contexts [Harris, 1954; Firth, 1957].
A word representation learned under this hypothesis is also called the distributional word
representation or distributional representation11. To ease the reading, however, we will
still use the terms word vector and word representation throughout this book. Next, we
introduce several methods for modeling the distribution of words in texts, and then offer some
refinements.

3.3.1 Co-occurrence Matrices
In distributional semantics, words are represented with semantic models that consider various
aspects of the context. These models differ in how the context of a word is modeled, for
example, how large the context is considered, how each occurrence of a word is counted, how
the dimensionality of a distribution is defined, and so on. In this section we assume, as in most
models used in NLP, that word representations are learned from a collection of documents.

A way to view a document is as a very simple way of decomposing it into a set of
unordered words. Then we can think of each occurrence of these words as an independent
context indicator. In this way, the distribution of a word in its context can be described as the
number of times the word co-occurs with the context words. We can do this by building a

11It should be noted that distributional representation and distributed representation are two different concepts.
A distributional representation refers to a representation that describes the distribution of language items in language
use. A related term is non-distributional representation which means something that is obtained from lexical
databases, such as the interpretation of a word in a dictionary. On the other hand, a distributed representation refers
to a vector of variables corresponding to some underlying attributes of a language item. In contrast to distributed
representation, a one-hot representation just describes the word symbol.

3.3 Count-based Models 23

co-occurrence matrix where a cell counts the number of co-occurrences of a row item and a
column item. Consider, for example, the following documents12:

Doc 1 A berry is a small, pulpy, and often edible fruit.

Doc 2 In botanical terminology, a berry is a simple fruit with seeds and pulp
produced from the ovary of a single flower.

Doc 3 The term "banana" is also used as the common name for the plants that
produce the fruit.

Doc 4 Banana seeds are large and hard and spiky and liable to crack teeth.

Doc 5 A banana is an elongated, edible fruit - botanically a berry - produced by
several kinds of large herbaceous flowering plants in the genus Musa.

For each pair of words, we collect the total number of times they co-occur in these
documents, leading to a matrix, called the word-word co-occurrence matrix or term-term
co-occurrence matrix. Here is a subset of the matrix for the above documents.

flowering fruit herbaceous ... often plants seeds

berry 1 3 1 ... 1 1 1

terminology 0 1 0 ... 0 0 1

common 0 1 0 ... 0 1 0

teeth 0 0 0 ... 0 0 1

banana 1 2 1 ... 0 2 1

simple 0 1 0 ... 0 0 1

and 0 2 0 ... 1 0 2

In the matrix, each row word is associated with a word vector of |V | entries. The numbers
in the entries describe how often the row word co-occurs with different context words, that
is, how a given word is distributed in different “contexts”. In a geometric sense, if two words
have similar distributions in co-occurring with the same group of context words, then the angle
between the word vectors would be small13. For example, if we think of these words as vectors
in a vector space, berry is closer to banana than teeth (see Figure 3.4). This geometric intuition
is the basis of many representation models. More examples will be given in Chapters 4 and 5.

A problem with this method is that the distance between words is not taken into account
although the correlation is not that strong when the context word is distant. A simple solution
is to constrain context words in a window, called the context window or window for short
[Lund and Burgess, 1996]. For example, for each word in a document, we only count the -2
and +2 words surrounding it (i.e., a window of size 5).

12The texts are from Wikipedia.
13The angle between two vectors does nothing with the lengths of the vectors. If the vectors are normalized in

some way (e.g., by vector norm), similar vectors mean that most entries of the two vectors have similar values.

24 Chapter 3. Words and Word Vectors

x

y

z

banana

berry

teeth

distance1

distance2

Figure 3.4: Word vectors in a vector space that is built from the word co-occurrence statistics
on the English data from WMT 2012. All the vectors are normalized and represented as arrows.
For visualization, we project these vectors from a high-dimensional space to a 3-dimensional
space via principal component analysis. As expected, berry is closer to banana than to teeth.

Note that the word vectors learned by the bag-of-words model in Section 3.2 is a special
instance of the co-occurrence matrix. In that example, we only have one document from
which we collect context words. For each entry of a word vector, an indicator function is
used to mark the presence of the context word. In addition to the indicator and counting
functions, there are other choices for computing word vectors by examining the co-occurrence
of words. In practice, the value of an entry of a word vector can be thought of as the degree
of the correspondence between words. If two words are correlated with each other in some
context, a feature function may assign a score between them in any manner. This score does not
necessarily have to be a count, but can be an arbitrary real number. As such, the problem can
be stated as measuring the association strength between words. It is common practice to define
such a measure on the basis of correlation models. In statistics, correlation describes to what
extent two variables are associated, measured by correlation coefficients. Common correlation
coefficients include the Pearson correlation coefficient (Pearson’s r), the Spearman’s rank
correlation coefficient (Spearman’s ρ), and so on14. In NLP, a widely used measure is the
pointwise mutual information (PMI) [Church and Hanks, 1990]. Let a and b be two words.
The mathematical form of PMI is given by

PMI(a,b) =
Pr(a,b)

Pr(a)Pr(b)
(3.21)

14Some of the correlation coefficients assume certain distributions of the data. For example, the Pearson
correlation coefficient is calculated based on two variables following normal distributions.

3.3 Count-based Models 25

where Pr(a,b) is the joint probability of a and b co-occurring, and Pr(a) (or Pr(b)) is the
probability of a (or b) occurring. These probabilities can be simply estimated on the texts by the
relative frequency method15. Given a word a and a vocabulary of context words {b1, ..., b|V |},
the PMI-based word vector of a is written as

e(a) =
[
PMI(a,b1) ... PMI(a,b|V |)

]
(3.22)

Correlation coefficients are generally used to test whether two variables are (linearly) related.
So, an alternative method is to define an entry of the word vector as the outcome of a test. For
example, the entry (a,b) chooses a value of 1, if the correlation coefficient between words a
and b is larger than a threshold, or the correlation of words a and b is sufficiently supported by
hypothesis testing.

However, modeling words as vectors of correlation scores between words somewhat limits
the scope of contextual information one may use. Another idea for word vectorization is
to consider each document as a whole and establish the relationship between words and
documents. We can do this by using the word-document co-occurrence matrix or term-
document co-occurrence matrix. For example, for the abovementioned documents, we can
build a matrix, like this

Doc 1 Doc 2 Doc 3 Doc 4 Doc 5

berry 1 1 0 0 1

terminology 0 1 0 0 0

common 0 0 1 0 0

teeth 0 0 0 1 0

banana 0 0 1 1 1

simple 0 1 0 0 0

and 1 1 0 2 0

In the matrix, the value of entry (a,d) is defined to be the number of times the word a

occurs in the document d, giving the strength of the relationship between a and d. This is
commonly called the term frequency (TF) of a in d (denoted by tf(a,d)). Also, we can use
a 0-1 indicator function to mark the presence of the word occurrence (see Section 3.2). See
Table 3.1 for a few variations of the TF weighting function.

As a co-occurrence matrix, each row of the above matrix is the vector representation of
the row word. In addition, each column is a vector representation of a document. Recall
the bag-of-words model used in the text classification problem mentioned in Chapter 1. The
word-document co-occurrence matrix is basically the same thing as the bag-of-words model

15A problem with PMI is that the measure becomes unstable when the words are rare. For example, if a very
rare word happens to appear in a document, the PMI value of this word and any other word in this document would
be unreasonably large.

26 Chapter 3. Words and Word Vectors

Entry Mathematical form

Binary tf(a,d) =

{
1 a occurs in d

0 otherwise

Count tf(a,d) = count(a;d)

Exponential Count tf(a,d) = count(a;d)α

Log-scale Count tf(a,d) = log(1+count(a;d))

Normalized Count (or Frequency) tf(a,d) = count(a;d)∑
a′ count(a

′;d)

Table 3.1: Functions of the term-frequency weighting scheme. count(a;d) counts the occur-
rences of the word a in the document d.

where the ordering of words is ignored but the word counts matter. Here we perform document
vectorization via this model on a collection of documents.

3.3.2 TF-IDF

The modeling of word-document associations is known to be important for many NLP tasks.
An improvement on using word-document relationships to build word vectors and document
vectors simultaneously is the term frequency-inverse document frequency (TF-IDF) method.
Given a set of documents D, the TF-IDF weighting scheme assigns a score to each word-
document pair (a,d) by the equation

tfidf(a,d,D) = tf(a,d) · idf(a,D) (3.23)

where

• tf(a,d) is the term frequency (see Table 3.1). When tf(a,d) is large, the word a is a good
indicator for the document d. In contrast, when tf(a,d) is small, the word-document
association is not that strong.

• idf(a,D) is the inverse document frequency (IDF). It is developed based on the fact
that common words across documents are less informative. For example, for a collection
of documents on sports, it is likely to see player and players in most documents. In
this case, the words player and players are less interesting in discriminating different
documents or contexts. Let df(a,D) be the number of documents in D containing the
word a. A common form of idf(a,D) is given by

idf(a,D) = log
|D|

df(a,D)
(3.24)

Eq. (3.25) would penalize a word if it more often appears in the collection of documents.

3.3 Count-based Models 27

Similarly, we can have a smoothed version of idf(a,D), like this

idf(a,D) = log
|D|

df(a,D)+1
+1 (3.25)

Having the TF-IDF feature function in hand, we can build a word-document co-occurrence
matrix for a given collection of documents, that is, the value of the entry (a,d) of the matrix
is tfidf(a,d,D). Then, as described in the last subsection, we can treat a row of the matrix
as the vector representation of the row word. Note that, traditionally, the TF-IDF method
and word-document co-occurrence matrices are often used in document representation. For
example, one can represent a query and a number of documents as the TF-IDF (column) vectors
in an information retrieval system. This allows us to look at how much the query matches each
of these documents via vector similarity. However, the vector space models in information
retrieval are beyond the scope of this chapter, but the reader can refer to related textbooks for
greater coverage of this topic [Manning et al., 2008; Buttcher et al., 2016].

3.3.3 Low-Dimensional Models
Co-occurrence matrices are often high dimensional. Suppose, for example, that there is a
vocabulary of 20,000 unique words and a collection of 10,000,000 documents. Then, a
word-document co-occurrence matrix has 20,000×10,000,000 = 2×1011 entries. However,
if we consider the computational burden of such a model, it would be hard to imagine that
a word is represented as a 10,000,000-dimensional vector and a document is represented
as a 20,000-dimensional vector. Instead, we expect that the representation of a word (or a
document) requires only a reasonably small number of features. In this subsection, we discuss
some standard approaches to transforming words (or documents) into lower-dimensional
representations from the co-occurrence matrices. Most of these approaches have been well
studied in the literature and have been successfully applied in several disciplines [Barber, 2012;
Wright and Ma, 2022]. So we do not dive into the mathematical details behind them, but show
how to apply them in the context of learning word (or document) vectors.

1. Latent Semantic Analysis

In NLP, latent semantic analysis (LSA) is a method of seeking the latent semantic structure
behind the word-document associations [Deerwester et al., 1990; Landauer et al., 1998]16. It
assumes that either words or documents can be represented as low-dimensional vectors that are
distilled from the co-occurrence matrix, preserving the property of the original vector space
model, e.g., the angle between vectors is small for similar words.

More specifically, LSA factorizes the co-occurrence matrix into a matrix for word repre-
sentation, a matrix for document representation, and a third matrix connecting the first two
matrices. Mathematically, this can be framed as a singular value decomposition (SVD)
process [Stewart, 1993]. Let M ∈ R|V |×|D| be a co-occurrence matrix over a vocabulary V

16Latent semantic analysis is also called latent semantic indexing (LSI). This term is more often used in
information retrieval and related fields.

28 Chapter 3. Words and Word Vectors

and a document set D. The SVD produces a factorization of M, like this

M = PΣQT (3.26)

where P ∈R|V |×r, Σ ∈Rr×r and QT ∈Rr×|D|. In this factorization, the representation model
is isolated into two terms P and QT so that both of them are semi-unitary (or semi-orthogonal
in our case)17, that is, the columns of either P or Q are orthogonal vectors. Thus, these
columns form an orthogonal basis of Rr, where r is the rank of M. This means that we use a
“minimum” number of dimensions of data to represent M. Σ is a diagonal matrix:

Σ =

σ1 0 ... 0

0 σ2 ... 0
...

...
. . .

...
0 0 ... σr

 (3.27)

The diagonal entries {σ1, ...,σr} are all non-negative real numbers, and are called the singular
values of M. Typically, {σ1, ...,σr} are arranged in descending order (i.e., σ1 ≥ σ2 ≥ ...≥ σr).
Thus, SVD is unique for the given matrix M. If we write P as a sequence of column vectors
(call them left-singular vectors)

P =
[
p1, ...,pr

]
(3.28)

and QT as a sequence of row vectors (call them right-singular vectors)

QT =

q
T
1
...
qT
r

 (3.29)

then we can write M as

M =
r∑
i

σipiq
T
i (3.30)

For representing words, we can think of pl as the values of a feature function over all the
entries of the vocabulary V . Then, we describe a word ai as an r-dimensional feature vector
ei in which the l-th feature is the i-th entry of pl. In other words, the vector representation of
ai is

ei =
[
p1(i) ... pr(i)

]
(3.31)

17A non-square matrix X is semi-orthogonal if and only if XXT = I or XTX = I.

3.3 Count-based Models 29

Similarly, the vector representation of a document dj can be written as

hj =
[
q1(j) ... qr(j)

]
(3.32)

In this way, we have two separate representation models for words and documents: P deals
with word representations and Q deals with document representations. Thus, we can take M

as a product of these representation models, like this

M = PΣQT

=

w
or

ds
 e1

...
e|V |

σ1 ... 0

...
. . .

...
0 ... σr

 documents[
hT
1 ... hT

|D|

] (3.33)

In practice, the rank r is usually much smaller than |V | and |D|. Thus, we have, for
each word (or each document), a new representation whose dimensionality is much smaller
than the representation contained in the co-occurrence matrix. A further improvement can
make use of the r∗ largest singular values (i.e., {σ1, ...,σr∗}) and throw away the rest. As a
consequence, we only keep the first r∗ left-singular vectors and right-singular vectors in P and
Q respectively. Here r∗ < r is a hyperparameter specifying the number of vectors in P and Q,
i.e., the number of features used to describe a word or a document. In this way, we have a new
factorization of M as

M ≈
r∗∑
i

σipiq
T
i (3.34)

The right hand side of Eq. (3.34) is also known as a low-rank approximation of M. By
specifying r∗, it can approximate M with a matrix having an arbitrary rank < r.

There are a number of algorithms for implementing the SVD [Cline and Dhillon, 2014]. In
fact, most of the modern implementations of the SVD are efficient and scalable. One can use
them as off-the-shelf toolkits in NLP applications.

2. Principal Component Analysis

In data analysis, principal component analysis (PCA) is a widely-used technique for dimen-
sion reduction. Given a set of data points, PCA finds a sequence of orthogonal directions in
the coordinate space so that the variance of the data points along these directions is maximized.
These directions are typically represented as unit vectors, called principal component load-
ings or principal component coefficients. As a result, they form a new coordinate space to
which we can map the given data points by an orthogonal linear transformation.

Consider a word-document co-occurrence matrix M ∈ R|V |×|D|, where each row is a
|D|-dimensional word vector or feature vector. The PCA defines a linear mapping from R|D|

to Rp, that is, we transform each |D|-dimensional word vector to a p-dimensional word vector.

30 Chapter 3. Words and Word Vectors

This is given by

N = MC (3.35)

where N ∈ R|V |×p is the mapped word vectors over the vocabulary V , and C ∈ R|D|×p is the
matrix of the linear mapping. Then, we can write C as a sequence of column vectors

C =
[
c1 ... cp

]
(3.36)

Each column vector ci =

 ci(1)
...

ci(|D|)

 is a group of principal component coefficients, indi-

cating a linear function that combines the input features into a new feature. For example, if we
view M as the values of a bunch of feature functions (say, column vectors {m1, ...,m|D|}),
we can map M to a new feature space in terms of ci:

Mci =
[
m1 ... m|D|

] ci(1)
...

ci(|D|)

=

|D|∑
k=1

ci(k)mk (3.37)

Mci (i.e., the i-th column of N) is a column vector where each entry is the new feature
for a word in V . In PCA, we generate {c1, ...,cp} in sequence such that they maximize the
variance of the linear mapping in Eq. (3.37). Thus, for each i ∈ [1,p], the optimal principal
component coefficients are defined to be

ĉi = argmax
ci

Var(Mci)

= argmax
ci

cT
i Sci (3.38)

where Var(Mci) is the variance of Mci, and S is the covariance matrix of M. For a well-
defined solution to Eq. (3.38), it is common to impose an additional constraint that ci is a unit
vector, i.e., cT

i ci = 1. Then, the problem can be framed as

ĉi = argmax
ci

cT
i Sci−λi(c

T
i ci−1) (3.39)

where λi is the Lagrange multiplier. Solving Eq. (3.39) under such a constraint requires ĉi
to be an eigenvector of S and λi to be the corresponding eigenvalue [Jolliffe, 2002]. Since
S is a p×p symmetric matrix, it has exactly p eigenvectors and eigenvalues. Then, we can
order these eigenvectors by the associated eigenvalues, and take the ordered eigenvectors as
{ĉ1, ..., ĉp}. In other words, ĉ1 is the eigenvector of S with the largest eigenvalue, ĉ2 is the

3.3 Count-based Models 31

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

Direction 1

Proj.

Direction 2

Figure 3.5: Transforming 2-dimensional data to 1-dimensional data via PCA. There are a
number of data points (represented by black circles) on a Euclidean plane. By using PCA,
we find a direction (represented by an arrow) such that the variance of the projected data
(represented by colored circles) in this direction is maximized. Such a direction can be
represented by a unit vector, called principal component coefficients. In this example, the
principal component coefficients describe a 1-dimensional coordinate space. We can map the
data from the 2-dimensional coordinate space to the 1-dimensional coordinate space via linear
transformation. The mapped data is called the principal component of the original data points.

eigenvector of S with the second largest eigenvalue, and so on. Typically, Mĉi is called the
i-th principal component of M.

An intuitive way to think about PCA is to map data points in a Euclidean space from one
coordinate system to another. For a data set M, we can view each row in M as the coordinates
of a data point in a |V |-dimensional coordinate system A. In PCA, we want to represent
these data points in a new p-dimensional coordinate system B. The i-th dimension of the new
coordinate system is simply a direction represented by a unit vector ci. For the i-th coordinate
of each data point in B, we project the data point in A onto the ci line. The optimal ci is
chosen in terms of how these projected data points are spread along ci. In other words, we seek
a line along which we can best separate the data points. In this way, we generate a sequence of
principal component coefficients, successively solving Eq. (3.38). We illustrate the idea of
PCA using an example projecting 2-dimensional data to 1-dimensional data in Figure 3.5.

In real-world applications, p is commonly set to a number much smaller than |D|, and
PCA can significantly reduce the number of dimensions used in representing words. Note that
PCA is a very general method and is found to be useful in many disciplines. In practice, M
can be extended to represent observations on a set of variables. By applying PCA, one can
transform these observations into data values of fewer new variables.

32 Chapter 3. Words and Word Vectors

3. Others

In machine learning, learning low-dimensional models is a fundamental problem, and has been
generalized in several directions. For example, the neural word embedding models described
in Sections 3.4 and 3.5 themselves tend to learn low-dimensional, real-valued word vectors
from texts. Here we present some of the dimension reduction methods one may come across in
the NLP and machine learning literature.

• Topic models. Technically, topic models are not ways of dimension reduction, but tools
for describing how documents and words are generated based on distributions over topics
[Blei, 2012]. For example, latent Dirichlet allocation (LDA) models the generation of
a document by using document-topic and topic-word distributions [Blei et al., 2003]. As
a by-product, we obtain a distribution over words for each topic, indicating how likely a
word occurs given a topic. If we write all these topic-word distributions as a matrix, say
a |V |×K matrix where |V | is the number of words and K is the number of topics, then
we will have some sort of word representations that are very similar to those described in
previous sections. K is commonly set to a “small” number (e.g., 200). In this case, we
have a low-dimensional model for representing words. Although LDA is not so popular
in learning word representations in NLP applications, it offers a way to represent words
as distributions over latent thematic structures.

• Auto-encoders. Undercomplete auto-encoders are a type of neural model that encodes
features into low-dimensional codes such that the input features can be reconstructed
from the codes. An advantage of auto-encoders is that they do not make assumptions
on the hidden structures of the features. Thus, auto-encoders can be used to learn to
transform any type of data into low-dimensional representations. For example, in Chapter
7 we will see examples of applying auto-encoders to learn sentence representations. For
more details about auto-encoders the reader can refer to Chapter 2.

• Supervised dimension reduction. Traditionally, dimension reduction methods (such as
PCA) are assumed to work in an unsupervised manner. When the benchmark data of the
target task is accessible, it is natural to make use of this information. A common example
is supervised dimension reduction for classification. For example, in the Fisher’s linear
discriminant and linear discriminant analysis methods, we find a mapping from
high-dimensional data to single-dimensional data so that the separation of the classes
associated with the data is maximized. This idea can be generalized to multi-dimensional
data in the Canonical Variates method [Barber, 2012].

• Feature selection. Feature selection refers to a process of selecting a subset of the
features used in representing an object and thus reducing the dimensionality of the
representation. Feature selection is a wide-ranging topic in machine learning, and
many methods can be seen as instances of feature selection [Guyon and Elisseeff, 2003;
Liu and Motoda, 2012]. The simplest is to frame it as a search problem: we search
in the space of feature subsets so that the selected features maximize (or minimize)
some objective. In general, the design of the objective depends on the task where we
apply the features. This makes feature selection somewhat difficult because one has

3.4 Inducing Word Embeddings from NLMs 33

to consider many factors in such a process, such as the performance measure of the
target task, the search efficiency, and the representation of each feature subset. Note
that feature selection is generally discussed in supervised learning that requires labeled
data to compute loss for optimization. The reader is referred to Solorio-Fernández et al.
[2020]’s review paper for unsupervised feature selection methods.

In statistics, many methods can fall under the dimension reduction framework and are
related to what we discussed in this section. For example, factor analysis is a method similar
to PCA because they both seek a linear mapping from the input variables to a smaller number
of new variables. The difference between them is that factor analysis focuses on modeling the
common variance of variables, while PCA focuses on maximizing the variance of the projected
data. Another example is independent component analysis (ICA). Unlike PCA, the goal of
ICA is to find independent components that are additively separable. More examples can be
found in machine learning and statistics textbooks [McClave and Sincich, 2006; Freedman
et al., 2007; Barber, 2012].

3.4 Inducing Word Embeddings from NLMs
Counting word-word or word-document occurrences is a simple way to represent words by
using their distributions in texts. While this method is effective in many applications, it imposes
a constraint on word representations: the entries of a word vector should be able to be explained
as some “evidence” on how the word distributes in different contexts. Ideally, we would like to
represent words in a more general form, say, a real-valued vector (call it the word embedding)
without constraints or assumptions on how the meaning of each entry of the vector is defined.

Learning word vectors with no constraints comes at a cost. Unlike the count-based methods
presented in Section 3.3, we do not use heuristics or prior knowledge to estimate the value of
a word vector but wish to induce meaningful word representations directly from data. One
of the difficulties here is that there is no gold standard to guide the learning process because
it is simply impossible to manually annotate a real-valued word vector. Thus, we are often
interested in treating the learning of word vectors as a part of a well-defined task (call it a
background task). The learned word vectors are then a by-product of the learning on the
background task.

A common example is the induction of word vectors from neural language models (NLMs).
Recall the NLM described in Chapter 2. Its goal is to build a neural network that predicts
the probability of a word given its preceding words [Bengio et al., 2003]. More formally,
let wi be the word we want to predict, and {wi−n+1, ...,wi−1} be the context words we have
seen. First, the words {wi−n+1, ...,wi−1} are transformed to de-dimensional word vectors
{ei−n+1, ...,ei−1} through an embedding layer. Assuming wj is the one-hot representation of
word j (a row vector of size |V |), the word vector ej is given by

ej = wjC (3.40)

where C ∈ R|V |×de is the parameter of the embedding layer. C is often known as the word

34 Chapter 3. Words and Word Vectors

embedding table in which the k-th row is the representation of the k-th word in V .

Then, we use a feed-forward neural network to compute the probability distribution of the
word at position i. This is given by

Pr(·|wi−n+1, ...,wi−1) = Fθ(ei−n+1, ...,ei−1) (3.41)

where Fθ(·) is a feed-forward neural network parameterized by θ. Typically, the embedding
layer can be seen as a component of the NLM. Here we use slightly different notation to
emphasize that the NLM is a function of both θ and C, like this

Prθ,C(·|wi−n+1, ...,wi−1) = Fθ,C(wi−n+1, ...,wi−1) (3.42)

For training, we optimize both θ and C to minimize a loss function. A popular method is
maximum likelihood training which maximizes the sum of log-likelihood over all n-grams in
the data. Given a sequence of words w1...wm, the objective of the training is defined to be18

(θ̂,Ĉ) = argmax
θ,C

m∑
i=n

logPrθ,C(wi|wi−n+1, ...,wi−1) (3.43)

Having obtained the optimized parameters θ̂ and Ĉ, we can apply F
θ̂,Ĉ

(·) to deal with

new n-grams. More importantly, we have some well-trained word vectors (i.e., Ĉ) that can be
used in systems other than NLMs. This is also known as the pre-training of word vectors. In
pre-training, we can define Fθ,C(·) as any system that makes use of the word vectors C. Thus,
the task of learning C is transformed to the task of optimizing Fθ,C(·) on the background task
(see Figure 3.6 for an illustration). The main advantage of this method is that we can reuse
existing NLP tasks to train the word vectors. A risk here is that the “best” word vectors found
in training Fθ,C(·) might not be well suited for the system where the word vectors are in actual
use. Interestingly, in many situations, word vectors that are pre-trained by NLMs are of good
quality for downstream tasks, or at least provide a good starting point for further tuning of
these word vectors in the target system.

3.5 Word Embedding Models

In principle word vectors can be learned in any manner. Treating word vectors as components
of existing NLP systems is one option, but typically lacks task-specific considerations. Another
option is to develop methods specifically tailored to the problem. The training of such systems,
therefore, does not need to satisfy the constraints of standard NLP tasks, making it easier to
learn word vectors.

18This can be generalized to a data set consisting of multiple sequences.

3.5 Word Embedding Models 35

C=

[• •
• •
• •

]
Fθ,C(·)

via language modeling
Optimizing C and θ

Training Word Vectors

Ĉ=

[• •
• •
• •

]
G

π,Ĉ
(·)

on the new task
Using optimized Ĉ

Applying Word Vectors

optimized word vectors Ĉ

Figure 3.6: Illustration of pre-training word vectors in an NLM. The NLM can be denoted as
a function Fθ,C(·) of the word embedding table (i.e., C) and other parameters of the NLM
(i.e., θ). The pre-training of C is essentially a process of training Fθ,C(·) on a background
task. The outcome is the optimized word vectors Ĉ which are then applied to a new system
G

π,Ĉ
(·) that might be different from the NLM. In the new system, Ĉ is the word embedding

table learned from the NLM and π is the parameters specialized to G(·).

3.5.1 Word2Vec

Word2Vec is a short name for the models proposed in [Mikolov et al., 2013a;c]. As with
neural language models, the Word2Vec models are based on neural networks. Rather than
resorting to the generative modeling of n-grams, the Word2Vec models describe the learning
of word vectors in a log-linear fashion. In consequence, the architectures of these models are
different from those used in language modeling. There are two types of models in Word2Vec:

• The continuous bag-of-words model (or the CBOW model). The CBOW model is a
word prediction model. It is used to predict how likely a word at position i occurs given
the −n and +n word windows around it. The structure of the CBOW model is similar to
that of the neural language model introduced in Chapter 2 (see Figure 3.7 (a)). First, we
use an embedding layer to transform the context words wi−n...wi−1 and wi+1...wi+n to
corresponding word vectors. This is performed by multiplying the one-hot representation
of each input word wj with the embedding table C ∈ R|V |×de , as shown in Eq. (3.40).
These word vectors are then averaged to produce a single representation for the input
words, giving us

h =
1

2n

 i−1∑
j=i−n

wjC+
i+n∑

j=i+1

wjC

 (3.44)

Note that the above defines a model that completely ignores the order of input words
because of the use of the sum operation. This explains why the CBOW model is called
bag-of-words. The output layer of the CBOW model is a standard Softmax layer that

36 Chapter 3. Words and Word Vectors

projects h to a probability distribution over the vocabulary

y = Softmax(hU+b) (3.45)

where U∈Rde×|V | is the parameter matrix of the linear mapping and b∈R|V | is the bias
term. y is a distribution over the vocabulary, and Pr(wi|wi−n, ...,wi−1,wi+1, ...,wi+n)=

y(wi). Eqs. (3.44-3.45) describe a very simple neural network. An advantage is that the
resulting model is small and efficient as compared to NLMs. The training of the CBOW
model is regular. We can frame it as finding the maximum likelihood estimation of the
parameters of the model. For simplicity, let θ denote the parameters other than C (i.e,
θ = {U,b}). We have

(θ̂,Ĉ) = argmax
θ,C

m−n−1∑
i=n+1

logPrθ,C(wi|wi−n, ...,wi−1,wi+1, ...,wi+n) (3.46)

where m is the length of the word sequence. After training, we can simply drop θ̂ and
use Ĉ as a word vector look-up table.

• The continuous skip-gram model (or the skip-gram model). The skip-gram model
is another word prediction model. It models the reverse of the task described in Eqs.
(3.44-3.45). To be more precise, our objective is to predict each of the ±n context words
given wi. This is generally framed as estimating the probability of wj occurring given
wi (i−n ≤ j ≤ i− 1 or i+1 ≤ j ≤ i+n). Figure 3.7 (b) shows the structure of the
skip-gram model. The embedding layer deals with wi as usual. The representation of wi

is given by

h = wiC (3.47)

It is then passed to a Softmax layer to predict the probability for each context word wj

(assuming j = i+k)19

yk = Softmax(hVk+bk) (3.48)

where Vk and bk are the parameters of the model (−n≤ k ≤−1 and 1≤ k ≤ n). We
have

Pr(wj |wi) = Pr(wi+k|wi)

= yk(wi+k) (3.49)

Let θ be a short representation of {Vk} and {bk}. The training problem can be defined

19When k > 0, wj is a word in the right context window of wi; when k < 0, wj is a word in the left context
window.

3.5 Word Embedding Models 37

as

(θ̂,Ĉ) = argmax
θ,C

m−n−1∑
i=n+1

∑
−n≤k≤−1,
1≤k≤n

logPrθ,C(wi+k|wi) (3.50)

Both of the above models make an analogy to cloze tests by considering only the pairwise
dependency between words. A danger is that if complex relationships among words and word
order information are required, the resulting probability distributions will be not that precise
compared to language models. Note, however, that the goal of these models is not to precisely
predict missing words given their contexts, but to learn word representations from some task
that captures word-word relationships. It is therefore not so important to care about the word
prediction performance of the learned model.

Another merit of these models is that they have very simple, easy-to-train architectures.
For example, in both models there are no hidden layers and the embedding layer is directly
connected to the output layer. These model structures can be seen as instances of log-linear
modeling in machine learning: the input variables are linearly transformed to a feature vector
(e.g., Eq. (3.44)), followed by a log-linear function (e.g., Eq. (3.45)).

3.5.2 GloVe
Global vectors, also known as GloVe, are word vectors that are learned by using both global
statistics over the corpus and local models of word prediction [Pennington et al., 2014]. The
GloVe method starts with a word-word co-occurrence matrix (see Section 3.3), and then forms
a neural model by making a series of assumptions.

Given a word-word co-occurrence matrix M, where each cell M(a,b) = count(a,b)

represents the number of co-occurrences of words a ∈ V and b ∈ V , we can obtain the
conditional probability Pr(b|a) by using the equation

Pr(b|a) =
count(a,b)∑
b′ count(a,b

′)

=
count(a,b)

count(a)
(3.51)

where count(a) is the number of times the word a occurs in the corpus.
Let us now see a motivating example of GloVe. Suppose that we want to distinguish

between words air and water. It is easy to obtain how likely one of these words occurs given a
context word in the corpus via Eq. (3.51). See the following table for a small fraction of the
Pr(b|a) matrix from 3.8M-sentence English data in WMT14.

Entry w = fly w = drink w = breath w = live w = flow

Pr(air|w) 1.5×10−4 6.2×10−5 2.2×10−4 1.6×10−4 3.6×10−4

Pr(water|w) 1.3×10−5 4.1×10−4 1.8×10−5 1.4×10−4 3.0×10−4

Pr(air|w)/Pr(water|w) 11.54 0.15 12.2 1.14 1.2

38 Chapter 3. Words and Word Vectors

ei−1 = wi−1Cei−2 = wi−2C ei+1 = wi+1C ei+2 = wi+2C

wi−2 wi−1 wi+1 wi+2

h= 1
4

(∑i−1
j=i−2ej +

∑i+2
j=i+1ej

)
y = Softmax(hU+b)

Pr(wi|wi−2,wi−1,wi+1,wi+2) = y(wi)

(a) CBOW

Embedding

y−1 = Softmax(

hV−1+b−1)

y−2 = Softmax(

hV−2+b−2)

y1 = Softmax(

hV1+b1)

y2 = Softmax(

hV2+b2)

Pr(wi−2|wi)

= y−2(wi−2)

Pr(wi−1|wi)

= y−1(wi−1)

Pr(wi+1|wi)

= y1(wi+1)

Pr(wi+2|wi)

= y2(wi+2)

h= wiC

wi

(b) Skip-gram

Embedding

Figure 3.7: The CBOW and skip-gram architectures. The CBOW model computes
the probability Pr(wi|wi−2,wi−1,wi+1,wi+2) where wi is a word in a sequence and
{wi−2,wi−1,wi+1,wi+2} are words in the ±2 context windows. The context representa-
tion h is the mean of the word vectors that are produced through an embedding layer. h is then
fed into a Softmax layer to output a distribution over the vocabulary (i.e., y). The prediction
probability of wi is Pr(wi|wi−2,wi−1,wi+1,wi+2) = y(wi). The skip-gram model is also
based on the embedding + Softmax structure. It models the probability of each context word
wj given the word wi. This is achieved by simply computing the output of a standard Softmax
layer that takes the vector representation of wi as input. Both the CBOW and skip-gram models
are trained in a maximum likelihood fashion. The resulting lookup table of the embedding
layer is the word vectors (or embeddings) for the words in the vocabulary.

In this table, Pr(air|w) and Pr(water|w) indicate how well air and water correlate with
different w. We also compute the probability ratio Pr(air|w)/Pr(water|w) in the last line

3.5 Word Embedding Models 39

of the table. Interestingly, it is found that w can be viewed as a probe word by which
Pr(air|w)/Pr(water|w) models the relevance between words. When w is more relevant
to air but less relevant to water (e.g., w = fly or w = breath), Pr(air|w)/Pr(water|w) is
large. In contrast, when w is less relevant to air but more relevant to water (e.g., w = drink),
Pr(air|w)/Pr(water|w) is small. When w is relevant to both words, or irrelevant to them (e.g.,
w = live or w = flow), Pr(air|w)/Pr(water|w) is around 1.

An insight that we can gain from the above examples is that the word vectors should be
able to interpret Pr(air|w)/Pr(water|w). A simple idea is to develop a model to approximate
this probability ratio, say,

F (ea,eb, ẽw) =
Pr(a|w)
Pr(b|w)

(3.52)

where ea, eb ∈ Rde are the vector representations of the words a and b, and ẽw ∈ Rde is the
vector representation of the context word w. Note that the notation has different meanings for e
and ẽ. The former is a word vector from an embedding table C, and the latter is a word vector
from another embedding table C̃. The use of two embedding tables has several advantages.
The main advantage is that combining multiple sets of parameters could mitigate the overfitting
of the model. The final word embedding table takes the form C+C̃

2 .

There are many ways to define the function F (·). Here we simply treat F (·) as a neural
network parameterized by C, C̃ and some other parameters. Considering the subtraction nature
in comparing a and b in Pr(a|w)

Pr(b|w) , we can assume that F (·) depends on ea−eb. Furthermore,
we can take eae

T
w ∈ R (or ebeTw ∈ R) to model the relationship between the word a (or b) and

the context word w. These lead to a new form of the function

F
(
(ea−eb)ẽ

T
w

)
=

Pr(a|w)
Pr(b|w)

(3.53)

where (ea−eb)ẽ
T
w ∈ R is the difference in representing words a and b when taking w as a

probe word.

There are still many solutions to Eq. (3.53), though the input of the function is greatly
simplified. For a feasible form of F (·), we further assume that Eq. (3.53) holds when we
either exchange the embedding tables C and C̃ (i.e., exchange e and ẽ for a, b and w), or
transpose the word-word co-occurrence matrix (i.e., use M instead of M̃). To make use of
these assumptions, one way is to let F (·) be a homomorphism between two sides of Eq. (3.53).
That is

F
(
(ea−eb)ẽ

T
w

)
=

F (eaẽ
T
w)

F (ebẽTw)
(3.54)

40 Chapter 3. Words and Word Vectors

The solution to Eq. (3.54) requires that F (·) = exp(·), and we have

F (eaẽ
T
w) = exp(eaẽ

T
w)

= P (a|w)

=
count(a,w)

count(a)
(3.55)

Rewriting this equation, we have

eaẽ
T
w+logcount(a)− logcount(a,w) = 0 (3.56)

A problem with Eq. (3.56) is that the term logcount(a) makes the solution non-exchangeable
for M and M̃. To address this, a method is to absorb logcount(a) in some terms that are
symmetric for a and w, like this

eaẽ
T
w+βa+ β̃w− logcount(a,w) = 0 (3.57)

where βa and β̃w are bias terms that depend on a and w, respectively. The quantity on the
left-hand side of Eq. (3.57) describes how well eaẽTw+βa+ β̃w fits the co-occurrence matrix.
We wish to find some word vectors to enforce this quantity to be close to 1. Then, we can
define the squared loss, as follows

La,w =
(
eaẽ

T
w+βa+ β̃w− logcount(a,w)

)2
(3.58)

The loss over all pairs of a and w is given by

LGloVe =
∑

a,w∈V
γ (count(a,w)) ·La,w (3.59)

where γ (count(a,w)) is a scalar for La,w. In Pennington et al. [2014]’s paper,

γ (count(a,w)) =

(
count(a,w)
countmax

)σ
count(a,w)< countmax

1 otherwise
(3.60)

where countmax and σ are hyper-parameters. Typically, σ is set to a number smaller than 1.
As such, γ (count(a,w)) will penalize the word-pair (a,w) if count(a,w)< countmax, that
is, the loss function will assign smaller weights to rare word-pairs.

Eqs. (3.58-3.59) provide a very simple way to learn word vectors and can be implemented
by using standard neural network building blocks (e.g., vector dot product and summation).
An important property of GloVe is that the model eaẽTw+βa+ β̃w− logcount(a,w) is itself
linear. The training is even achieved without the need of cross-entropy loss. This differentiates
GloVe greatly from NLM and word2vec in which expensive normalization of the output is
required. The intuition here is that the relation between two words can be modeled in ways
other than probability-based divergence. In fact, Eq. (3.58) looks more like a regression model

3.5 Word Embedding Models 41

that fits the data of logcount(a,w), that is, we tend to learn to predict logcount(a,w) for any
pair of (a,w).

Another note about the use of global data bears repeating. The co-occurrence matrix is
a source of information that describes the entire corpus. An important consequence of using
such information is that the learning task is framed as finding word vectors that are globally
optimized. Of course, this does not make GloVe unique because the learning of many models
like NLM and Word2Vec itself admits a simple formulation as a global optimization problem,
e.g., maximizing the likelihood over the entire input space. However, the objectives in those
problems are complex, and most of them are in practice trained via online learning, e.g.,
updating the model parameters on a batch of samples each time. Given this, GloVe actually
defines a more efficient global model as compared with NLM and Word2Vec.

3.5.3 Remarks

We have seen in the previous sections how word vectors are learned by using several different
methods. We now turn to discussions of issues that one might be interested in when training
and/or applying word vectors.

• Count-based vs Neural Network-based. The simplicity and interpretability of count-
based methods have long been appreciated. The use of the distributional hypothesis
greatly simplifies the problem, but makes a strong assumption on the information source
the word vectors can be learned from, and generally leads to data sparsity due to the
curse of dimensionality. At the other end of the spectrum is learning with no assumptions.
In these methods, we remove the constraints on the meaning of each dimension, but
treat word vectors as low-dimensional intermediate states of a neural network that is
developed to accomplish some NLP task. This enables the learning of features that are
hard to describe in representing a word. The comparison of the two types of methods
here can fall under the comparison of two well-known learning paradigms, say, feature
engineering vs. end-to-end learning. Here we do not want to get bogged down by this
topic. It is, however, worth pointing out that it does not necessarily restrict word vectors
to certain forms. In general, the choice of the types of word vectors depends on in what
application we apply them and what interpretation we place on them. For example, if
we wish to have some interpretable, easy-to-learn word representation, inducing word
vectors from co-occurrence matrices might be a good choice; if we wish to have some
real-valued, low-dimensional word vectors that will be integrated into a bigger neural
network, deep learning methods might be worth a try. Note that, learning continuous
word vectors has become more and more common recently, given that the past few
years have significant progress toward neural models of NLP. Also, there has been much
interest in comparing count-based and neural network-based methods, and in exploring
relationships between them [Levy and Goldberg, 2014b; Baroni et al., 2014; Levy and
Goldberg, 2014c; Schnabel et al., 2015a; Levy et al., 2015; Gladkova et al., 2016].

• Shallow Models vs Deep Models. While it has become popular to solve the word
vector learning problem using neural networks, the model structures we introduced in

42 Chapter 3. Words and Word Vectors

this chapter are simple. Technically, they all have one or two layers of neurons and
are often thought of as instances of shallow models. A similar example is the vLBL
word embedding model [Mnih and Kavukcuoglu, 2013]. It models the interaction
among words using a two-layer neural network. This model, which does not even
involve a Softmax function, is one of the simplest word embedding models subject
to our knowledge. Such a simple model, however, still works well in many cases. A
benefit of shallow models is that they are efficient and scalable to a large amount of
data. This makes it easier to use them to deal with more “difficult” NLP problems. A
good example is the fastText system for text classification [Joulin et al., 2017]. It has a
similar architecture to the CBOW model (see Section 3.5.1). In fastText, the input text is
represented as a bag of word vectors that are averaged to form a hidden representation
of the text. This is followed by an output layer that maps the hidden representation to
a distribution over predefined classes. In this way, the classification model and word
vectors are trained jointly. Although shallow models are remarkably effective for word
vector learning, there are deeper models that one may be interested in for more modeling
power. As with most multi-layer neural networks, learning word vectors with deep
neural networks has a couple of benefits [Telgarsky, 2016]. First, by using a deep model,
we can exploit potentially better hypotheses in a large hypothesis space. Second, deep
models introduce more non-linearity into modeling, and thus increase the ability of the
model to describe complex problems. There are many examples of learning word vectors
in deep models. The simplest of these might be to simply stack more layers on the
word embedding layer in those systems. The stacked layers can be feed-forward layers,
recurrent layers, convolutional layers, or some combination of them. More recently,
word vectors have been employed and/or trained by very deep and complex systems,
achieving state-of-the-art performance on many NLP tasks [Radford et al., 2018; Devlin
et al., 2019]. However, stronger models come with added computational and training
challenges. So there are several lines of research on meeting these challenges [Pascanu
et al., 2013; Bapna et al., 2018; Wang et al., 2019; Zhang et al., 2019a; Pham et al., 2019;
Li et al., 2020]. In Chapters 4-6, we will see several successful NLP systems that are
based on very deep neural networks.

• Training Objectives. The idea of taking word vector representations as parameters
of a model fits well with the latent-variable modeling: a model is parameterized with
learnable word vectors, and the values of these word vectors are inferred by maximizing
or minimizing some objective function of the entire model. While such a learning process
is regular in most situations, the training objective varies somewhat. A difficulty with
this is that there is no obvious objective for directly signaling the training of word vectors.
A simple solution to this difficulty is to resort to well-defined NLP tasks. For example,
we can use word vectors to represent the input of an NLP model (such as language
modeling and text classification systems). Hence the word vectors can serve as standard
parameters of the model and be optimized as usual. Another solution is to develop “new”
training tasks. As in general machine learning problems, however, this is a wide-ranging
topic and there are so many choices to design a training objective. So a general method

3.6 Evaluating Word Embeddings 43

is to slightly update existing tasks. For example, the training objective of CBOW is
essentially based on the general word prediction problem, and has a similar form as that
used in language modeling. We will also see several new tasks that stem from language
modeling in Chapter 7. Yet in another sense these training tasks do not directly concern
themselves with the issue of learning word vectors, but generally offer a way to inject it
into a well-designed, efficient training procedure. Note that, in word vector applications,
we may not assume a supervised learning scenario: the learned word vectors can be
used in various systems that we have no idea of these application systems in the training
stage. This makes the problem more like an unsupervised learning problem because
there is no supervision information from the task where the word vectors are in actual
use. Sometimes, when the target application is accessible, and there is some labeled data,
we can have further training on those word vectors that have been trained somewhere.

3.6 Evaluating Word Embeddings
Having obtained the vector representation of words, we need to assess the quality of these
vectors. Ideally, we wish to evaluate the word vectors against a gold standard. However,
unfortunately, there is in general no such gold standard data since no one can annotate a vector
of numbers for describing a word. A simple solution in this case is to resort to the result of
some working system in which these word vectors are involved. Typically, there are two types
of evaluation approaches [Schnabel et al., 2015b].

• Extrinsic Evaluation (or end-to-end testing). We directly incorporate the word vectors
into an NLP system which is easy to evaluate, and see how the performance of the
system is influenced by the word vectors.

• Intrinsic Evaluation. We test the ability of the word vectors to model the given aspects
of morphological, syntactic, and semantic problems.

We will briefly describe below how these approaches are applied to word vector evaluation.

3.6.1 Extrinsic Evaluation
This approach is often taken in practice since it allows researchers and engineers to glean
a quick understanding of how a real-world system behaves when changing part of it. Since
many NLP systems use words as inputs, it is common to replace the symbolic representation
of words in these systems with the word vectors. So far, we have seen several systems of
this kind, commonly with an embedding layer transforming the one-hot representation to the
real-valued vector representation of each input word, see for example the neural language
model in Chapter 2.

Given such a system and a set of learned word vectors, we can use its performance as a
measure of the quality of the word vectors. Considering the way we use the word vectors, there
are two ways to train the system:

• Word Vectors as Fixed Parameters. We fix the word vectors, and train other parameters

44 Chapter 3. Words and Word Vectors

of the system as usual.

• Word Vectors as Initial Parameters. We train all the parameters in the same manner.
In this way, the provided word vectors can be seen as initial values of some of the
parameters, and would be updated during training.

Both methods fall under the area of pre-training, and could be extended to cover many
problems where part of a model is well trained before seeing the downstream task. By fixing
word vectors, we simplify the training process, leading to a quick evaluation of the word vectors.
In contrast, treating the word vectors as learnable parameters may increase the difficulty of
training, but could learn “new” word vectors that are better suited for the working system.

Note that although extrinsic evaluation is of interest to practitioners, the results from this
evaluation are highly dependent on the system in which we apply the word vectors. Because
developing a desired NLP system often involves sophisticated training and tuning procedures
other than word representation, the conclusion drawn by experimenting with such a complex
system is greatly influenced by the way we build and use the system. This is also the case for
many other NLP problems. For example, a tokenization method that is helpful for a machine
translation system might not be a good choice for an information retrieval system. Therefore,
to test the generalizability of the given word vectors, a widely-used approach is to carry out
experiments on a variety of NLP systems.

3.6.2 Intrinsic Evaluation
Although much of word representation research involves end-to-end tests in NLP applications,
it also involves examining the ability of the representation to deal with certain problems, such
as interpreting the relationship between two words. There are many ways to design intrinsic
evaluation, each addressing a specific problem. In the following we describe some of these
methods. For more comprehensive descriptions about intrinsic evaluation, the reader can refer
to papers on this subject [Baroni et al., 2014; Bakarov, 2018; Rogers et al., 2018].

1. Semantic Relatedness

Modeling the relatedness between words is perhaps the most popular method to evaluate the
quality of word vectors in NLP [Reisinger and Mooney, 2010; Huang et al., 2012; Baroni et al.,
2014]. It is fundamentally about computing some distance between words (call it the word
semantic distance or word distance for short). The motivation is that the word distance in
a word vector space should agree with the judgments on the word relatedness in our mind
[Rubenstein and Goodenough, 1965]. For example, we wish that dog is close to wolf, and
peach is far from television. Mathematically, there are a lot of ways to calculate the distance (or
angle) between two vectors. A simple and commonly used distance measure is the Euclidean
distance. Also, we can compute the cosine similarity of two vectors to obtain a score in the
interval [−1,1]20.

In evaluation, we are given a set of word pairs, each of which is assigned an expected

20It is often to use the absolute value of the cosine score so that 0 indicates two vectors in the same direction and
1 indicates two orthogonal vectors.

3.6 Evaluating Word Embeddings 45

distance by humans. Then, given a pair of words, we compare the expected distance with
the distance in the word vector space. The quality of the word vectors is reflected in the
difference between the two distances. However, a difficulty here is that there is, in practice,
no gold-standard distance between words. Even for humans, it is still very difficult to give
an exact number to describe how close a word is to another. An alternative method in this
case is to categorize the distance into a few categories or rating scores, such as an integer in
[1,5] [Reisinger and Mooney, 2010]. This greatly reduces the difficulty in data annotation.
Another way to reduce the difficulty is to let the model find the most similar word in a small
set of candidates to a given word. Such a method prevents us from predicting an absolute
distance between words. Instead we only need some mechanism to obtain the relative distance
or similarity between words [Baroni et al., 2014].

Judging the relationship between words, however, may result in a highly ambiguous
task because of the ambiguous nature of language use and understanding. In general, many
factors may affect one’s thoughts on how words are related [Faruqui et al., 2016]. For
example, corn and cornea are similar if we consider string overlaps in the suffix, but they are
semantically dissimilar because they refer to different meanings. The ambiguity also comes
from the definition of relatedness. Sometimes, relatedness and similarity are two terms used
interchangeably but they may refer to different concepts. For example, car is related to road,
but in another sense car is similar to van. Another problem is that the meaning of a word is
often context-dependent. This makes it more difficult to establish the relationship between
words with multiple different meanings (i.e., polysemy). Broadly speaking, this is an inherent
problem with statistic word vector models where every word is assumed to be mapped to a
single vector. For contextualized modeling of word vectors, we will describe in the following
chapters several methods that consider a word to be different in representation given different
contexts.

2. Word Analogy

Word analogy is concerned with modeling analogical relations between pairs of words. The
assumption here is that the relation between words can be captured by performing simple
algebraic operations on the corresponding word vectors. A well-known example is the one
presented in Mikolov et al. [2013d]’s paper, where it is found that the way a word is related to
another word can be described by vector subtraction. This leads to an interesting result: if we
subtract man’s word vector from king’s word vector, and add woman’s word vector to it, then
we will obtain a word vector close to queen’s. That is

eking −eman +ewoman ≈ equeen (3.61)

Formally, word analogy is a task of comparing two word pairs (a,a∗) and (b,b∗). An
analogy can be made if the way a is related to a∗ is similar to the way b is related to b∗. This
essentially reflects some sort of linguistic regularity in word vectors, which can be expressed

46 Chapter 3. Words and Word Vectors

by using vector subtraction:

ea∗ −ea ≈ eb∗ −eb (3.62)

The word analogy can be framed as an analogical reasoning task: we try to predict eb∗
using ea, ea∗ and eb. More specifically, we wish ea∗ −ea+eb to be close to eb∗ if (a,a∗) and
(b,b∗) hold similar relations. Also, improvements can be made on such a formulation. For
example, we can consider the angle between vectors ea∗ −ea and eb∗ −eb, rather than the
difference in ea∗ −ea+eb and eb∗ [Levy and Goldberg, 2014b].

Word analogy provides a simple way to examine the linearity property of a word vector
model which is not typically involved in classic methods. An interesting point here is that the
recent word vector models exhibit good linear behavior, although we do not consider this in
modeling and/or training. It also gives researchers useful insights into the models learned by
those methods and into potential ways of applying these models [Levy and Goldberg, 2014b;
Linzen, 2016; Allen and Hospedales, 2019]. On the other hand, word analogy is not a general-
purpose method. In many cases, it does not correlate well with the performance of downstream
systems, and is thereby used as a way to study certain issues of word representation.

3. Word Categorization (or Clustering)

Another way to see how well the word vectors correlate with our understanding of word
meaning is to see how well these vectors can be categorized into meaningful groups. This
is often achieved by performing clustering algorithms on the word vectors. We wish that
similar words are grouped into the same cluster, and dissimilar words are grouped into different
clusters. For example, apple, grape, peach, and orange belong to the same group of words
because they are all fruits. An advantage of this kind of evaluation is that many clustering
algorithms and word clustering benchmarks have been developed and are straightforwardly
applicable here. On the other hand, as in most clustering tasks, there are practical issues that
we have to deal with, such as determining the number of clusters.

In machine learning, most clustering methods require computing the distance between
data points. In this sense, word clustering is essentially based on the same idea of modeling
the word relatedness, though we do not need to judge the quality of the distance in this case.
This shows some intrinsic connections among different evaluation methods. However, as a
side-effect, word clustering inherits the same problem with related methods (such as semantic
relatedness). As discussed in Section 3.6.2, it is difficult to design a gold-standard criterion to
measure how well the words are clustered, since we can group words into clusters in so many
different ways.

4. Subconscious Evaluation

The general idea of subconscious evaluation is to examine the correlation between the use
of word vectors and subconscious behaviors or brain functions when one reads text. A wide
variety of psycholinguistic phenomena can be used as the test [Mitchell and Lapata, 2010]. A
well-known method is priming which studies how a person responds to stimuli [Schacter and

3.6 Evaluating Word Embeddings 47

Buckner, 1998; Tulving and Schacter, 1990; Wiggs and Martin, 1998]. For example, we can
design an experiment to test the speed with which a person reads a given word (call it the target
word) when it follows another word (call it the prime word) [Meyer and Schvaneveldt, 1971;
Lund, 1995; McNamara, 2005]. If the target word t is read more quickly when following a word
a than when following another word b, then we would say that t correlates more with a than b.
Then, we can use such a psychological measure to judge the distance or similarity between
word vectors. To obtain the time the participant takes in reading, a popular method is to frame it
as a self-paced reading task21. Another method is to use eye-tracking to automatically record
the information of the eye movement and position. By using these techniques, several methods
and data sets have been used for studying a variety of psycholinguistic issues [Mitchell and
Lapata, 2010; Hutchison et al., 2013; Lapesa and Evert, 2014; Klerke et al., 2015; Søgaard,
2016; Auguste et al., 2017].

In addition to tracking human behavior in reading, we can monitor brain activity by using
neurological tests, such as functional magnetic resonance imaging (fMRI) and electroen-
cephalography (EEG) [Devereux et al., 2010; Søgaard, 2016; Bhattasali et al., 2020]. For
example, it is often hypothesized that, when a person reads and understands words, some
activations occur in his or her brain. Therefore we can link the meaning of words with brain
functions. On the other hand, an objection is that the knowledge about the mechanism behind
these processes is still limited, making it difficult to correlate the results of these studies with
real-world NLP systems [Baroni et al., 2014; Bakarov, 2018].

5. Linguistically Motivated Evaluation

Linguistically motivated evaluation is based on an assumption that word vectors learned
from data should explain linguistic resources. One interesting approach to performing such
evaluation is to align the word vectors with some representations of the entries of a dictionary
[Tsvetkov et al., 2015; Acs and Kornai, 2016]. The quality of the word vectors is measured
in terms of the correlation between these word vectors and the linguistic representations22.
Apart from standard dictionaries, we can compare the word vectors against a semantic network,
such as WordNet. In this way, the evaluation would be improved if we consider graph-based
algorithms on resources of this type [Agirre et al., 2009].

3.6.3 Visualization
Taking word vectors as data points, we can adopt general approaches to visualizing multi-
dimensional data to locate data points in a 2 or 3-dimensional map. In this way, we can analyze
patterns encoded in these word vectors and interpolate the relationship between words. Since a
word vector generally has hundreds of dimensions in practical applications, we need dimension
reduction techniques to map it to 2 or 3-dimensional data for visualization. One method is PCA
which seeks a linear mapping from a high-dimensional space to a low-dimensional space (see

21In self-paced reading, the text is segmented into words (or phrases), and the participant is asked to press a
button to request the display of a segment.

22A linguistic representation can be seen as a feature vector that is manually built on a linguistic resource (such
as a dictionary).

48 Chapter 3. Words and Word Vectors

Section 3.3.3). Another well-known method is t-distributed stochastic neighbor embedding
(t-SNE) [Hinton and Roweis, 2002; Van der Maaten and Hinton, 2008]. t-SNE is a non-linear
dimension reduction method, and has been widely used in visualizing high-dimensional data.
Apart from these, one can consider the methods presented in Section 3.3.3 as well as those
tailored for visualizing word vectors [Zhang et al., 2019b; Liu et al., 2017].

3.7 Summary
In this chapter we discussed two interesting problems in NLP: tokenization and word (or
token) representation. First, we introduced models for dividing a sentence into units that are
meaningful and/or well suited for downstream tasks. Second, we introduced the idea of word
vector models with particular attention to learning both count-based high-dimensional models
and real-valued low-dimensional models. While most of these models are simple, they are
often used in complex NLP systems and form the basis of many advanced models, as will be
shown in the following chapters.

Tokenization (or segmentation) is an important “operation” in NLP, commonly as a pre-
processing step for many applications [Webster and Kit, 1992]. However, the use of the term
tokenization is somewhat misleading because it originally refers to a process of dividing a
string into substrings and is more often used as a general computer science term. In NLP,
tokenization can draw on concepts and results from several sub-fields. On the linguistics side,
tokenization is highly related to two fundamental questions: how words are composed and how
words form sentences. It is therefore natural to use theories and methods of morphology and
syntax to define the basic units of a language, leading to many rule-based tokenization systems
covering a variety of languages. On the machine learning side, tokenization has long been cast
as a problem of learning token boundaries from data in either a supervised or unsupervised
manner [Mielke et al., 2021]. A common approach is to first annotate some tokenized text with
human knowledge about what basic language units should be, and then learn to tokenize on
this annotated data (see Section 3.1.3). More recently, learning tokenizers without linguistic
constraints has been found to be promising (see Section 3.1.4). Since natural languages are
themselves sets of characters or byte sequences, it is also possible to segment a sentence into
characters or bytes [Ling et al., 2015; Lee et al., 2017]. The tokenization-free method in
general may help when one wants a language-independent tokenizer and a simpler pipeline for
processing the text.

From a more mathematical perspective, tokenization can be thought of as a mapping from
the input data to a sequence of variables. In this way, the concept of tokenization can be
generalized by relaxing the assumption that both the input and output variables are constrained
to discrete values. In recent image and speech processing systems, for example, researchers
try to transform continuous input data (such as pixels and acoustic signals) into a sequence
of vector-based “tokens” [Schneider et al., 2019; Dosovitskiy et al., 2021]. Some interesting
extensions of these ideas are even to transform image and speech data to a sequence of indices,
leading to approaches bearing a closer relation to NLP [Oord et al., 2017; Baevski et al., 2020;
Hsu et al., 2021].

3.7 Summary 49

Given that the input text is divided into smaller pieces, a natural next step is to represent
these pieces in some way that captures their underlying features. While representing language
units as vectors of numbers has been the de facto standard for the development of recent NLP
systems, the work on vector representation dates back to the very early days of computational
linguistics. According to many popular textbooks and papers [Manning and Schütze, 1999;
Jurafsky and Martin, 2008], the idea of using a distribution to represent word meaning, also
known as distributional semantics, started in the 1950s with the rise of empiricism. At the
time, most of the work was influenced by Harris’s distributionalism [Harris, 1954] and related
work [Firth, 1957; Wittgenstein, 1953]. In parallel, Osgood [1952] proposed to define the
meaning of a concept as a point in a multidimensional space in a psychological manner. All
these ideas greatly influenced the way linguistics and NLP people think of word meaning in
the following decades.

Modern approaches to distributional semantics appeared in the 1990s, mainly as a result of
the revival of empiricism in artificial intelligence [Church, 2011]. Most of these were driven by
the distributional hypothesis: words having similar meanings are more likely to occur in similar
contexts. In response, a number of methods were developed, differing in the way the contexts
are modeled. For example, a context can be the words in a context-window, or the words
with a relation to the given word in a syntax tree. Apart from those mentioned in Section 3.3,
methods that are not covered in this chapter include hyperspace analogue of language (HAL)
[Lund and Burgess, 1996], distributional memory [Baroni and Lenci, 2010], dependency-based
semantic space models [Padó and Lapata, 2007], and so on. For comprehensive descriptions of
distributional semantics models, the reader can refer to papers that survey this topic [Lenci,
2018; Mitchell and Lapata, 2010]. Note that most of the above-mentioned work can be
thought of as instances of the vector space model which can deal with problems beyond lexical
semantics. For example, in compositional distributional semantics, the meaning of a phrase or
a sentence can be represented as a vector obtained by performing simple algebraic operations
on the word vectors [Clark et al., 2008; Mitchell and Lapata, 2010; Blacoe and Lapata, 2012].

While distributional models have attracted attention in the NLP community for many years,
word embedding models that learn low-dimensional, real-valued word vectors directly from
texts have been a predominant approach recently. As described in Sections 3.4-3.5, models
of this type do not depend on strong assumptions like the distributional hypothesis, but learn
to represent a word as a vector of hidden attributes (or features) describing the word. The
resulting model is an extension of the feature-based semantic model [Markman, 2013]. A
recognized difference with traditional feature-based methods is that we do not need to manually
define the features. We instead take these features as parameters of the model, and train them
in the way as in common (supervised) machine learning systems.

Formulating word representation as an end-to-end learning problem brings with it several
benefits. One of the benefits is that new features can be found because no constraints are
placed on how these features are learned and interpreted. On the other hand, as shown in
Section 3.6.2, the word vectors obtained in this way indeed show some linguistic properties,
though the word embedding models are not trained to achieve this. Another benefit is that
the word embedding models also fall in the vector space models in NLP, enabling the easy

50 Chapter 3. Words and Word Vectors

use of word vectors in various applications. There are also many examples of methods that
attempt to improve standard word embedding systems. For example, researchers have tried to
incorporate additional linguistic information into word vectors [Levy and Goldberg, 2014a;
Cotterell and Schütze, 2015; Tissier et al., 2017], and to learn universal word vectors across
multiple languages [Klementiev et al., 2012; Mikolov et al., 2013b; Ammar et al., 2020; Smith
et al., 2017; Artetxe et al., 2017].

Widely associated with neural models in NLP, the idea of distributed representation has
been successfully applied to problems beyond word representation, e.g., sentence representation
[Le and Mikolov, 2014; Kalchbrenner et al., 2014; Kiros et al., 2015; Hill et al., 2016; Arora
et al., 2017; Lin et al., 2017; Conneau et al., 2017], tree/graph-structure representation [Socher
et al., 2011; Perozzi et al., 2014; Tai et al., 2015; Grover and Leskovec, 2016], and so on. In
particular, contextualized representations of words, though not discussed in this chapter, are
generally appreciated for modeling sequential data [McCann et al., 2017; Peters et al., 2018;
Devlin et al., 2019].

Bibliography

[Acs and Kornai, 2016] Judit Acs and András Kornai. Evaluating embeddings on dictionary-based
similarity. In Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for NLP,
pages 78–82, 2016.

[Agirre et al., 2009] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalová, Marius Pasca,
and Aitor Soroa. A study on similarity and relatedness using distributional and wordnet-based
approaches. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 19–27, 2009.

[Allen and Hospedales, 2019] Carl Allen and Timothy Hospedales. Analogies explained: Towards
understanding word embeddings. In International Conference on Machine Learning, pages 223–231.
PMLR, 2019.

[Ammar et al., 2020] Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guillaume Lample, Chris
Dyer, and Noah A Smith. Massively multilingual word embeddings. In Proceedings of the 8th
International Conference on Learning Representations (ICLR), 2020.

[Aronoff and Fudeman, 2011] Mark Aronoff and Kirsten Fudeman. What is morphology?, volume 8.
John Wiley & Sons, 2011.

[Arora et al., 2017] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline
for sentence embeddings. In International conference on learning representations, 2017.

[Artetxe et al., 2017] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Learning bilingual word
embeddings with (almost) no bilingual data. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 451–462, 2017.

[Auguste et al., 2017] Jeremy Auguste, Arnaud Rey, and Benoit Favre. Evaluation of word embed-
dings against cognitive processes: primed reaction times in lexical decision and naming tasks. In
Proceedings of the 2nd workshop on evaluating vector space representations for NLP, pages 21–26,
2017.

[Baevski et al., 2020] Alexei Baevski, Steffen Schneider, and Michael Auli. vq-wav2vec: Self-
supervised learning of discrete speech representations. In Proceedings of ICLR 2020, 2020.

[Bakarov, 2018] Amir Bakarov. A survey of word embeddings evaluation methods. arXiv preprint
arXiv:1801.09536, 2018.

[Bapna et al., 2018] Ankur Bapna, Mia Xu Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training
deeper neural machine translation models with transparent attention. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 3028–3033, 2018.

[Barber, 2012] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

52 BIBLIOGRAPHY

[Baroni and Lenci, 2010] Marco Baroni and Alessandro Lenci. Distributional memory: A general
framework for corpus-based semantics. Computational Linguistics, 36(4):673–721, 2010.

[Baroni et al., 2014] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a
systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 238–247, 2014.

[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[Bhattasali et al., 2020] Shohini Bhattasali, Jonathan Brennan, Wen-Ming Luh, Berta Franzluebbers,
and John Hale. The alice datasets: fMRI & EEG observations of natural language comprehension.
In Proceedings of the 12th Language Resources and Evaluation Conference, pages 120–125, 2020.

[Blacoe and Lapata, 2012] William Blacoe and Mirella Lapata. A comparison of vector-based
representations for semantic composition. In Proceedings of the 2012 joint conference on empirical
methods in natural language processing and computational natural language learning, pages 546–
556, 2012.

[Blei, 2012] David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84,
2012.

[Blei et al., 2003] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[Brown et al., 1993] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–311, 1993.

[Buttcher et al., 2016] Stefan Buttcher, Charles LA Clarke, and Gordon V Cormack. Information
retrieval: Implementing and evaluating search engines. MIT Press, 2016.

[Church, 2011] Kenneth Church. A pendulum swung too far. Linguistic Issues in Language Technology,
6, 2011.

[Church and Hanks, 1990] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual
information, and lexicography. Computational Linguistics, 16(1):22–29, 1990. URL https:

//aclanthology.org/J90-1003.

[Clark et al., 2008] Stephen Clark, Bob Coecke, and Mehrnoosh Sadrzadeh. A compositional distribu-
tional model of meaning. In Proceedings of the Second Quantum Interaction Symposium (QI-2008),
pages 133–140. Oxford, 2008.

[Cline and Dhillon, 2014] Alan Kaylor Cline and Inderjit S. Dhillon. Computation of the singular value
decomposition. In Leslie Hogben, editor, Handbook of Linear Algebra (2dn ed.). CRC Press, 2014.

[Conneau et al., 2017] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine
Bordes. Supervised learning of universal sentence representations from natural language inference
data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 670–680, 2017.

[Cotterell and Schütze, 2015] Ryan Cotterell and Hinrich Schütze. Morphological word-embeddings.
In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1287–1292, 2015.

[Deerwester et al., 1990] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,

https://aclanthology.org/J90-1003
https://aclanthology.org/J90-1003

BIBLIOGRAPHY 53

and Richard Harshman. Indexing by latent semantic analysis. Journal of the American society for
information science, 41(6):391–407, 1990.

[Dempster et al., 1977] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

[Devereux et al., 2010] Barry Devereux, Colin Kelly, and Anna Korhonen. Using fmri activation to
conceptual stimuli to evaluate methods for extracting conceptual representations from corpora. In
Proceedings of the NAACL HLT 2010 First Workshop on Computational Neurolinguistics, pages
70–78, 2010.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[Dosovitskiy et al., 2021] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In Proceedings of ICLR 2021, 2021.

[Faruqui et al., 2016] Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Problems
with evaluation of word embeddings using word similarity tasks. In Proceedings of the 1st Workshop
on Evaluating Vector-Space Representations for NLP, pages 30–35, 2016.

[Firth, 1957] John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,
1957.

[Freedman et al., 2007] David Freedman, Robert Pisani, and Roger Purves. Statistics (4th ed.). W. W.
Norton & Company, 2007.

[Friedl, 2006] Jeffrey Friedl. Mastering Regular Expressions (3rd ed.). O’Reilly Media, 2006.

[Gage, 1994] Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38,
1994.

[Gladkova et al., 2016] Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. Analogy-based
detection of morphological and semantic relations with word embeddings: what works and what
doesn’t. In Proceedings of the NAACL Student Research Workshop, pages 8–15, 2016.

[Grover and Leskovec, 2016] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864, 2016.

[Guyon and Elisseeff, 2003] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[Harris, 1954] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[Hill et al., 2016] Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations
of sentences from unlabelled data. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1367–1377, 2016.

[Hinton and Roweis, 2002] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding.
Advances in neural information processing systems, 15, 2002.

54 BIBLIOGRAPHY

[Hsu et al., 2021] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan
Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning
by masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 29:3451–3460, 2021.

[Huang et al., 2012] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng.
Improving word representations via global context and multiple word prototypes. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 873–882, 2012.

[Hutchison et al., 2013] Keith A Hutchison, David A Balota, James H Neely, Michael J Cortese,
Emily R Cohen-Shikora, Chi-Shing Tse, Melvin J Yap, Jesse J Bengson, Dale Niemeyer, and Erin
Buchanan. The semantic priming project. Behavior research methods, 45(4):1099–1114, 2013.

[Jackendoff, 1992] Ray S Jackendoff. Semantic structures, volume 18. MIT press, 1992.

[Jolliffe, 2002] Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

[Joulin et al., 2017] Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov. Bag of
tricks for efficient text classification. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431, 2017.

[Jurafsky and Martin, 2008] Dan Jurafsky and James H. Martin. Speech and Language Processing
(2nd ed.). Prentice Hall, 2008.

[Kalchbrenner et al., 2014] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolu-
tional neural network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 655–665, 2014.

[Kelly and Stone, 1975] Edward F. Kelly and Philip J. Stone. Computer recognition of English word
senses. American Elsevier Pub, 1975.

[Kiros et al., 2015] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Skip-thought vectors. Advances in neural information processing
systems, 28, 2015.

[Klementiev et al., 2012] Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. Inducing crosslingual
distributed representations of words. In Proceedings of COLING 2012, pages 1459–1474, 2012.

[Klerke et al., 2015] Sigrid Klerke, Héctor Martínez Alonso, and Anders Søgaard. Looking hard: Eye
tracking for detecting grammaticality of automatically compressed sentences. In Proceedings of the
20th Nordic Conference of Computational Linguistics (NODALIDA 2015), pages 97–105, 2015.

[Knight, 2018] Linda Knight. The sparrow tweets, 2018.

[Koehn et al., 2007] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello
Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180, 2007.

[Kudo, 2018] Taku Kudo. Subword regularization: Improving neural network translation models with
multiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 66–75, 2018.

[Kudo and Richardson, 2018] Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing. In Proceedings of the

BIBLIOGRAPHY 55

2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pages 66–71, 2018.

[Kupiec, 1992] Julian Kupiec. Robust part-of-speech tagging using a hidden markov model. Computer
Speech & Language, 6:225–242, 1992.

[Lafferty et al., 2001] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th
International Conference on Machine Learning 2001, pages 282–289, 2001.

[Landauer et al., 1998] Thomas K Landauer, Peter W Foltz, and Darrell Laham. An introduction to
latent semantic analysis. Discourse processes, 25(2-3):259–284, 1998.

[Lapesa and Evert, 2014] Gabriella Lapesa and Stefan Evert. A large scale evaluation of distributional
semantic models: Parameters, interactions and model selection. Transactions of the Association for
Computational Linguistics, 2:531–546, 2014.

[Lawson, 2003] Mark V. Lawson. Finite Automata (1st ed.). Chapman and Hall/CRC, 2003.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–1196. PMLR, 2014.

[Lee et al., 2017] Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural
machine translation without explicit segmentation. Transactions of the Association for Computational
Linguistics, 5:365–378, 2017.

[Lenci, 2018] Alessandro Lenci. Distributional models of word meaning. Annual review of Linguistics,
4:151–171, 2018.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 302–308, 2014a.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and
explicit word representations. In Proceedings of the eighteenth conference on computational natural
language learning, pages 171–180, 2014b.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. Advances in neural information processing systems, 27, 2014c.

[Levy et al., 2015] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the association for computational
linguistics, 3:211–225, 2015.

[Li et al., 2020] Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du, Tong Xiao, Huizhen Wang, and
Jingbo Zhu. Shallow-to-deep training for neural machine translation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 995–1005,
2020.

[Lin et al., 2017] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. In Proceedings of the 5th
International Conference on Learning Representations (ICLR), 2017.

[Ling et al., 2015] Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramón Fermandez, Silvio
Amir, Luis Marujo, and Tiago Luís. Finding function in form: Compositional character models for
open vocabulary word representation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1520–1530, 2015.

56 BIBLIOGRAPHY

[Linzen, 2016] Tal Linzen. Issues in evaluating semantic spaces using word analogies. In Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for NLP, pages 13–18, 2016.

[Liu and Motoda, 2012] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and
data mining, volume 454. Springer Science & Business Media, 2012.

[Liu et al., 2017] Shusen Liu, Peer-Timo Bremer, Jayaraman J Thiagarajan, Vivek Srikumar, Bei Wang,
Yarden Livnat, and Valerio Pascucci. Visual exploration of semantic relationships in neural word
embeddings. IEEE transactions on visualization and computer graphics, 24(1):553–562, 2017.

[Lund, 1995] Kevin Lund. Semantic and associative priming in high-dimensional semantic space. In
Proc. of the 17th Annual conferences of the Cognitive Science Society, 1995, 1995.

[Lund and Burgess, 1996] Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces
from lexical co-occurrence. Behavior research methods, instruments, & computers, 28(2):203–208,
1996.

[Manning and Schütze, 1999] Chris Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, 1999.

[Manning et al., 2008] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[Markman, 2013] Arthur B Markman. Knowledge representation. Psychology Press, 2013.

[McCallum et al., 2000] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum en-
tropy markov models for information extraction and segmentation. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages 591–598, 2000.

[McCann et al., 2017] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. Advances in neural information processing systems, 30,
2017.

[McClave and Sincich, 2006] James T. McClave and Terry Sincich. Statistics (10th ed.). Prentice Hall,
2006.

[McNamara, 2005] Timothy P McNamara. Semantic priming: Perspectives from memory and word
recognition. Psychology Press, 2005.

[Meyer and Schvaneveldt, 1971] David E Meyer and Roger W Schvaneveldt. Facilitation in recognizing
pairs of words: evidence of a dependence between retrieval operations. Journal of experimental
psychology, 90(2):227, 1971.

[Mielke et al., 2021] Sabrina J. Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey,
Matthias Gallé, Arun Raja, Chenglei Si, Wilson Y. Lee, Benoît Sagot, and Samson Tan. Between
words and characters: A brief history of open-vocabulary modeling and tokenization in nlp. arXiv
preprint arXiv:2112.10508, 2021.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In Proceedings of the International Conference on Learning
Representations (ICLR 2013), 2013a.

[Mikolov et al., 2013] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among
languages for machine translation. arXiv preprint arXiv:1309.4168, 2013b.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In Proceedings of

BIBLIOGRAPHY 57

the 26th International Conference on Neural Information Processing Systems - Volume 2, pages
3111–3119, 2013c.

[Mikolov et al., 2013] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in
continuous space word representations. In Proceedings of the 2013 conference of the north american
chapter of the association for computational linguistics: Human language technologies, pages
746–751, 2013d.

[Mitchell and Lapata, 2010] Jeff Mitchell and Mirella Lapata. Composition in distributional models of
semantics. Cognitive science, 34(8):1388–1429, 2010.

[Mnih and Kavukcuoglu, 2013] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings
efficiently with noise-contrastive estimation. Advances in neural information processing systems, 26,
2013.

[Montague, 1974] Richard Montague. Universal grammar. In R. Thomason, editor, Formal Philosophy:
Selected Papers of Richard Montague. Yale University Press, 1974.

[Oord et al., 2017] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete
representation learning. Advances in neural information processing systems, 30, 2017.

[Osgood, 1952] Charles E Osgood. The nature and measurement of meaning. Psychological bulletin,
49(3):197, 1952.

[Padó and Lapata, 2007] Sebastian Padó and Mirella Lapata. Dependency-based construction of
semantic space models. Computational Linguistics, 33(2):161–199, 2007.

[Pascanu et al., 2013] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages 1310–1318.
PMLR, 2013.

[Pennington et al., 2014] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Proceedings of Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710, 2014.

[Peters et al., 2018] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), 2018.

[Pham et al., 2019] Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus Müller, Sebastian
Stüker, and Alexander Waibel. Very deep self-attention networks for end-to-end speech recognition.
arXiv preprint arXiv:1904.13377, 2019.

[Porter, 1980] Martin F Porter. An algorithm for suffix stripping. Program, 1980.

[Radford et al., 2018] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. OpenAI, 2018.

[Reisinger and Mooney, 2010] Joseph Reisinger and Raymond Mooney. Multi-prototype vector-space
models of word meaning. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 109–117, 2010.

58 BIBLIOGRAPHY

[Rogers et al., 2018] Anna Rogers, Shashwath Hosur Ananthakrishna, and Anna Rumshisky. What’s
in your embedding, and how it predicts task performance. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2690–2703, 2018.

[Rubenstein and Goodenough, 1965] Herbert Rubenstein and John B Goodenough. Contextual
correlates of synonymy. Communications of the ACM, 8(10):627–633, 1965.

[Schacter and Buckner, 1998] Daniel L Schacter and Randy L Buckner. Priming and the brain. Neuron,
20(2):185–195, 1998.

[Schnabel et al., 2015] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Eval-
uation methods for unsupervised word embeddings. In Proceedings of the 2015 conference on
empirical methods in natural language processing, pages 298–307, 2015a.

[Schnabel et al., 2015] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Eval-
uation methods for unsupervised word embeddings. In Proceedings of the 2015 conference on
empirical methods in natural language processing, pages 298–307, 2015b.

[Schneider et al., 2019] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli.
wav2vec: Unsupervised pre-training for speech recognition. In INTERSPEECH, 2019.

[Schuster and Nakajima, 2012] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice
search. In Proceedings of International Conference on Acoustics, Speech and Signal Processing,
pages 5149–5152, 2012.

[Sennrich et al., 2016] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation
of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

[Smith et al., 2017] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. Offline
bilingual word vectors, orthogonal transformations and the inverted softmax. In Proceedings of the
5th International Conference on Learning Representations (ICLR), 2017.

[Socher et al., 2011] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural
scenes and natural language with recursive neural networks. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 129–136, 2011.

[Søgaard, 2016] Anders Søgaard. Evaluating word embeddings with fmri and eye-tracking. In
Proceedings of the 1st workshop on evaluating vector-space representations for NLP, pages 116–121,
2016.

[Solorio-Fernández et al., 2020] Saúl Solorio-Fernández, J Ariel Carrasco-Ochoa, and José Fco
Martínez-Trinidad. A review of unsupervised feature selection methods. Artificial Intelligence
Review, 53(2):907–948, 2020.

[Stewart, 1993] Gilbert W Stewart. On the early history of the singular value decomposition. SIAM
review, 35(4):551–566, 1993.

[Szabó, 2020] Zoltán Gendler Szabó. Compositionality. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2020 edition,
2020.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 1556–1566, 2015.

BIBLIOGRAPHY 59

[Telgarsky, 2016] Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning
theory, pages 1517–1539. PMLR, 2016.

[Tissier et al., 2017] Julien Tissier, Christophe Gravier, and Amaury Habrard. Dict2vec: Learning word
embeddings using lexical dictionaries. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 254–263, 2017.

[Tsvetkov et al., 2015] Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris
Dyer. Evaluation of word vector representations by subspace alignment. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 2049–2054, 2015.

[Tulving and Schacter, 1990] Endel Tulving and Daniel L Schacter. Priming and human memory
systems. Science, 247(4940):301–306, 1990.

[Van der Maaten and Hinton, 2008] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of machine learning research, 9(11), 2008.

[Wang et al., 2019] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. Learning deep transformer models for machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pages 1810–1822, 2019.

[Webster and Kit, 1992] Jonathan J Webster and Chunyu Kit. Tokenization as the initial phase in nlp.
In Proceedings of COLING 1992 volume 4: The 14th international conference on computational
linguistics, 1992.

[Wiggs and Martin, 1998] Cheri L Wiggs and Alex Martin. Properties and mechanisms of perceptual
priming. Current opinion in neurobiology, 8(2):227–233, 1998.

[Wittgenstein, 1953] Ludwig Wittgenstein. Philosophical investigations. Philosophische Untersuchun-
gen. Macmillan, 1953.

[Wright and Ma, 2022] John Wright and Yi Ma. High-Dimensional Data Analysis with Low-
Dimensional Models: Principles, Computation, and Applications. Cambridge University Press,
2022.

[Zhang et al., 2019] Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with
depth-scaled initialization and merged attention. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 898–909, 2019a.

[Zhang et al., 2019] Juexiao Zhang, Yubei Chen, Brian Cheung, and Bruno A Olshausen. Word
embedding visualization via dictionary learning. arXiv preprint arXiv:1910.03833, 2019b.

[Zhao et al., 2006] Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang Lu. Effective tag set selection
in Chinese word segmentation via conditional random field modeling. In Proceedings of the 20th
Pacific Asia Conference on Language, Information and Computation, pages 87–94, 2006.

	3 Words and Word Vectors
	3.1 Tokenization
	3.1.1 Tokenization via Rules and Heuristics
	3.1.2 Tokenization as Language Modeling
	3.1.3 Tokenization as Sequence Labeling
	3.1.4 Learning Subwords

	3.2 Vector Representation for Words
	3.2.1 One-hot Representation
	3.2.2 Distributed Representation
	3.2.3 Compositionality and Contextuality

	3.3 Count-based Models
	3.3.1 Co-occurrence Matrices
	3.3.2 TF-IDF
	3.3.3 Low-Dimensional Models

	3.4 Inducing Word Embeddings from NLMs
	3.5 Word Embedding Models
	3.5.1 Word2Vec
	3.5.2 GloVe
	3.5.3 Remarks

	3.6 Evaluating Word Embeddings
	3.6.1 Extrinsic Evaluation
	3.6.2 Intrinsic Evaluation
	3.6.3 Visualization

	3.7 Summary

