
Tong Xiao

Jingbo Zhu

Natural Language Processing
Neural Networks and Large Language Models

NATURAL LANGUAGE PROCESSING LAB

NORTHEASTERN UNIVERSITY

&

NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

Copyright © 2021-2025 Tong Xiao and Jingbo Zhu

NATURAL LANGUAGE PROCESSING LAB, NORTHEASTERN UNIVERSITY

&
NIUTRANS RESEARCH

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Licensed under the Creative Commons Attribution-NonCommercial 4.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain
a copy of the License at http://creativecommons.org/licenses/by-nc/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF

ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

June 12, 2025

Tong Xiao and Jingbo Zhu
June, 2025

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
http://creativecommons.org/licenses/by-nc/4.0

https://github.com/NiuTrans/NLPBook

https://niutrans.github.io/NLPBook

Chapter 2

Foundations of Neural Networks

Artificial neural networks (or neural networks, or neural nets for short) are powerful
machine learning tools that have advanced the previous state-of-the-art in NLP in recent years.
However, although the history of neural networks can be traced back to the 1940s [McCulloch
and Pitts, 1943], for quite a long time neural networks have not been found to consistently
outperform other machine learning counterparts. The change began around 2006 when “new”
ideas were developed to learn deep neural networks [Hinton et al., 2006; Hinton, 2007]. Such
methods have since been known as deep learning. To date, deep learning has no doubt become
one of the most active, influential areas in artificial intelligence, while it has received benefits
from not only “deep” model architectures but also many, many techniques which help to learn
and use such models.

In this chapter, we will present the basic ideas of neural networks and deep learning.
The chapter is not cutting-edge but covers several important concepts and techniques that
are widely used in implementing neural systems. This includes basic model architectures of
neural networks, training and regularization methods, unsupervised learning methods, and
auto-encoders. We will also present an example of using neural networks to solve the language
modeling problem.

2.1 Multi-layer Neural Networks
To get started, we give a quick introduction to single-layer perceptrons, and extend them to a
more general case where multiple neural networks are stacked to form a more complex one.

2.1.1 Single-layer Perceptrons
Single-layer perceptrons (or perceptrons for short) may be the simplest neural networks that
have been developed for practical uses [Rosenblatt, 1957; Minsky and Papert, 1969]. Often, it
is thought of as a biologically-inspired program that transforms some input to some output.
A perceptron comprises a number of neurons connecting with input and output variables.
Figure 2.1 shows a perceptron where there is only one neuron. In this example, there are two
real-valued variables x1 and x2 for input and a binary variable y for output. The neuron reads

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook

4 Chapter 2. Foundations of Neural Networks

x2x1 1

y

w1 w2 b

neuron:

y =

{
1 x1 ·w1+x2 ·w2+ b > 0

0 otherwise

Figure 2.1: A perceptron with two input variables {x1,x2} and an output variable y. There are
two weights {w1,w2}, each corresponding to an input variable. The output depends on the
sum of the weighted input variables and the bias term b, say, y = 1 if x1 ·w1+x2 ·w2+ b > 0,
and y = 0 otherwise.

the input variables and determines which output value is chosen. This procedure is like what a
biological neuron does — it receives electrochemical inputs from other neurons and determines
if the electrochemical signal is passed along.

In a mathematical sense, a perceptron can be described as a mapping function. Let x be a
vector of input variables (i.e., a feature vector). An affine transformation of x is given by1:

f(x) = x ·w+ b

=
∑
i

xi ·wi+ b (2.1)

where w is a weight vector and b is a bias term. Then, a standard perceptron can be defined to
be:

y = ψ(f(x))

=

{
1 f(x)> 0

0 otherwise
(2.2)

where ψ(·) is a binary step function. Another name for ψ(·) is activation function. This links
the perceptron to the classification models discussed in Section 1. In other words, Eq. (2.2)
is a classifier itself: ψ(·) is a discriminate function defined on each input x, followed by an
activation function ψ(·) used for producing a desirable output2.

In case there are two or more neurons, we can group these neurons into a layer. As shown
in Figure 2.2, all the neurons in a layer receive signals from the same input feature vector but
are weighted in different ways. The output of the layer is a new feature vector, each entry of

1In mathematics, a linear transformation maps each vector v in a space to f(v) in another space, satisfying
for any vectors x and y, and scalars α and β, we have f(αx+βy) = αf(x)+βf(y). An affine transformation is
a linear transformation followed by a translation, often written in the form f(x)+b.

2Since the step function is a linear combination of indicator functions, the perceptron is a linear classifier.

2.1 Multi-layer Neural Networks 5

x1 x2 1

y1 y2 y3 y4

y1 y2 y3 y4 = ψ
(

x1 x2 × w21 w22 w23 w24

w11 w12 w13 w14

w1

xy

+ 1 × b1 b2 b3 b4

)b1

Figure 2.2: A single-layer perceptron involving four neurons. All these neurons receive
information from the input variables {x1,x2}. The perceptron describes a process in that 1)
we first transform the input vector of variables by an affine transformation f(x) = x ·w+b;
2) and then compute the output by feeding f(x) into the activation function ψ(·).

which corresponds to a neuron. More formally, taking ψ(·) and f(·) as vector functions, the
mathematical form of the single-layer perceptron is given by the equations:

y = ψ(f(x)) (2.3)

f(x) = x ·w+b (2.4)

where x ∈ Rm, y ∈ Rn, w ∈ Rm×n and b ∈ Rn.
Another note on the activation function. The step function, though extensively used, is not

the only form of the activation function. There are many different ways to perform activation.
For example, we can use the Softmax function if we want a probability distribution-like output;
we can use the Sigmoid function if we want a monotonic, continuous, easy-to-optimize output;
we can use the ReLU function if we want a ramp-shaped output. Table 2.1 shows several
commonly used activation functions. Note that, although a layer of neurons equipped with
these activations can be loosely called a single-layer perceptron, it can be categorized as a
more general concept, called a single-layer neural network. If not specified otherwise, we
will use the term single-layer neural network throughout this document.

2.1.2 Stacking Multiple Layers

A next obvious step is to create a neural network comprising multiple layers. To do this, all we
need is to stack multiple single-layer neural networks to form a multi-layer neural network.
See Figure 2.3 for an example. In this multi-layer neural network, the output of every neuron
of a layer is connected to all neurons of the following layer. So the network is fully connected.
Essentially, a multi-layer neural network describes a composition of functions. For example,
we can formulate the neural network in Figure 2.3 as a function yielded by composing a few
simple functions:

y = Softmax(Sigmoid(ReLU(x ·w1) ·w2) ·w3+b3) (2.5)

6 Chapter 2. Foundations of Neural Networks

Name Formula (for entry i of a vector)

Identity yi = si

Binary Step yi =

{
1 si > 0

0 si ≤ 0

Hyperbolic Tangent yi =
exp(si)− exp(−si)
exp(si)+exp(−si)

Hard Tangent yi =

1 si > 1

si −1≤ si ≤ 1

−1 si <−1

Sigmoid (Logistic) yi =
1

1+exp(−si)

ReLU (Rectified Linear Unit) yi =

{
si si > 0

0 si ≤ 0

Softplus yi = ln(1+exp(si))

Gaussian yi = exp
(
− 1

2
· (si−µi)

2

σ2i

)
Softmax yi =

exp(si)∑n
i′=1 exp(si′)

Maxout yi =max(s1, ...,sn)

Table 2.1: Activation functions (y = ψ(s), where s,y ∈ Rn). All these functions are vector
functions. We show formulas for entry i of the input and output vectors. µi and σ2i are the
mean and variance respectively.

where w1 ∈ R3×4, w2 ∈ R4×3, w3 ∈ R3×3, and b3 ∈ R3 are parameters.

Usually, the depth of a neural network is measured in terms of the number of layers. It is
called model depth sometimes. For example, taking the input vector as an additional layer,
the depth of the example network in Figure 2.3 is 4. A related concept is model width, which
is typically defined on a layer, rather than on the entire network. A common measure for the
width of a layer is the number of neurons in the layer. For example, the width of the output
layer in Figure 2.3 is 3. If all layers of a neural network are of the same width n, then we
can simply say that the model width is n. Both model depth and model width have important
implications for the properties of the resulting neural network. For example, it has been proven
that even a neural network with two layers of neurons and the Sigmoid activation function can
compute any function [Cybenko, 1989]. For stronger systems, promising improvements are
generally favorable when deepening neural networks.

Stacking layers results in a very common kind of neural network — feed-forward neural
networks (FFNNs). These networks are called “feed-forward” because there are no cycles in
connections between layers and all the data moves in one direction. We will see in this book
that most of today’s neural networks are feed-forward. A few exceptions will be presented in
Section 2.3.

2.1 Multi-layer Neural Networks 7

x1 x2 x3

1

y1 y2 y3

x

Layer 0 (Input)

=ReLU
(

×
w1

)
Layer 1

= Sigmoid
(

×
)

w2

Layer 2

= Softmax
(

×

w3

+ 1 ×
)b3

Layer 3 (Output)

y

Figure 2.3: A multi-layer neural network. The input layer consists of three variables
{x1,x2,x3}. These variables are fully connected to all neurons of layer 1. The output
of layer 1 is a new vector h1 =ReLU(x ·w1). It is then fully connected to layer 2, performing
the mapping h2 = Sigmoid(h1 ·w2). Its output h2 is fed into layer 3, which generates the
final output y = Softmax(h2 ·w3+b3). The parameters of this neural network are w1, w2,
w3 and b3.

2.1.3 Computation Graphs
Computation graphs are a common way of representing neural networks. As graphs in
mathematics, a computation graph is made up of nodes and edges between nodes. Each node
represents either a mathematical operation or a variable, and each edge represents the data flow
from one node to another. So computation graphs are directed3. Consider, for example, three

3While a number of machine learning models can be represented as undirected computation graphs, they are
not the focus of this document.

8 Chapter 2. Foundations of Neural Networks

functions:

y = x+w (2.6)

y = Softmax(x ·w+b) (2.7)

y = Sigmoid(x ·w1+b1)−ReLU(x ·w2) (2.8)

Figure 2.4 shows the computation graphs of these functions. From the parsing point of view, all
neural networks can be viewed as mathematical expressions. A computation graph is therefore
the representation of the result when parsing a mathematical expression. In this way, each node
of the graph yields a sub-expression, and the root node yields the whole expression.

In a computation graph, a node can be connected to multiple nodes beneath it and/or above
it. This enables the reuse of sub-graphs in representing complex functions. For example, in Eq.
(2.8), the variable x is used twice and the corresponding node has two outgoing edges. In fact,
organizing neural networks into computation graphs resembles the compositional nature of
neural networks — typically, a large network is built by composing small networks. Take Eq.
(2.8) as an instance. It can be rewritten as a system of three equations:

y = h1−h2 (2.9)

h1 = Sigmoid(x ·w1+b1) (2.10)

h2 = ReLU(x ·w2) (2.11)

In the composition operation, the nodes of h1 and h2 in Eq (2.9) are replaced by the graphs of
Eqs. (2.10-2.11).

The main use of computation graphs is in executing the function. This is exactly the same
thing as predicting the output of a neural network. The method is quite simple. First, the
nodes of the graph are topologically sorted such that they are placed in an order consistent
with the information flow. Then, given the values that are fed into the input nodes, the graph is
traversed in a way that we compute the output of each node and flush it to its parent nodes.
The final result is got out of the output node. This procedure is typically called a forward pass.
A forward pass can be efficient, as every node only needs to be visited once and its output can
be reused by multiple nodes without the need of recomputing the result. Moreover, a forward
pass can be optimized by reconstructing the graph. This can develop the reuse idea a bit more
and avoid unnecessary computation and memory consumption.

Another use of computation graphs is to compute gradients automatically. In training
neural networks, it is in general required the partial derivatives of the loss function L with
respect to every weight matrix (w) and every bias term (b), say ∂L

∂w and ∂L
∂b . Before seeing how

these partial derivatives are used in updating a model (see Section 2.4.1), though, we first give
an idea of computing derivatives in a computation graph. For example, consider the function
below:

y = ψ(x ·w1+b1) ·w2 (2.12)

2.1 Multi-layer Neural Networks 9

x w

+

y

(a) y = x+w

x w

· b

+

Soft.

y

(b) y = Softmax(x ·w+b)

x w1

· b1

+

Sigm.

x w2

·

ReLU

−

y

(c) y = Sigmoid(x ·w1+b1)−

ReLU(x ·w2)

Figure 2.4: Computation graphs of three example neural networks. The black boxes represent
the mathematical operations, and the colored boxes represent the variables. A mathematical
operation node has incoming edges from other nodes, and each of these nodes can be treated as
an argument of the operation. For example, in sub-figure (a), the addition node has two child
nodes labeled with x and w respectively. This node reads the output of the nodes x and w, and
generates the output y= x+w. Things are a bit interesting for larger graphs. In sub-graph (b),
the output of the dot node (i.e., x ·w) is passed along the edge to the addition node. Then, the
addition node computes the sum of x ·w and b as its output. We can repeat the same process
over all the mathematical operation nodes in a bottom-up manner, and get the final result of
computing the whole expression out of the top-most node.

To obtain ∂L
∂w1

, ∂L
∂b1

and ∂L
∂w2

, it is natural to use the chain rule of differentiation. For
example, for a composite function y = p(q(x)), the formula of the chain rule is given as:

∂y

∂x
=
∂p

∂q
· ∂q
∂x

(2.13)

But the analytic formula of a derivative based on Eq. (2.13) would make a lengthy equation.

10 Chapter 2. Foundations of Neural Networks

Instead, we can decompose a complex function into several functions, each standing for some
operation. Then, Eq. (2.12) can be rewritten as:

y = h1 ·w2 (2.14)

h1 = ψ(h2) (2.15)

h2 = h3+b1 (2.16)

h3 = x ·w1 (2.17)

All these variables can be understood in a better way from a computation graph: each
variable is a node of the graph, and nodes are connected by algebraic operations and function
compositions. Taking Eq. (2.13) and some basic knowledge of calculus, we compute the
derivatives of the variables, like these:

node 1:=
∂L

∂y
= δy (2.18)

node 2:=
∂L

∂h1
=

∂L

∂y
·wT

2 (2.19)

node 3:=
∂L

∂w2
= hT

1 · ∂L
∂y

(2.20)

node 4:=
∂L

∂h2
=

∂L

∂h1
⊙ψ′(h) (2.21)

node 5:=
∂L

∂h3
=

∂L

∂h2
(2.22)

node 6:=
∂L

∂b1
=

∂L

∂h2
(2.23)

node 7:=
∂L

∂x
=

∂L

∂h3
·wT

1 (2.24)

node 8:=
∂L

∂w1
= xT · ∂L

∂h3
(2.25)

where δy is the derivative of the loss with respect to the model output. δy depends on the
choice of the loss function, e.g., if we use the squared loss L= 1

2(y−ygold)
2, where ygold is

the benchmark, then δy = y−ygold. The above process is essentially a backward pass, as the
gradients are passed in a top-down fashion. Another name for this is error-propagation. It
has been the de facto standard for training deep neural networks. For a better understanding of
how forward and backward passes work, Figure 2.5 shows two running examples.

2.2 Example: Neural Language Modeling

Language modeling is a well-known NLP task that estimates a probability distribution over
sequences of words. Given a sequence of m words w1...wm, the probability Pr(w1, ...,wm) is

2.2 Example: Neural Language Modeling 11

x w1

· b1

+

ψ(·) w2

·

y (Output)

1

2 3

4

5 6

7 8

h3 = x ·w1

h2 = h3+b1

h1 = ψ(h2)

y = h1 ·w2

1

8

(a) Forward Pass

x w1

· b1

+

ψ(·) w2

·

Loss L

1

2 3

4

5 6

7 8

h3 = x ·w1

h2 = h3+b1

h1 = ψ(h2)

y = h1 ·w2

∂L
∂x

= ∂L
∂h3

·wT
1

∂L
∂w1

= xT · ∂L
∂h3

∂L
∂h3

= ∂L
∂h2

∂L
∂b1

= ∂L
∂h2

∂L
∂h2

= ∂L
∂h1

⊙ψ′(h)

∂L
∂h1

= ∂L
∂y

·wT
2

∂L
∂w2

= hT
1 · ∂L

∂y

∂L
∂y

1

8

(b) Backward Pass

Figure 2.5: The forward pass and backward pass for an example computation graph. In the
forward pass (left), the nodes are visited in an order from the input to the output, say, from node
8 to 1. On each node, we execute the corresponding function, such as addition, to generate the
output, which is then consumed by the subsequent nodes. In contrast, in the backward pass
(right), the nodes are visited in the reverse order, say, from node 1 to 8. During this process, we
pass the gradient of the loss (or error) from the output to the input, that is, for each node, we
compute the gradient at the input point of the node by using the chain rule, given the gradient
at the output point of the node.

given by the equation:

Pr(w1, ...,wm) =
m∏
i=1

Pr(wi|w1, ...,wi−1) (2.26)

As such, the language modeling problem is framed as predicting the next word given all
previous context words. A simple method of modeling Pr(wi|w1, ...,wi−1) is to condition the

12 Chapter 2. Foundations of Neural Networks

prediction on a context window that covers at most a certain number of words, like this:

Pr(wi|w1, ...,wi−1) ≈ Pr(wi|wi−n+1, ...,wi−1) (2.27)

where n is the window size. One way to estimate the probability is the n-gram language
modeling approach: we compute the relative frequency for each n-gram wi−n+1...wi, i.e.,
Pr(wi|wi−n+1, ...,wi−1) =

count(wi−n+1...wi)
count(wi−n+1...wi−1)

. While n-gram language models have domi-
nated the NLP field for a long time, they usually require huge tables for recording all those
n-gram probabilities. In consequence, the models will be very sparse if more and more texts
are used in training such models. This is also known as a kind of the curse of dimensionality.

Here we consider neural networks in addressing the language modeling problem [Bengio
et al., 2000; 2003]. Unlike n-gram language models, neural language models do not generalize
in a discrete space that requires an exponentially large number of distinct feature vectors as
more words and a large context are involved, but in a continuous space that encodes words via
dense, low-dimensional real vectors. In particular, a feed-forward network is utilized here to
predict how likely wi occurs given wi−n+1...wi−1.

Figure 2.6 presents the architecture of the feed-forward neural network based language
model (FFNNLM). The input is the context words wi−n+1...wi−1. Each is a discrete variable
choosing values from a vocabulary V . Since the neural network operates on vectors, all words
are vectorized as one-hot representations. In this case, the word w = Vk is a |V |-dimensional
vector in which entry k is 1 and other entries are all 0. For example, consider a vocabulary
V = {“I”,“you”,“he”,“’she”,“they”}. The one-hot representation of “you” is

w(“you”) =
[
0 1 0 0 0

]
(2.28)

While the one-hot vectors make word representations distinguishable, it may not appear
that we can gain too much by this because such representations cannot describe the closeness
between words, e.g., similar words should tend to be close in the vector space. If we relax the
indicator-based representations to real-valued representations, then it turns out that we can
obtain some word relationship by computing similarities between these vectors. To this end,
an effective technique is to transform one-hot representations to distributed representations.
More formally, let x be a one-hot vector of a word w. The distributed representation of the
word is a real-valued vector, given by:

e = x ·C (2.29)

where the representation e is a vector ∈ Rde , and de is the number of dimensions of the
representation. Each dimension of e can be viewed as some countable aspect of the word,
though it is not required to be interpreted by linguistics. C is a |V |×de matrix, of which the
k-th row corresponds to the vector for Vk. Hence, w ·C is to “select” a row from C. For

2.2 Example: Neural Language Modeling 13

0 1 0 0 0 0 0 1 1 0 0 0

e1 = x1 ·C e2 = x2 ·C e3 = x3 ·C

.2−1 .8 70 .3 8.2 1

70.8.2−1 .3 .2 8 1

h1 =TanH(h0 ·W1+B1)

.6.90 .6 −1

y = Softmax(h1 ·W2+B2)

x1 (w1) x2 (w2) x3 (w3)

e1 e2 e3

h0

h1

Pr(· |w1,w2,w3)

Embedding Layer
(Layer 1)

Hidden Layer
(Layer 2)

Output Layer
(Layer 3)

Figure 2.6: A neural language model [Bengio et al., 2003]. Blue boxes represent the layers
of the neural network. The input is three context words in their one-hot representations
{x1,x2,x3}, and the output is the probability distribution of the next word Pr(w4|w1,w2,w3).
First, an embedding layer is used to map each word into the distributed representation (i.e., the
word embedding). The embeddings of these words are concatenated to form a bigger vector
h0 such that the concatenated vector encodes all input information. Then, h0 is taken as the
input to a normal layer that performs the mapping h1 =TanH(h0 ·W1+B1). The final layer
reads h1 and produces a distribution over the vocabulary, i.e., y = Softmax(h1 ·W2+B2)
where yk = Pr(Vk|w1,w2,w3).

example, given C ∈ R5×3, the distributed representation of “you” is given by:

e(“you”) = w(“you”) ·C

=
[
0 1 0 0 0

]
·

73 12 0.1

12 0.5 18

37 0.7 28

61 0.4 23

62 11 0.4

=

[
12 0.5 18

]
(2.30)

14 Chapter 2. Foundations of Neural Networks

Eq. (2.29) implies an idea of learning to represent words, leading to a big development
of NLP. Typically, the vector e is called the word embedding, and the parameter matrix
C is called the embedding matrix. A number of methods may be used for learning word
embeddings, though we will tend to not focus on such methods in this chapter. The reader can
refer to Chapter 3 for a more detailed discussion on this topic.

To encode the context words {wi−n+1, ...,wi} (or {xi−n+1, ...,xi}), a simple method is to
concatenate the word embeddings {ei−n+1, ...,ei−1} as a new vector h0:

h0 = [ei−n+1, ...,ei−1]

The next part of the model is a 2-layer feed-forward neural network. The first layer, called
a hidden layer, is a standard layer of neurons, followed by the hyperbolic tangent activation
function. The layer produces a dh-dimensional vector:

h1 = TanH(h0 ·W1+B1) (2.31)

The second layer is the output layer. It produces a distribution over V . This can be formulated
as:

Pr(· |wi−n+1, ...,wi−1) = Softmax(h1 ·W2+B2) (2.32)

The parameters of the model are C ∈ R|V |×de , W1 ∈ R(n−1)de×dh , B1 ∈ Rdh , W2 ∈
Rdh×|V |, and B2 ∈ R|V |. A popular way to optimize these parameters is to minimize the cross-
entropy loss via gradient descent. Additionally, training can be improved via regularization.
These methods will be discussed in Sections 2.4 and 2.5.

A few remarks on the neural language model. First, by using distributed feature vectors,
“senses” can be shared in part by different words. This enables learnable word senses by which
the similarity between words is implicitly considered. An advantage of such a model is that
a small change in word vectors would not lead to a big change in the result. For example,
suppose we have seen “grapes are fruits” many times but have never seen “peaches are fruits”.
If “grapes” and “peaches” are close in the vector space, then we would say that n-grams
“grapes are fruits” and “peaches are fruits” are something similar. This differentiates neural
language models greatly from n-gram language models in which different surface forms mean
different meanings.

Second, the dense representation of words makes a smaller model. For example, a common
setting of de and dh is less than 1000, making the number of parameters under control. By
contrast, the size of an n-gram language model increases by a factor of |V | as n increases. For
example, there will be a huge table of probabilities for a common vocabulary if n is larger than
3.

Third, the neural language model is computationally expensive because of the heavy use of
vector and matrix operations, such as matrix multiplication. This is a common problem with
most of deep neural network-based systems. A common solution is to break the computation
problem into independent sub-problems so that these sub-problems can be handled in parallel.

2.3 Basic Model Architectures 15

At a lower level, one can use GPUs or other parallel computing devices to speed up linear
algebra operators. At a higher level, one can distribute parts of the model or parts of the data to
multiple devices for model-level or task-level speed-ups.

2.3 Basic Model Architectures
We now describe, in more detail, several basic building blocks for neural networks. They are
widely used in developing state-of-the-art neural models in NLP.

2.3.1 Recurrent Units
Recurrent neural networks (RNNs) are a class of neural networks that read and/or produce
sequential data or time series data. As with a feed-forward neural network, an RNN comprises
layers of neurons and connections between neurons [Hopfield, 1984; Rumelhart et al., 1986;
Williams and Zipser, 1989; Elman, 1990]. Some of the neurons are used as a “memory” that
keeps the state of the problem when the processing moves on along a sequence of signals.
As a result, it is straightforward to use RNNs to deal with variable length problems, such as
machine translation and speech recognition.

The main idea behind RNNs is to repeatedly utilize a recurrent unit (or recurrent cell)
to compute the output at each position of an input sequence. To be more precise, given a
sequence of vectors x1...xm, a standard recurrent unit can be described as a function RNN(·)
that consumes an input xi and a state si−1 at each time and generates a new state si, like this:

si = RNN(si−1,xi) (2.33)

The state si can be viewed as a “memory” that summaries the past data, and would be updated
when the new data comes. See Figure 2.7 (a) for visualization of Eq. (2.33). The circle here
indicates the reuse of the recurrent unit. This can be understood by rewriting Eq. (2.33) in a
sequence of calls of the function RNN(·):

RNN(si−1,xi) = RNN(RNN(si−2,xi−1),xi)

= RNN(RNN(RNN(si−3,xi−2),xi−1),xi)

= ...

= RNN(RNN(... (RNN(s0,x1),x2) ... xi−1),xi) (2.34)

Figure 2.7 (b) shows the structure of this network. This is sometimes referred to as an
unrolled (or unfolded) structure of RNNs. Basically, Figures 2.7 (a) and (b) are the same
thing. While a rolled RNN has a simple and well-explained form, an unrolled RNN is more
suitable for visualizing the data flow through the network. So, we will use the unrolled version
of RNNs throughout this document. Moreover, it is worth noting that an unrolled RNN is in
fact a deep feed-forward neural network. For example, each use of the recurrent unit creates a
“layer” that receives information from a previous “layer”. In this sense, an RNN is a stack of

16 Chapter 2. Foundations of Neural Networks

RNN

xi

si

(a) An RNN unit

RNN RNN RNN

xi−1

si−1

xi

si

xi+1

si+1

(b) Unrolling the RNN

Figure 2.7: Example of RNN (rolled vs unrolled). An RNN unit reads the input at each time
step i and the output at the last time step i−1, and produces a new output si. As such we can
reuse the same RNN unit to make predictions over a sequence of inputs (see sub-figure (a)): for
each i, the current input xi and last output si−1 are consumed and mapped to the output that is
fed into the same RNN unit for the processing at the next time step. A better way to visualize
the RNN is to unroll it into a network with no cycles (see sub-figure (b)). The unrolled RNN
can be regarded as a deep feed-forward neural network in that all RNN units share the same
set of parameters.

layers, say, stacking layers from left to right. A benefit of treating RNNs as deep feed-forward
neural networks is that one can use the same methods to train and deploy the two types of
neural networks. An example is that both RNNs and feed-forward neural networks can be
trained by the error-propagation tool provided within a common optimizer.

There are a number of RNN variants, differing in ways of defining RNN(·). The simplest
of these is to formulate RNN(·) as a single-layer neural network. Assume that si−1 and xi are
in Rdh . The form of RNN(·) is given by:

RNN(si−1,xi) = ψ(si−1 ·U+xi ·V) (2.35)

where U ∈ Rdh×dh and V ∈ Rdh×dh are parameters. The common choices for the activation
function ψ are TanH(·), Sigmoid(·), ReLU(·), and among others. Eq. (2.35) is a single-layer
neural network because it has the same form as Eqs. (2.3-2.4):

ψ(si−1 ·U+xi ·V) = ψ([si−1,xi] ·W) (2.36)

where [si−1,xi] is the concatenation of si−1 and xi, and W ∈R2dh×dh is the parameter matrix

that is formed by

[
U

V

]
.

RNNs often work as a part of a model. For example, the input of a recurrent unit could be
either a representation of real data or an output of another neural network. Also, we can stack
other neural networks on top of a recurrent unit. For example, in many real-world systems, an

2.3 Basic Model Architectures 17

additional layer is generally stacked on si for projecting it to a desirable output.

2.3.2 Convolutional Units
Convolutional neural networks (CNN) are another well-known class of neural networks
[Waibel et al., 1989; LeCun et al., 1989]. In a biological sense, they are inspired by human
vision systems: neurons react to the stimulus in a certain vision region or patch (call it the
receptive field) [Hubel and Wiesel, 1959]. In CNNs, the receptive field describes the region
in the input space that is involved in generating the output for a neuron. CNNs are therefore
“partially connected” models in which each neuron only considers input features in a restricted
region. This differentiates CNNs from fully connected feed-forward neural networks. In
general, CNNs can resemble the hierarchical nature of features describing data and scale better
in complexity.

While CNNs have many applications in processing 2D data, such as image classification,
we discuss them here in a sequential data processing scenario for a consistent treatment of
the problem in this chapter. Typically, a CNN consists of a convolutional layer, a pooling
layer, and other layers optionally. It begins with the convolutional layer where the receptive
field is defined by a set of convolution kernels or filters. A filter is a linear mapping function
that convolves the input features in the receptive field to form an output feature. For example,
consider a sequence of numbers x1...xm. The filter ranging from position i to position i+r−1

is defined to be:

υ = Conv(x[i,i+r−1],W)

= x[i,i+r−1] ·W

=
r−1∑
k=0

xi+k ·Wk (2.37)

where r is the size of the receptive field, x[i,i+r−1] is the sub-sequence xi...xi+r−1, and
W ∈ Rr is the parameters of the filter. Then, a sequence of output features can be generated
by moving the filter along the input sequence. Let stride be the distance between consecutive
moves. The output for move i is then defined to be:

υi = Conv(x[stride×i,stride×i+r−1],W) (2.38)

In this way, the convolutional layer transforms the input sequence x1...xn to the output
sequence υ1...υ⌊ m

stride
⌋

4. A remark here is that the parameters W are shared across positions of
the input sequence. This method is known as parameter sharing or weight sharing. Parameter
sharing makes a CNN efficient because it requires fewer parameters than a feed-forward neural
network given the same number of neurons.

A problem with the above formulation is that the use of the filter may not be tiled to fit the
input sequence. For example, when stride× i+r−1>m, the input of the filter is incomplete.
A commonly used solution is padding. It simply sets the features outside the input sequence

4⌊·⌋ stands for the floor function.

18 Chapter 2. Foundations of Neural Networks

0 x1 x2 x3 x4 0

v1 v2 v3 v4

Input

Convolutional Layer

v2 =Conv([x1,x2,x3] ·W)

= x1 ·W1+x2 ·W2+x3 ·W3

Padding PaddingReceptive Field

Figure 2.8: Convolution over a sequence of numbers {x1,x2,x3,x4} (r = 3 and stride= 1).
The receptive field defines the region in the input that is taken in computing the output. Here
the receptive field has a size of 3, that is, the convolutional operation covers three consecutive
numbers in the input sequence. The filter (or convolutional kernel) outputs a weighted sum of
these numbers. Each time we slide the receptive field over the input, the filter generates a new
output. As such, the output of the convolutional layer is a vector of numbers. Also, a padding
number (i.e. 0) is added to each end of the sequence so that the convolution is feasible when
the receptive field is incomplete.

to a constant. For example, we can attend dummy feature vectors (say 0) to each end of
the sequence so that all convolution operations are feasible. See Figure 2.8 for an example
filter computed over a sequence of numbers. Note that the receptive fields of different filter
applications may overlap. This is beneficial sometimes because it reduces information loss in
feature representation when a low-level feature is used in forming multiple high-level features.

In addition, a convolutional layer can involve an activation function ψ(·) to perform some
non-linear mapping on the filter output. Let mk = ⌊ m

stride⌋ be the number of filter applications.
The output of a convolutional layer is given by[

h1 ... hmk

]
= ψ(

[
υ1 ... υmk

]
) (2.39)

In general, a convolutional layer may not be restricted to a scalar-based input or a single
filter. Often, we can take a vector as the representation of a token in the input sequence, and
take a set of filters as feature extractors. To this end, we can adopt the same formulation as in
Eqs. (2.37-2.39), but replace xi, υi and hi by the vectorized counterparts.

A convolutional layer is typically followed by a pooling layer. Like convolution, pooling
is a function that sweeps a filter on a sequence. But the pooling operation does not have
any parameters. It can be instead thought of as an aggregation function that performs down-
sampling on the input sequence. There are several ways to design a pooling function. One
of the most common methods is max pooling which outputs the maximum value in the

2.3 Basic Model Architectures 19

0
0
x 1

x 2
x 3

x 4
x 5

x 6
0

0

Input Sequence
Features

Filter 1
Filter 2

padding

Pooling

Figure 2.9: Example of CNN. There are two filters for the convolutional layer. The input is
a sequence of 6 tokens represented in their feature vectors {x1, ...,x6}. To tile the filters to
fit the input sequence, two padding vectors are attached to each end of the sequence. When
applying a filter, we map the feature vectors in the receptive field to a new feature vector. For
example, for filter 1, the receptive field is a 6×3 rectangle in the input, and the output is a
2-dimensional feature vector. By sweeping the filter on the sequence, we obtain a sequence of
feature vectors, say, a sequence of 8 feature vectors, each having 2 features. The pooling layer
fuzes features along the sequence. For example, performing the pooling on the output of filter
1 results in 2 fuzed features. The final output of the CNN is two 2-dimensional feature vectors.

receptive field. Another method is averaging pooling which outputs the averaged value over
the receptive field. For a complete picture of how a CNN works, Figure 2.9 depicts a running
example where convolutional and pooling operations are performed on a sequence of feature
vectors via 2 filters.

2.3.3 Gate Units

In neural networks, a gate is used to decide how much information is passed along [Hochreiter
and Schmidhuber, 1997]. Consider a standard RNN as an example. At each time step i,
instead of directly passing the previous state si−1 ∈ Rdh to the recurrent unit, it might be more

20 Chapter 2. Foundations of Neural Networks

interesting to see how much information in si−1 is useful for a next-step decision. In this
case, we want si−1 to be more like a real memory: as the time goes by, something should be
memorized, and something should be forgotten.

A way to achieve this goal is to introduce a coefficient for controlling the scale of data
flow. Here we reuse the notation in RNNs (see Section 2.3.1), but our description is general
and could be applied to all the cases that need such a method. Let z ∈ [0,1]dh be a coefficient
vector, where zi = 0 means that nothing is memorized for dimension i, and zi = 1 means
that everything is memorized for dimension i. We can set z as a gate on si−1. This can be
formulated as:

Gate(z,si−1) = z⊙ si−1 (2.40)

where ⊙ is the element-wise product of two vectors or matrices. Gate(z,si−1) is an update of
si−1. Thus, z can be called an update gate, or a forget gate, or something similar. Alternatively,
we can define the gating function in another way:

Gate(z,si−1) = (1−z)⊙ si−1 (2.41)

Eqs. (2.40) and (2.41) basically tell the same story but have different interpretations for z in
practice.

The key problem here is how to obtain z. A general method is to define z as the output of
another network. For example, for a recurrent unit, z can be defined to be:

z = Sigmoid(si−1 ·W1+xi ·W2+B) (2.42)

The use of the Sigmoid activation function guarantees that the output falls into the range of
[0,1]. Note that Eq. (2.42) describes a learnable gate. This in turn makes the gate a part of the
model and can be trained to fit the data. There are a number of methods to design a gate, and
we will see a few in Chapter 4.

2.3.4 Normalization (Standardization) Units
A neural network works by transforming feature vectors layer by layer. While the multi-layer,
multi-dimensional nature of neural networks enables the models to compute complex functions,
it might lead to very different distributions of output activations across layers or features. This
is a problem with deep neural networks because a model of this kind has to adapt to different
distributions over different layers or different features [Ioffe and Szegedy, 2015]. Sometimes,
as model parameters are initialized randomly in all layers and in all feature dimensions, it is
likely for some features to be large values. In this case, the model would be biased to those
large value features.

A way to mitigate this issue is normalization, which standardizes an n-dimensional feature
vector s as

Normalize(s) = α⊙ s−µ
σ+ ϵ

+β (2.43)

2.3 Basic Model Architectures 21

where µ ∈ Rn and σ ∈ Rn are the mean and standard deviation of s, respectively. ϵ is a small
number used for numerical stability [Chiang and Cholak, 2022]. α ∈ Rn and β ∈ Rn are the
parameters of the normalization unit. A simple choice is α = 1 and β = 0, whereas a more
sophisticated method is to learn α and β together with other parameters.

We may implement Eq. (2.43) in several ways that differ in how to define µ and σ. Let us
consider this for one dimension in s, say s, in a general setting. Suppose that s is drawn from a
set of feature values Ωk. The mean and the standard deviation on Ωk are then defined to be:

µk =
1

|Ωk|
·
∑
s∈Ωk

s (2.44)

σk =

√
1

|Ωk|
·
∑
s∈Ωk

(s−µk)2 (2.45)

Several methods are available to define Ωk. For example, one can define Ωk as features in
the same layer [Ba et al., 2016], or features along the same dimension over different samples
or input positions [Ioffe and Szegedy, 2015; Ulyanov et al., 2016], or something in between
them [Wu and He, 2018].

An advantage of normalization is to put features on the same scale and make them compa-
rable. This has been found to be very helpful for stabilizing the training process and making
neural networks better behaved. As we will see in subsequent chapters, normalization plays an
important role in many successful systems.

As an aside, while the term normalization in deep learning is usually referred to as a process
of subtracting the mean and dividing by the standard deviation, it is in fact a standardization
process. In other areas, by contrast, normalization is more often referred to as a technique that
scales all entries of a vector to the interval [0,1]. Standardization has no such requirement.
It instead tends to have the input centered around 0. In this sense, normalization might be a
misnomer in deep learning somehow. Nevertheless, normalization and standardization are used
interchangeably in this book when referred to processes like Eq. (2.43).

2.3.5 Residual Units
The success of deep neural networks has been mostly accredited to the more and more layers
used in forming more complex functions. Although stacking a large number of layers is the
simplest way to obtain a deep model, it has been pointed out that such a model is difficult to train.
There are several reasons for this, e.g., optimization algorithms, gradient vanishing/exploding
in passing through stacked layers, parameter initialization, and so on. Even, a further notable
disadvantage comes with regard to feeding a single representation to upper-level feature
extractors, as one might want direct access to the intermediate representations several layers
ahead.

Residual neural networks are one of the most effective approaches to addressing these
issues [He et al., 2016]. They are a special type of neural networks that add residual connec-
tions (or skip connections, or shortcut connections) over layers in a layer stack. Let F (x) be
a neural network that maps x to some output. A residual neural network build on F (x), given

22 Chapter 2. Foundations of Neural Networks

F (x(l)) + F (x(l+1)) +

Layer l Layer l+1
xl xl+1 xl+2

Residual Connection Residual Connection

xl+1 = F (xl)+xl

Figure 2.10: A 2-layer residual neural network. For each layer, there is a skip or shortcut
connection (in red color) that directly adds the input to the output.

by summing the mapping F (x) and the identity mapping x:

y = F (x)+x (2.46)

A more common use of residual connections is in a neural network consisting of a number
of identical layers. Let xl and yl be the input and output of layer l in a residual multi-layer
neural network. The output of layer l can be defined as:

xl+1 = F (xl)+xl (2.47)

or

yl = F (yl−1)+yl−1 (2.48)

Figure 2.10 shows the architecture of a 2-layer residual neural network. Clearly, the
residual connections add the outputs of current layers directly to the outputs of the next layers.
The added identity mapping is generally thought of as one of the most effective ways to
simplify the network and ease the information flow in a deep model.

2.4 Training Neural Networks
In this section, we turn to the training problem, which is fundamental in developing neural
network-based systems. Most of the discussion here is focused on methods in a supervised
learning setting. We will discuss unsupervised methods in Section 2.6.

2.4.1 Gradient Descent
The gradient method has been proven to be one of the most successful methods for training
neural networks. The basic idea is to iteratively update parameters so that we can minimize a
differentiable loss function. In an update, the values of the parameters are adjusted in a way
that the loss degrades the fastest. In a mathematical sense, it requires the update to be in the

2.4 Training Neural Networks 23

minimum

Figure 2.11: Gradient descent in a 2D space (blue lines stand for level sets). The goal is to find
the parameters (i.e., values along the two dimensions) that minimize the value of a given loss
function. Gradient descent does this by starting at a random point and stepping to the minimum
in a number of updates of the parameters. In each update, it adjusts the parameters θt in the
direction that makes the loss lower. The idea here is that the update chooses the direction of
the steepest ascent, that is, the model moves a step in the direction of the negative gradient of
the loss (i.e., −∂L(θt)

∂θt
). The size of the move is controlled by a hyper-parameter lr, called the

learning rate. Thus, the amount of the change to the parameters is −lr · ∂L(θt)∂θt
. By adding this

to θt, we obtain the new parameters θt+1. This process repeats for a number of updates until
the value of the loss function is close to the minimum.

opposite direction of the gradient of the loss. This is known as gradient descent or steepest
descent. Let θt be the parameters at step t (call it an update step or a training step), and
L(θt) be the loss computed by the model parameterized by θt. The update rule (or delta rule)
of gradient descent is given by the equation:

θt+1 = θt− lr ·
∂L(θt)

∂θt
(2.49)

where ∂L(θt)
∂θt

is the gradient of the loss with respect to the parameters at step t. It can obtained
by running the error-propagation algorithm presented in Section 2.1.3. Since θt is usually of
multiple dimensions, ∂L(θt)∂θt

could be a vector or matrix that has the same shape as θt. lr is the
learning rate that controls how big a step we take in the direction of the minimum. While lr
can be simply set to a constant value during training, it is more common to adjust its value as
the training proceeds (see Section 2.4.4 for a discussion). See Figure 2.11 for an illustration of
gradient descent.

Eq. (2.49) gives a very basic definition of gradient descent. There are a number of
improvements to the form of Eq. (2.49). Some of them are:

24 Chapter 2. Foundations of Neural Networks

• Gradient Descent with Momentum. In physics, momentum is a vector quantity that
describes the mass of motion. If we think of updating parameters as moving an object in
a space, then we need to consider the momentum of the object at a position to determine
the direction of the next move. This idea can be implemented by re-defining the update
rule as:

θt+1 = θt+vt (2.50)

where vt is the velocity vector of the momentum. In the classic momentum method
[Polyak, 1964], vt is defined to be:

vt = λ ·vt−1− lr ·
∂L(θt)

∂θt
(2.51)

vt retains some of the previous momentum (i.e., vt−1), followed by a correction based
on the gradient (i.e., ∂L(θt)∂θt

). λ is a scalar for weighting vt in an update. A well-known
improvement to Eq. (2.51) is to take into account the momentum in the gradient, avoiding
a too large velocity when approaching the minimum [Nesterov, 1983], like this

vt = λ ·vt−1− lr ·
∂
[
L(θt)+λ ·vt−1

]
∂θt

(2.52)

A more detailed discussion on the difference between Eq. (2.51) and Eq. (2.52) can be
found in Sutskever et al. [2013]’s paper.

• Adaptive Gradient Descent. In adaptive methods for gradient descent, the update rule
is adapted to every parameter, rather than the whole model. AdaGrad is a method of
this kind [Duchi et al., 2011]. It scales up the learning rate for parameters that have not
been updated too much, and scales down the learning rate for parameters that have been
much updated. Assume that θt and ∂L(θt)

∂θt
are both d-dimensional vectors. We can define

a new variable G ∈ Rd×d as the sum of the outer product of the gradient over the past t
steps5:

Gt =
t∑
i=1

[∂L(θi)
∂θi

]T · ∂L(θi)
∂θi

(2.54)

5Given two vectors a=
[
a1 · · · ad

]
and b=

[
b1 · · · bd

]
, the outer product of a and b is:

a⊗b = aT ·b

=

a1...
ad

 ·
[
b1 · · · bd

]

=

a1b1 · · · a1bd
...

. . .
...

adb1 · · · adbd

 (2.53)

2.4 Training Neural Networks 25

In general, (Gt)
1
2 ∈ Rd can be viewed as an indicator that describes to what extent a

parameter has been updated so far. However, computing (Gt)
1
2 is extremely expensive.

So it is more common to use the diagonal of Gt instead. Then, the update rule of
AdaGrad is given by:

θt+1 = θt−
lr√

diag(Gt)+ ϵ
⊙ ∂L(θt)

∂θt
(2.55)

where diag(Gt) is the diagonal of Gt, i.e., diag(Gt)(k) = Gt(k,k). ϵ is a smoothing
factor for numerical stability. Instead of summing over those squared gradients in an
unweighted manner, another way is to reduce the impact of “old” gradients and make
“recent” gradients more important. AdaDelta considers this by accumulating squared
gradients with a decay factor [Zeiler, 2012]:

g2t = σ ·g2t−1+(1−σ) ·
(
∂L(θt)

∂θt
⊙ ∂L(θt)

∂θt

)
(2.56)

where σ is the decay factor of a value < 1. Like Eq. (2.55), the update rule for AdaDelta
can be given by replacing diag(Gt) with g2t :

θt+1 = θt−
lr√
g2t + ϵ

⊙ ∂L(θt)

∂θt
(2.57)

Since
√
g2t + ϵ can be seen as the root mean square (RMS) of the gradient, Eqs. (2.56-

2.57) are also known as the RMSProp method [Hinton, 2018].

• Adam (Adaptive Moment Estimation). The Adam optimizer combines the merits of
both the adaptive gradient descent and momentum methods [Kingma and Ba, 2014]. It
defines an estimate of the mean of the gradient (the first moment) and an estimate of
the variance of the gradient (the second moment). Let mt and vt be the two moment
estimates. They are given by the equations:

mt = β1 ·mt−1+(1−β1) ·
∂L(θt)

∂θt
(2.58)

vt = β2 ·vt−1+(1−β2) ·
(
∂L(θt)

∂θt
⊙ ∂L(θt)

∂θt

)
(2.59)

where β1,β2 ∈ [0,1] are hyper-parameters for a trade-off between the previous estimate
and the gradient (or squared gradient) at the current step. β1 and β2 are also treated as
the decay factors of these averages. For example, common choices for β1 and β2 are 0.9
and 0.999. As the initial moments are set to 0, these estimates are biased to 0 vectors at
the very beginning of the training process. To address this issue, bias corrections are

26 Chapter 2. Foundations of Neural Networks

used in Adam, leading to bias-corrected estimates:

m̂t =
mt

1−βt1
(2.60)

v̂t =
vt

1−βt2
(2.61)

Since β1,β2< 1, the corrections would be sufficiently small if a larger number of updates
are performed. The update rule is finally defined to be:

θt+1 = θt− lr ·
m̂t√
v̂t+ ϵ

(2.62)

Eq. (2.62) resembles the general form of gradient descent, but makes use of both the
momentum method (i.e., the moving average of the past gradients) and the adaptive
method (i.e., the moving average of the past squared gradients). In practice, Adam has
become a popular optimizer for training neural networks.

Improving gradient descent is an active sub-field of deep learning, but a full discussion
of all those techniques is beyond the scope of this document. A few related issues will be
discussed in the remainder of this section.

On a last note of this subsection, a practical issue that one should consider in utilizing
iterative training methods is when to stop training. Stopping criterion is a general topic in
optimization. For gradient descent and its variants, it is common practice to set a maximum
number of training steps or training epochs6, say 20,000 steps, or 100 epochs. As an
alternative, we can perform training until convergence. For example, we can say that the
training coverages if the loss tends to be stable for a number of training steps. When there is
some data for validating the model, a better method may be to check the states of the model
on validation data. For example, we can stop the training when the prediction error increases
on the validation data. This method, known as early stopping, is often used as a means of
regularization. In Section 2.5.3, we will see more details about how to early stop the training
by using a validation dataset. On the algorithmic side, there has been much interest and work
in studying the convergence and error bounds for machine learning methods. We refer the
interested reader to a few textbooks for further discussions [Mohri et al., 2018; Kochenderfer
and Wheeler, 2019].

2.4.2 Batching
The loss function is an essential aspect of the training of neural networks. While a number
of mathematical forms are available to define the loss function (see Section 1), we still need
to decide in what scale of samples we use that loss function. Perhaps the simplest method is
stochastic gradient descent (SGD). In each update of parameters, SGD computes the loss
function on a single sample that is randomly selected from the training dataset. Let D be a set
of training samples, and (x(i),y

(i)
gold) be a randomly selected sample from D. Given a neural

6A training epoch means that the trainer goes over the whole training dataset for one time.

2.4 Training Neural Networks 27

network

y
(i)
θ = Fθ

(
x(i)

)
(2.63)

the loss of SGD is defined to be:

L(θ) = L
(
y
(i)
θ ,y

(i)
gold

)
(2.64)

where L(y(i)
θ ,y

(i)
gold) is a sample-level loss function that counts errors in the model output y(i)

θ

with respect the benchmark y
(i)
gold.

SGD has been one of the most important optimization methods in machine learning due
to its simplicity. However, SGD converges slowly because it is just an analog of the actual
gradient on the entire training set. To estimate the gradient in a more precise way, we can take
into account a set of samples (call it a batch) in computing the loss. This method is known as
batching. Let S be a set of samples from D. The loss function is then defined on S, as follows

L(θ) =
1

|S|
·

∑
(yθ,ygold)∈S

L(yθ,ygold) (2.65)

If S =D, then we have the batch gradient descent (BGD) method, i.e., the gradient is
estimated on the entire set of training samples. In general, batch gradient descent is what
we would ordinarily call gradient descent. However, calculating the loss on all the training
samples simultaneously is time consuming. In practice, it is more common to use a batch
much smaller than D. This is known as mini-batch gradient descent. It is adopted in learning
real-world systems for its good efficiency and strong performance.

As another “bonus”, batching is generally used as a way to make dense computation on ma-
trices for system speed up. Assume that S consists ofm samples {(x(i1),y

(i1)
gold), ...,(x

(im),y
(im)
gold)}.

We can batch all input vectors and benchmark vectors as matrices:

X =

x(i1)

...
x
(im)
gold

 (2.66)

Ygold =

y
(i1)
gold
...

y
(im)
gold

 (2.67)

Then, we can run the neural network on the batched input and output, like this:

Yθ = Fθ(X) (2.68)

28 Chapter 2. Foundations of Neural Networks

Likewise, we can compute the batched loss

L(θ) =
1

m
·L(Yθ,Ygold) (2.69)

where L(Yθ,Ygold) vectorizes the computing of
∑m

k=1L
(
y
(ik)
θ ,y

(ik)
gold

)
. Eqs. (2.68-2.69)

prevent the repetitive calls of the forward and backward passes on individual samples. They
instead pack everything in a single pass through the network. This makes better use of
maximum available compute on modern GPUs which are the majority of the devices for
running deep learning systems.

2.4.3 Parameter Initialization

Gradient descent requires that the training process starts from some initial parameters. Since
the training objective in a practical system is often a non-convex function with many local mini-
mums, the performance of the resulting model is highly sensitive to the parameter initialization
step. Here we describe some of the most common methods of parameter initialization.

• Constant Initialization. The first method could assign the same value to all parameters
(or all parameters of a parameter matrix). This method, though quite simple, results in
that all output entries of a model make no difference, rendering the model meaningless.
It performs poorly in most cases if no randomness is introduced into training.

• Initialization with Predefined Distributions. A useful way is to randomly initialize
parameters by some distributions. The simplest of this kind is to assign a parameter a
value drawn from a uniform or Gaussian distribution, e.g., a random value in the interval
[−0.1,0.1]. Interestingly, this method is satisfactory in most cases in practice.

• Layer-sensitive Initialization. An extension to random initialization is to use tailored
distributions for different layers of a neural network. Xavier initialization is a well-
known method of this kind [Glorot and Bengio, 2010]. Given a layer y= ψ(x ·W+B),
let din and dout be the numbers of the input and output dimensions (i.e., the row and
column numbers of W). The standard Xavier initialization method, also known as the
LeCun initialization method [LeCun et al., 2012], gives a random number to every
parameter of W:

W ∈ Rdin×dout ∼ U

(
− 1√

din
,

1√
din

)
(2.70)

where U(−a,a) means a uniform distribution over the interval [−a,a]. Likewise, we
can initialize the bias term in a similar way. As an improvement, the normalized Xavier
initialization method considers both din and dout in defining the distribution, like this:

W ∈ Rdin×dout ∼ U

(
−
√

6

din+dout
,

√
6

din+dout

)
(2.71)

More details can be found in the original paper. Note that the uniform distributions can

2.4 Training Neural Networks 29

be replaced by the normal distributions with mean = 0 and variance = 1
din

or 6
din+dout

.

Many parameter initialization methods are designed for certain types of neural networks.
For example, Xavier initialization is assumed to work with the Sigmoid and hyperbolic tangent
activation functions. For ReLU, one can refer to He et al. [2015]’s work. Another example
is initialization for deep neural networks. It has been found that appropriate initialization is
critical to the success of extremely deep models in NLP. Considering the model depth as an
additional factor in initialization, we can modify Eq. (2.71) to be:

W ∈ Rdin×dout ∼ U

(
−αs
l
·
√

6

din+dout
,
αs
l
·
√

6

din+dout

)
(2.72)

where l is the depth for a layer, and αs is a hyper-parameter. Apart from this, several methods
are proposed to address the initialization of deep neural networks, including the Lipschitz
initialization [Xu et al., 2020], the T-Fixup initialization [Huang et al., 2020], the Admin
initialization [Liu et al., 2020], and so on.

Note that in practice we do not have to restrict training to a single starting point. It is
common to try a few starting points by using different initialization methods or random seeds,
and to choose the best performing one from these tries. It generally helps when local minimums
abound.

2.4.4 Learning Rate Scheduling

To achieve desirable results, it is essential to carefully configure the learning rate throughout
the learning process. While some of the update rules, as noted above, have considered scaling
the gradient for different parameters, learning rate scheduling is conventionally focused more
on designing heuristics to adjust lr over training steps. In a practical sense, a too large learning
rate usually leads to overshooting around the minimum, while a too small learning rate usually
leads to slow convergence (see Figure 2.12). A common idea is to learn fast at the beginning
(i.e., a large learning rate) and learn slowly when the loss is close to the minimum (i.e., a small
learning rate). Here we present some of the popular methods for learning rate scheduling.

• Fixed Learning Rates. Fixing the learning rate is generally a bad strategy, but could be
used in prototyping systems, e.g., a quick test of a new method by training it for only a
few epochs.

• Learning Rate Decay. Decay is a commonly-used technique for learning rate schedul-
ing. There are many approaches to this idea. For example, one can halve the learning
rate after each training epoch. Here we use nt to denote the number of training steps,
and τdecay be how often we change the learning rate (e.g., 100 steps). Table 2.2 shows
several decay functions for learning rate scheduling.

• Warmup and Decay. As noted in Section 2.4.3, it is common to initially set model
parameters to random values when a neural network is being trained. However, learning
from scratch with a large learning rate is usually not a good choice because the gradient
at the early stage of the training is not much precise and the state of the model is unstable.

30 Chapter 2. Foundations of Neural Networks

(a) A small learning rate (b) A large learning rate (c) A desirable learning rate

Figure 2.12: Learning with different learning rates. Small learning rates (left) help us step
to the minimum in a precise way, but require much additional time for convergence. Large
learning rates (middle), on the other hand, lead to fast learning, which is very beneficial when
we are far away from the minimum. However, as we get closer to the minimum too large
learning rates cause overshooting. A more desirable strategy (right) may be to learn the model
in a reasonably fast way when there is a long way to go, and to learn the model slower when
we are close to the minimum.

Thus, it is more reasonable to start with a small learning rate and gradually increase it.
Then, when the model is trained for some time, the learning rate begins to decay as usual.
Such a thought motivates the warmup and decay method for learning rate scheduling.
A popular form of this method in recent studies is proposed in Vaswani et al. [2017]’s
work, as follows:

lrnt = lr0 ·min

((nt
ndecay

)−0.5
,

nt
ndecay

· (nwarmup)
−1.5

)
(2.73)

where lr0 is the initial learning rate, and nwarmup is a hyper-parameter that specifies
for how many steps we execute the warmup process. Figure 2.13 plots the curve of Eq.
(2.73) where nwarmup, ndecay, and lr0 are set to 4,000, 1 and 1. We see that the learning
rate increases linearly in the first nwarmup steps and then decays as an inverse square
root function.

Choosing an appropriate learning rate scheduling strategy is a highly empirical problem,
and there are no universally good choices. The problem is even harder if we consider the
correlation between the learning rate and other aspects of the training, though learning rate
scheduling is typically taken to be an individual task. For example, when a larger batch is
used in training, a larger learning rate is desired for a good result [Ott et al., 2018; Smith et al.,
2018]. So, making good learning rate choices is still difficult and time-consuming in neural
network applications. Occasionally one needs a large number of trial-and-test runs to find a
desirable learning rate setup for the particular problem at hand.

2.5 Regularization Methods 31

Entry Formula Hyper-parameters

Piecewise Constant Decay lrnt = βi values {β1, ...,βm}
if γi ≤ nt

ndecay
< γi+1 thresholds {γ1, ...,γm}

Exponential Decay lrnt = lr0 ·λ
nt

ndecay decay rate λ, init. lr. lr0

(Drop) Exponential Decay lrnt = lr0 ·λ
⌊ nt
ndecay

⌋
decay rate λ, init. lr. lr0

Natural Exponential Decay lrnt = lr0 · exp(−λ · nt
ndecay

) decay rate λ, init. lr. lr0
Inverse Time Decay lrnt = lr0 · 1

1+λ· nt
ndecay

decay rate λ, init. lr. lr0

(Drop) Inverse Time Decay lrnt = lr0 · 1
1+λ·⌊ nt

ndecay
⌋ decay rate λ

Cosine Decay lrnt = lr0 ·
(
(1−α) · cdecay+α

)
coefficient α

cdecay =
1
2 ·

(
1+cos(π · nt

ndecay
)
)

init. lr. lr0

Table 2.2: Decay functions. λ = decay rate, lr0 = initial learning rate, and {βi}, {γi} and
α= other hyper-parameters.

0 4,000 10,000 20,000 30,000
0.000

0.005

0.010

0.015

number of update steps (nt)

le
ar

ni
ng

ra
te

(l
r n

t
)

Figure 2.13: Learning rate scheduling: warmup and then decay (nwarmup = 4,000, ndecay = 1,
and lr0 = 1). The learning rate increases linearly with nt for the first 4,000 steps. Then, the
learning rate follows an inverse square root function and decays as the learning continues.
The change of the rate learning will be small if nt is sufficiently large, indicating the fine
adjustment of the parameters when we are approaching the minimum of the loss.

2.5 Regularization Methods

We now discuss the regularization methods for preventing overfitting. While regularization is a
wide-ranging topic in machine learning, we present some of those that are commonly adopted
in training neural networks.

32 Chapter 2. Foundations of Neural Networks

2.5.1 Norm-based Penalties

One of the most popular methods involves a regularization term based on the lp norm. A
general form of the regularized objective can be defined as:

θ̂ = argmin
θ

L(θ)+α ·R(θ) (2.74)

where R(θ) is the regularization term weighted by a coefficient α. In general, R(θ) serves as
an additional loss that penalizes complex models. This is motivated by the fact that complex
models are more likely to overfit the data (see Section 1). To impose a penalty on the model
complexity, a simple way is to define R(θ) as the l1 norm on the parameters θ. Let us treat θ
as a vector of parameters. The l1 norm-based regularization term is given by

R(θ) =
∑
i

|θi| (2.75)

Eq. (2.75) penalizes models having large value parameters. This can be understood in a way
from a polynomial function: large coefficients of variables in a polynomial function lead to a
complex curve. Typically, regularization with the l1 norm is referred to as the l1 regularization
or the Lasso regularization. Such a method does not require updates of the trainer, and can be
implemented by standard gradient descent. More interestingly, the l1 regularization typically
provides sparse solutions to the original training objective. It biases the model to those having
small values (or even zero values) for most of the parameters and large values for only very
few parameters. This also implies an inherent ability of feature selection because parameters
are forced to be close to zero for not-so-important features.

An alternative to the l1 regularization is the l2 regularization or the Ridge regularization.
In the l2 regularization, the regularization term is given by

R(θ) =

√∑
i

|θi|2 (2.76)

Like the l1 norm, the l2 norm penalizes the cases that deviate the model parameters far away
from the origin. However, it slightly differs from the l1 norm in that the l2 norm enforces
all parameters to have small values (but not necessarily to be zeros) and there are no large
value parameters. In this sense, the use of the l2 norm does not introduce sparsity into the
solution but performs “smoothing” on the underlying distributions of features. Note that the
l2 regularization has a relatively bigger effect of regularization. So, it is sometimes called
weight decay to emphasize its ability to prevent the model from learning parameters of too
large values.

In a broader sense of machine learning, Eq. (2.75) offers a general method to introduce
prior knowledge into the training of a neural network. There are a number of ways to design
the regularization term, and addressing overfitting is just one purpose of these designs. We can
see many applications of this approach in NLP, and will see a few examples in the remaining
chapters of this document.

2.5 Regularization Methods 33

2.5.2 Dropout
In a real-world neural network, a layer typically involves hundreds or thousands of neurons and
produces a feature vector accordingly. While each of these features is computed by a single
neuron, they work together to form the input to each neuron of the following layer. As a result,
a feature is forced to cooperate with other features. It is like a group of people sitting together
and making a collective decision. Although a member could have opinions independently, he
or she occasionally tries to correct the error when all other members have had their decisions.
In this case, every group member is co-adapted to others in the group [Hinton et al., 2012].
From a feature engineering standpoint, the co-adaptation of neurons helps when modeling
complex problems, as it implicitly makes some sort of higher order features. Beyond this,
the strong supervision information (e.g., propagating errors through layers) could strengthen
the co-adaptation in training. This explains more or less why a neural network with a large
number of neurons can fit complex curves. At test time, however, the co-adaptation prevents
generalization. Since all neurons of a layer are learned to collaborate well on the training
data, a small change in the input could affect all these neurons and lead to a big change in the
behavior of the neural network.

A way to mitigate or eliminate complex co-adaptations is to learn for each neuron to predict
in the absence of other neurons. To this end, one can simply drop some of the neurons in
training. This method is known as dropout [Srivastava et al., 2014]. Let n be the number of
neurons of a layer. Given a probability ρ (call 1−ρ the dropout rate), we can generate an
n-dimensional mask vector Mdrop where every entry is set to 1 with a possibility of ρ, and set
to 0 with a possibility of 1−ρ. Then, a dropout layer can be defined as

y = Mdrop⊙ψ(x ·W+B) (2.77)

where ψ(x ·W+B) is a usual single-layer neural network. Eq. (2.77) only activates the
neurons whose masks are 1. For dropped neurons, all connections from/to these neurons
are blocked (see Figure 2.14 (a)). During training, Mdrop is randomly generated in a call
of the forward and backward passes. A neuron therefore can learn to work with different
neurons each time and would not adapt to the same group of “co-workers”. Another way to
understand dropout is to view it as learning sub-models of a “big” model. The use of Eq.
(2.77) is essentially a sampling process that extracts a sub-network from the original network.
So, training with dropout is doing something like training an exponentially large number of
sub-networks7. On the other hand, the training is efficient because these sub-networks share the
same parameters for the same neuron and the update of a parameter can benefit exponentially
many sub-networks.

At test time, all these sub-networks are combined for prediction. In this case, we do
not need to drop any neuron but use the original network as usual. This makes it simple to
implement dropout: a neuron is present with some probability on the training data, and all
neurons are present and work together on the test data. Since the connections between neurons
are involved with a probability of ρ in training, the learned weights are scaled down with ρ in

7For a single-layer network having n neurons, there are 2n possible sub-networks.

34 Chapter 2. Foundations of Neural Networks

active neuron
(present with ρ)

dropped neuron

weight W32

(a) Training the dropout network

all neurons
are active

weight ρW32

(b) Testing with the dropout network

Figure 2.14: Dropout for a multi-layer neural network (training vs test). At training time, every
neuron is randomly dropped with a probability of 1−ρ, resulting in a slimmed network. In this
sense, dropout training is essentially a process of learning an exponentially large number of
sub-networks. At test time, the full network is used as usual, which is the result of combining
all those sub-networks for prediction. Since all connections between neurons are activated with
the probability ρ during training, the weights of the predicting network are scaled down with ρ.

the predicting network, i.e., a layer has a form:

y = ψ(x ·ρW+ρB) (2.78)

See Figure 2.14 for a comparison of training and applying a dropout network. Eq. (2.78)
requires an update of the predicting system. An alternative is to take into account the scaling
issue only in the training process and leave the predicting system as it is. For example, we can
scale up all the parameters with 1

ρ in dropout training, like this

y = Mdrop⊙ψ(x ·
1

ρ
W+

1

ρ
B) (2.79)

Since multiplying 1
ρW with ρ yields W (this also holds for the bias term B), we can use

W (and B) as the parameters of the predicting system.

2.5.3 Early Stopping
In Chapter 1 we have discussed a bit of how to stop the training by monitoring the performance
on the validation data. It can be treated as a way of model selection that seeks an appropriate
state between underfitting and overfitting. Note that early stopping is not just an empirical
method. It is also well explained from the perspective of statistical learning theory. For example,
researchers have found that, under some conditions, early stopping has a similar effect as the
l2 regularization and restricts the learning to the region of small value parameters [Bishop,
1995a; Goodfellow et al., 2016]. Also, other research shows that some early stopping rules

2.5 Regularization Methods 35

have a tight relationship with the bias-variance trade-off and could guarantee nice properties of
convergence [Yao et al., 2007].

On the other hand, early stopping requires several heuristics to make it practical and useful.
The first problem is the condition of stopping. Ideally, one might imagine that there is a
perfect U-shaped error curve on the validation data, and the training can be halted immediately
when the error starts to increase. The truth, however, is that the error curve cannot be simply
described as a strictly convex function of the training time. After drops in the error in a certain
number of training steps, the performance of the model tends to fluctuate, leading to many
local minimums. The problem would be more interesting if one wants to save time and stop the
training as early as possible. However, we never know whether the current choice or decision
is the best one because we have no idea of what happens next. A commonly-used method is
to decide whether the training should stop by checking the model states for a number of past
update steps (or epochs) [Prechelt, 1998]. Some early stopping conditions are:

• The change in the performance is below a threshold for a given number of steps (or
epochs).

• The change in the model parameters is below a threshold for a given number of steps (or
epochs).

• The average performance over a given number of steps (or epochs) starts to decrease.

• The maximum performance over a given number of steps (or epochs) starts to decrease.

However, using the model at the point that we stop the training is not always a good choice.
In practice, a model often has a large variance in generation error around that point, making
model selection more difficult. Instead of “selecting” a model, an alternative way is to combine
multiple models. For example, we can save the model for every run of a given number of
training steps (call each copy of the model a checkpoint). The final model is induced by
averaging the parameters of the last few checkpoints. For better results, one may use more
sophisticated ensemble methods (see Section 1).

2.5.4 Smoothing Output Probabilities

In statistics, smoothing refers to the process of reducing the value of noisy data points (probably
of high values) and increasing the value of normal data points. It is typically used when a
distribution is estimated on small data and the probabilities of rare events are not well estimated.
For example, consider the language modeling problem described in Section 2.2. A language
model is trained in a way that enforces the model to output a one-hot distribution, that is,
the total probability of 1 is occupied by only one word, leaving other words assigned zero
probabilities. It may be more desirable to distribute the probability to all words, even though
many of them are not observed to be the answer given the previous words. In this way, the
model learns to make a soft prediction of word probabilities so that it can generalize better on
unseen data.

Given a distribution p=
[
p1 ... pn

]
, it is the purpose of smoothing that we obtain the

new estimate between p and a uniform distribution 1
n . A common approach to this idea is to

36 Chapter 2. Foundations of Neural Networks

use a shrinkage estimator to improve p by making it closer to 1
n . For example, the addictive

smoothing mentioned in Section 1 is a simple type of shrinkage estimator. Here we consider,
for example, smoothing a multinomial distribution. Let pk denote the probability of event k
and sk denote a quantity that describes some observed “count” of the event. The probability
pk is given by

pk =
sk∑n
k=1 sk

(2.80)

Then, the smoothed version of pk is defined as

p̂k =
sk+α∑n

k=1(sk+α)
(2.81)

It simply adds a quantity α to each sk. The value of α controls the smoothness of the resulting
estimate. For example, p̂k = pk if α= 0, and p̂k ≈ 1

n if α chooses an extremely large value.
Apart from addictive smoothing, we can smooth a distribution in a Softmax manner, as

follows

p̂k =
exp(sk/β)∑n
k=1 exp(sk/β)

(2.82)

This form is known as an instance of the Boltzmann distribution [Uffink, 2017], where sk
is viewed as the negative energy of a state, and β is viewed as the temperature indicating
the degree of smoothing. Note that sk can be interpreted in many ways. For example, in a
neural network, sk is typically defined as the state of a neuron. Sometimes, sk can even be a
probability. This means that we can directly apply Eqs. (2.81-2.82) to any p even if there is no
prior knowledge about how p is estimated. Then, we can rewrite Eqs. (2.81-2.82) by replacing
sk with pk:

p̂k =
pk+α∑n

k=1(pk+α)
(2.83)

p̂k =
exp(pk/β)∑n
k=1 exp(pk/β)

(2.84)

Another method of smoothing is to interpolate p with the uniform distribution. A form of
the interpolation is given by

p̂k = (1− ϵ) ·pk+ ϵ ·
1

n
(2.85)

where ϵ is a hyper-parameter indicating to what extent we rely on the uniform distribution in
computing p̂k. To illustrate how Eq. (2.85) works, let us suppose that p is a one-hot vector,
say, pk = 1 if k = z and pk = 0 otherwise. By using Eq. (2.85), we subtract an amount of
probability (i.e. ϵ) from pz . The subtracted amount of probability is then redistributed to
all dimensions evenly, making the resulting distribution more flat-topped and smoother. See
Figure 2.15 for an illustration.

2.5 Regularization Methods 37

0. 0

1.

0. 0. 0. 0. 0. 0. 0.pk

.02 .02

.82

.02 .02 .02 .02 .02 .02 .02
p̂k(ϵ= 0.2)

ϵ→ ...

ϵ
n ×n

Figure 2.15: Smoothing a distribution by interpolating it with the uniform distribution: p̂k =
(1− ϵ) ·pk+ ϵ · 1n . For each dimension k, it subtracts an amount of ϵ from the probability pk
and redistributes this amount of probability evenly to all the variables, that is, every variable
gets a probability of ϵ · pkn .

In NLP, since many systems make probability-like predictions, a common application of
smoothing is to smooth a system’s output. There are two ways. First, we can smooth the
benchmark probability such that the model is guided by the generalized error rather than the
error made by hard decisions. For example, the label smoothing technique adopts the same
form as Eq. (2.85) and improves the benchmark representation on categorical data [Szegedy
et al., 2016]. Second, we can reduce the steepness and increase the tailedness of a predicted
distribution8. This method is often used when the posterior probability of the prediction
is required, such as minimum Bayesian risk decoding/training [Bickel and Doksum, 2015;
Goodman, 1996; Kumar and Byrne, 2004].

2.5.5 Training with Noise
Above, we have shown that adding some amount to each observed count of events in predicting
a probability can improve generalization. From a robust statistics point of view [Olive, 2022],
this is equivalent to improving the robustness of an estimator where a skewed distribution often
leads to a biased model. The addition of a small perturbation to the estimate can prevent large
biases caused by outliers and unexpected observations of rare events. In this sense, smoothing
can be regarded as a way of introducing noise into training, that is, we impose a prior of
uniform distribution on the estimate though the correct estimate may not be uniform.

Noisy training works with an idea that a model is learned to work in non-ideal conditions
and avoid overfitting data points of extreme values. Here the term noise has a wide meaning,
and there are a few different ways to regularize training with noise. One of the simplest
methods is to use noise-sensitive training objectives. For example, smoothing the benchmark

8In general one may want a distribution to be a Mesokurtic curve.

38 Chapter 2. Foundations of Neural Networks

distribution (e.g., the one-hot representation of the correct prediction) can be seen as a way of
making noisy annotations. Alternatively, we can add random noise to the input, output, and
intermediate state of a neural network. A common choice is the Gaussian noise. Suppose we
have a vector x ∈ Rn. The addition of the Gaussian noise defines a new vector, as follows

xnoise = x+g (2.86)

where g ∈ Rn is a vector of noise. It follows a Gaussian distribution:

g ∼ Gaussian(µ,σ2) (2.87)

For entry k of g, it defines the probability Pr(gk) to be:

Pr(gk) =
1

σk
√
2π

· exp
(
−(gk−µk)2

2σ2k

)
(2.88)

where µk is the mean of the distribution, and σk is its standard deviation. Often, µk is set to
0. σk is a hyper-parameter that is used to control the amount of noise we want to add. For
example, a large σk means that the random noise spreads out in a large region centered around
µk, and it is more likely to generate large noise.

Eq. (2.86) is generic and can be applied to almost everywhere in a neural network. Given a
layer y = ψ(x ·W+B), the noise (say ginput) can be added to the input, like this

y = ψ ((x+ginput) ·W+B) (2.89)

Likewise, the noise (say goutput) can be added to the activation (or output):

y = ψ(x ·W+B)+goutput (2.90)

For example, one can simply make noisy inputs (or outputs) for a model and run all hidden
layers as usual, or can add random noise to all activations throughout the neural network.
While it is common to add random noise to the layer inputs and/or activations in a neural
network [Plaut et al., 1986; Holmström and Koistinen, 1992; Bishop, 1995b], another approach
to noisy training is to add random noise directly to model parameters or gradients [Graves
et al., 2013; Neelakantan et al., 2015]. For example, the addition of noise to the transformation
matrix has the following form:

y = ψ(x · (W+gw)+B) (2.91)

where gw is the matrix of noise and has the same shape as W. Also, we can add noise (say
ggradient) to the gradient of loss for W. Let s denote x ·W+B. The noisy gradient can be

2.5 Regularization Methods 39

written as:

∂L

∂W
= xT · ∂L

∂s
+ggradient

= xT ·
(
∂L

∂y
⊙ ∂y

∂s

)
+ggradient

= xT ·
(
∂L

∂y
⊙ψ′(s)

)
+ggradient (2.92)

The use of noisy gradients has been found to not only be helpful for robust training but also to
ease the gradient flow in the network [Gulcehre et al., 2016].

It should be noted that noise is only present during training and the model works without
the addition of noise when making predictions on new data. In this sense, many of the
regularization methods could fall under the noisy training framework that is used to prevent
fitting the training data precisely and enable the predicting system to generalize well on the
test data. For example, dropout randomly inactivates some of the activations of a layer so that
every neuron is learned to work in a noisy environment. When running on the test data, all the
neurons work together as in a usual neural network.

There is an additional advantage with noisy training in that the use of random noise makes
“new” training samples. Even for the same sample, different noise could lead to different
training results. In other words, we essentially train the model on an infinite number of samples.
This idea is also linked to another line of research on training with synthetic data, called
data augmentation. In simple terms, data augmentation is a set of methods to generate new
samples from existing samples. An example is back-translation [Sennrich et al., 2016]. When
developing a machine translation system from language A to language B, we can first train
a reverse translation system (say the B→A system) on the bilingual data. Then, we use the
B→A system to translate some additional target-language data to source-language data. This
results in new bilingual data where the target-language data is real and the source-language
data is synthetic. This new data can be used together with other bilingual data to train the
A→B system. In addition to back-translation, there are many data augmentation methods in
NLP, including replacing words with synonyms, swapping two words, deleting/inserting words,
and so on. Moreover, we can do similar things on feature vectors, such as replacing a word
embedding with a similar embedding. Since data augmentation covers a wide variety of topics,
we refer the reader to a few survey papers for more information [Feng et al., 2021; Shorten and
Khoshgoftaar, 2019].

One last note on data augmentation. Synthetic data can be made for some purpose. A
popular idea is adversarial machine learning. It generates adversarial samples on that a
model would make mistakes (call such processes attacks) [Szegedy et al., 2014; Goodfellow
et al., 2015]. The model is learned to make correct predictions on these samples, i.e., it defends
the attacks. For example, in some cases, the output of a machine translation system would
be completely wrong if we change the gender of the subject of the input sentence. For a
more robust system, one may train the translation model by using more gender-balanced data,
gathered either manually or automatically. But it is not easy to craft samples that look like

40 Chapter 2. Foundations of Neural Networks

normal sentences but can fool the model [Zhang et al., 2020]. This in turn makes it interesting
yet challenging to generate adversarial samples in NLP, since a small change in a sentence
(such as word replacement) could lead to something with a very different meaning9. The
challenge also motivates a thread of research on investigating adversarial samples in NLP [Jia
and Liang, 2017; Belinkov and Bisk, 2018; Ebrahimi et al., 2018; Alzantot et al., 2018].

2.6 Unsupervised Methods and Auto-encoders
Unsupervised learning is concerned with discovering the underlying patterns in a set of
unlabeled data points. A number of problems can be viewed as classical unsupervised learning
problems, though we will not discuss them in detail throughout this chapter. For example, data
clustering is to find groupings in a collection of data objects, given no supervised signals on
what the correct grouping is. Another well-known example is association rule mining. It is
often framed as a process of establishing the relationship among sets of data objects. While
these problems are indeed covered by unsupervised learning, we will focus on problems of
unsupervised representation learning or feature learning, that is, a model is learned to map an
object from an input space to a low-dimensional feature vector space10.

Learning low-dimensional representations has been extensively studied in the context
of finding a linear transformation from the original space to the new space. For example,
principal components analysis (PCA) and its variants try to find a linear mapping function so
that a (high-dimensional) data object can be represented as its coordinates along the directions
of the greatest variance [Pearson, 1901; Wold et al., 1987]. Here we extend the mapping
function to its natural non-linear generation and use neural networks as a solution to the
mapping problem.

As with other machine learning models, a neural network is typically learned by optimizing
model parameters with respect to some loss function. A considerable challenge with unsuper-
vised learning is that there is no benchmark to signal the learning. A solution to this issue is to
resort to non-parametric methods or heuristics (see Chapter 1). However, such methods them-
selves are not designed to address the learning issue of large-scale neural networks, particularly
when a neural network is built up of a huge number of parameters. In unsupervised learning
of a neural network, therefore, it is more common to use the “supervision” information from
the input data itself. While there are several ways to do this [Hopfield, 1982; Ackley et al.,
1985; Dayan et al., 1995; Hinton and Salakhutdinov, 2006], we focus on auto-encoders in this
section. We choose auto-encoders for discussion because they resemble the general form of
supervised models and can be trained via back-propagation.

An auto-encoder is a type of neural networks that tries to reconstruct the input data from
its representation. It is inspired by the idea of dimensionality reduction:

9By contrast, in computer vision, it is much easier to create adversarial samples by making a small change in
the input (e.g., pixels), since the input space is continuous and a small input perturbation has very little effect on
the whole image.

10In addition to learning to represent data objects, this section also covers some topics on the generation of data
objects. We will see them in Section 2.6.3.

2.6 Unsupervised Methods and Auto-encoders 41

High-dimensional data can be converted to low-dimensional codes
by training a multilayer neural network with a small central layer to
reconstruct high-dimensional input vectors.

– Hinton and Salakhutdinov [2006]

This also develops the idea of representation learning in that the information of an object
can be sufficiently represented by a low-dimensional real-valued vector. Typically, an auto-
encoder involves a (probably non-linear) dimensionality reduction function (call it an encoder)
to map the input object to its low-dimensional feature vector representation (call it a code).
Also, it involves a reverse function (call it a decoder) that maps the code back to the object.
So, although an auto-encoder is called an “encoder”, it is not just an encoder but a combination
of an encoder and a decoder. More formally, let x be the input vector of the model, such as a
high-dimensional representation of a word. The encoder spits out a vector describing the code
or low-dimensional representation of x, as follows

h = Enc(x) (2.93)

where Enc(·) is the encoding network. Enc(·) is typically a multi-layer neural network
and works as a plugged-in for other systems. Thus, Enc(·) is a general-purpose model. In
subsequent chapters, we will see many examples where encoders are trained and applied as
parts of “bigger” systems.

Once we obtain the code, we use the decoder to map it back to the input:

x̃ = Dec(h) (2.94)

where x̃ is the reconstruction of the input, and Dec(·) is the decoding network. Given the
original input x and the reconstructed input x̃, the objective of the auto-encoder is to minimize
the discrepancy between x and x̃. Suppose that the encoder and the decoder are parameterized
by θ and ω, denoted as Encθ(·) and Decω(·). The training objective over a set of samples
{x(1), ...,x(m)} is defined as

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i), x̃(i)

)
= argmin

(θ,ω)

m∑
i=1

L
(
x(i),Decω(h

(i))
)

= argmin
(θ,ω)

m∑
i=1

L
(
x(i),Decω(Encθ(x

(i)))
)

(2.95)

where L(·) is the loss function that computes the discrepancy between x and x̃. It is sometimes
called the reconstruction loss. Popular loss functions for reconstruction include mean squared

42 Chapter 2. Foundations of Neural Networks

0

5

-1

.8

Code h
(Bottleneck)

3

7

.1

2

0

.1

Input x

Encoder
h= Encθ(x)

3

7

.1

0

1

.5

Reconstruction x̃

Decoder
x̃=Decω(h)

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L(x(i) , x̃(i))

Training Objective:

Figure 2.16: An undercomplete auto-encoder with an encoder, a decoder and a bottleneck
layer sandwiched between them. An input x (left) is transformed into a code h (middle) and
then a reconstruction x̃ (right). The parameters of both the encoder and decoder are optimized
by minimizing the discrepancy between the input x and the reconstruction x̃ on a number of
unlabeled samples {x1, ...,xm}. On new samples, we throw away the decoder, and use the
encoder to generate new codes or representations.

error loss, crossentropy loss, etc.

Putting together the encoder and the decoder, it is tempting to think of a network in which
we feed something into the input layer and get back the same thing out of the output layer.
The challenge here is that the low-dimensional vector h serves as a bottleneck in information
flow. There is a risk of information loss in transformation either from x to h or from h to x̃,
making it difficult to “copy” the input to the output. Rather, we need to “squeeze” an object
from a high-dimensional space to a dense, low-dimensional space, and then “unsqueeze” it
from the new space to the original high-dimensional space. A consequence of this squeeze-and-
unsqueeze process is that the encoder is forced to compress the data but retain the information
as much as possible. So, the auto-encoder discussed here is also called the undercomplete
auto-encoder, because h has a smaller size than x and x̃. Figure 2.16 shows an illustration of
the undercomplete auto-encoder structure.

Given the loss function L(·), the encoder Encθ(·) and the decoder Decω(·), the parameters
θ̂ and ω̂ can be optimized by using the gradient descent method as in supervised learning (see
Section 2.4.1). When applying the auto-encoder, one can simply drop the decoder and use the
encoder as a feature extractor, that is, given a new input xnew, we generate a new representation

ĥnew = Encθ̂(xnew) (2.96)

Note that the encoder is not a standalone system but typically works with other models for

2.6 Unsupervised Methods and Auto-encoders 43

a complete working system. For example, we can train an auto-encoder on some sentences
and place a Softmax layer on the output of the encoder to build a sentence classifier. The
classifier can be further trained on some task-specific data to solve a new problem, such as
tagging a sentence with its sentiment polarity. This also makes the application of auto-encoder
fall under the general paradigm of pre-training: a sub-model (i.e., an encoder) is first trained
on large-scale, task-irrelevant data, and then used as a component of a bigger model on a
downstream task.

2.6.1 Auto-encoders with Explicit Regularizers

As more complex neural networks are involved, an auto-encoder tends to learn an identity
transformation although the bottleneck makes it a bit harder to pass through without information
loss. This is what we would ordinarily expect: we could make h a surrogate of x and decode
h to something very similar to x. On the other hand, learning an exact identity transformation
requires a highly complicated model and is prone to overfitting. Fortunately, as with other
machine learning models, we can regularize the training by using the methods presented in
Section 2.5. One of the most popular methods is adding an explicit regularization term to the
loss function. Taking together Eq. (2.74) and Eq. (2.95), we can define the training objective
to be

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i),Decω(Encθ(x

(i)))
)
+α ·R (2.97)

where R is the regularization term accounting for some prior knowledge we want to impose
on training, and α is its coefficient. A common choice for R in auto-encoders is the sparsity
penalty (also known as sparse auto-encoders). The simplest way to implement such a penalty
is to apply the l1 or l2 norm on the code, as follows

Rl1 =

m∑
i=1

∑
k

∣∣∣h(i)k ∣∣∣ (2.98)

Rl2 =

m∑
i=1

√∑
k

(
h
(i)
k

)2 (2.99)

It is worth noting that, unlike those penalties on model parameters (see Section 2.5.1),
the sparsity penalty regularizes the code h (or the output of the encoder) to be sparse. The
idea of encouraging sparseness in representations stems from sparse coding [Olshausen and
Field, 1997]. It states that the information of an object is embedded in complex dependencies
among the original attributes (or features) of the object. A desirable representation learning
system should extract such dependencies and reform them to be a set of independent features.
And there should be a small number of these independent features that are active, while the
active features vary when we switch to a new object. Note also that, from a Bayesian learning
point of view, other penalties in regularized training could be interpreted as priors over models.
The sparsity penalty, however, is not a prior because it does not depend on models (or model

44 Chapter 2. Foundations of Neural Networks

parameters) but on the training data [Goodfellow et al., 2016]. In this view, the sparsity
penalty should not be treated as a “regularization” term, but simply some distribution over the
model’s intermediate states. On the other hand, the sparseness of the code, though not well
explained by conventional use of regularization terms, is indeed helpful in many applications
of auto-encoders, because it directly models the way of representing the input and imposing
“priors” on outcomes of encoders. When considered from an empirical point of view, the
sparsity penalty is still thought of as a regularizer that biases the training to certain models.

There are other choices for defining the regularization term R in addition to Eqs. (2.98-
2.99). For example, a way of forcing sparsity is to penalize the cases where the average value
of each entry hk is far away from a predefined value [Nair and Hinton, 2009]. In case that hk
chooses values from [0,1], the regularization can be implemented by defining R as the KL
divergence between the average code over a number of samples and the expected code11. Let
h̄ denote the average code over {x1, ...,xm}, where the value of h̄k is the mean of the k-th
variable of the code:

h̄k =
1

m
·
m∑
i=1

Enc(x(i))(k) (2.100)

Also, let q be the expected code, where qk = τ for any k. If each entry of the average code
is viewed as a Bernoulli random variable with mean h̄k, and each entry of the expected code is
viewed as another Bernoulli random variable with mean τ , then the regularization term can be
defined as the sum of the KL divergence between h̄k and qk over all entries:

R =
∑
k

KL(h̄k, qk)

=
∑
k

τ · log τ

h̄k
+(1− τ) · log 1− τ

1− h̄k
(2.101)

In this form, R penalizes the model when h̄ deviates from q.
As another auto-encoder variant, the contractive auto-encoder (CAE) tries to improve

the robustness of representation by introducing a new regularization term into training [Rifai
et al., 2011]:

R =

m∑
i=1

∥∥∥∥∥∂h(i)

∂x(i)

∥∥∥∥∥
2

F

=

m∑
i=1

∥∥∥∥∥∂Enc(x(i))

∂x(i)

∥∥∥∥∥
2

F

(2.102)

where ∂Enc(x(i))

∂x(i) (or ∂h(i)

∂x(i)) is the Jacobian matrix of the representation 12, and ∥ · ∥F is

11In general, we can set all entries of the expected code to τ ∈ [0,1]. Sparse codes will be preferred if τ is close
to 0, as features are “inactive” in most cases. By contrast, dense codes will be preferred if τ is close to 1.

12Suppose that the encoder is a function Enc(·): x ∈ Rdx → h ∈ Rdh . The Jacobian matrix of h= Enc(x) is

2.6 Unsupervised Methods and Auto-encoders 45

the Frobenius norm of a matrix 13. The contractive penalty helps resist the influence of
small perturbations to the input. In the geometric sense, it encourages that the neighborhood
relationship holds for output data points if the input data points are neighborhoods, in other
words, it forces Enc(·) to behave more like a contraction mapping14, hence the name of
contractive auto-encoder.

2.6.2 Denoising Auto-encoders
Another source of inspiration for improving the robustness of a model arises from the denoising
idea: we add noise to the input and then remove it to recover the original input. Denoising auto-
encoders (DAEs) are such a type of neural networks that marries the idea of auto-encoding
with the idea of denoising. First, noise is added to the input vector in a stochastic manner. This
can be described as a process of generating a noisy input xnoise given the original input x:

xnoise ∼ Prnoise(xnoise|x) (2.106)

where Prnoise(·) is a distribution for sampling xnoise. For example, we can follow the method
presented in Section 2.5.5 and take the noisy input as a multivariate Gaussian variable:

xnoise ∼ Gaussian(x,σ2) (2.107)

where Gaussian(µ,σ2) generates xnoise via a Gaussian distribution with the mean µ and the
variance σ2. Eq. (2.109) introduces an additive noise to the input. Subtracting x from the
mean, we have

xnoise = x+g (2.108)

g ∼ Gaussian(0,σ2) (2.109)

a dh×dx matrix:

Jacobian =
∂h

∂x

=
[

∂h
∂x1

... ∂h
∂xdx

]

=

∂h1
∂x1

· · · ∂h1
∂xdx

...
. . .

...
∂hdh
∂x1

· · · ∂hdh
∂xdx

 (2.103)

13For a matrix A ∈ Rdh×dx , the Frobenius norm is given by the equation:

∥A∥ =

√∑
i,j

A2
i,j (2.104)

14Let X be a metric space with a metric d. Given a function f(·) from X to X , f(·) is a contraction mapping if
and only if there is a number ϵ such that for any x1,x2 ∈X:

d(f(x1),f(x2))≤ ϵ ·d(x1,x2) (2.105)

46 Chapter 2. Foundations of Neural Networks

0

5

-1

.8

Code h
(Bottleneck)

3

7

.3

2

.5

.2

xnoise = x+g
Corrupted Input

Encoder
h=

Encθ(xnoise)

3

7

.1

0

1

.5

Reconstruction x̃

Decoder
x̃=Decω(h)

0

0

.2

0

.5

.1

Noise g

=

7

3

.1

2

0

.1

Input x

+

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L(x(i) , x̃(i))

Training Objective:

Figure 2.17: The structure of a denoising auto-encoder. An input x is first corrupted into a
noisy or corrupted input xnoise. Then, it is passed through an encoder to form a code h. Then,
the code is passed through a decoder to form a reconstructed input x̃. The training is performed
by minimizing the loss between x and x̃. This process is termed “denoising” because it tries to
remove the noise from xnoise and recover the original input x.

Sometimes, this process is called the corruption of the input, and xnoise is called the
corrupted input. Aside from additive Gaussian noise, there are a few different ways to corrupt
the input [Vincent et al., 2010]. One of the popular methods is to zero some of the entries
of x. For example, we can set each entry to 0 with a pre-defined probability. This is also
called masking noise. Another method is to use salt-and-pepper noise or impulse noise for
corruption. It randomly chooses some of the entries, and sets each of them to a minimum or
maximum value with a pre-defined probability. Different types of noise are applied to different
applications of auto-encoders. For example, the masking noise is popular in training language
models, and the salt-and-pepper noise is more commonly used in image processing.

Then, the corrupted input xnoise is fed into an encoder-decoder network, and the network
produces a reconstructed input x̃ = Dec(Enc(xnoise)). The training process is regular. We
reuse Eq. (2.95) to minimize the loss of replacing x with x̃. Thus, we can rewrite Eq. (2.95) to
adapt the objective to the denoising case:

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i),Decω(Encθ(x

(i)
noise))

)
(2.110)

Eq. (2.110) differs from Eq. (2.95) only in that the input of the auto-encoder is xnoise instead
of x. In other words, we denoise the corrupted input to recover the original input. See Figure
2.17 for the structure of denoising auto-encoders.

Note that both contractive/sparse auto-encoders and denoising auto-encoders can be thought

2.6 Unsupervised Methods and Auto-encoders 47

of as ways to improve the robustness of auto-encoders. Their difference lies in that they
regularize the training at different points of the model. Contractive auto-encoders aim at
improving the robustness of encoding, that is, the representation is learned to be not so
sensitive to small perturbations to the input. Denoising auto-encoders, on the other hand,
aim at improving the robustness of reconstruction. It affects both encoders and decoders
simultaneously. In some sense, denoising auto-encoders are direct applications of noisy
training to auto-encoders (see Section 2.5.5). It is of course difficult to say which models
are better. For example, contractive auto-encoders have more direct guidance on learning the
representation, which is what we are concerned the most about. The training of denoising
auto-encoders, though has an indirect effect on encoding, receives additional denoising signals
from the decoder. This offers a new view of robust training: a robust representation can be
learned in both where it is generated (the denoising encoder) and where it is applied (the
denoising decoder).

2.6.3 Variational Auto-encoders

variational auto-encoders (VAEs) were not initially proposed to model the encoding problem,
although it is termed an “auto-encoder”. They are typically used to generate new data similar
to observed data, hence having very different formulations from the classical auto-encoders we
mentioned above. In statistics and machine learning, variational auto-encoders are more often
viewed as instances of variational Bayesian methods and used to perform efficient statistical
inference over latent variables when the posterior probabilities of these variables are intractable
[Kingma and Welling, 2014; 2019]. On the other side, variational auto-encoders, implicitly
or explicitly, deal with what we do in inducing the underlying representation of an observed
object. We therefore involve it in this section for a relatively complete discussion.

We begin with a generative story describing how each data point is generated. Suppose
that, for an observed sample x in our dataset, there is an unobserved latent variable h that
describes x. Now we intend to develop a probabilistic model to model the generation process
of x, say, estimating the probability Pr(x). This can be obtained by computing the marginal
distribution:

Pr(x) =

∫
Pr(x,h)dh (2.111)

where we explicitly introduce the latent variable h into the inference of x. To solve Eq. (2.111),
we use a model pω(x,h) to approximate Pr(x,h) (i.e., pω(x,h)≈ Pr(x,h)), and we have

pω(x) =

∫
pω(x,h)dh (2.112)

where pω(x,h) is a probability density function parameterized by ω. We replace the left-hand
side of Eq. (2.113) with pω(x) to emphasize that the probability is determined by the model
pω(·). There are generally many ways to define pω(x,h). Here we can simply think of it as a
neural network.

48 Chapter 2. Foundations of Neural Networks

Then, we can rewrite Eq. (2.113) by using the chain rule:

pω(x) =

∫
pω(h) ·pω(x|h)dh (2.113)

where pω(h) is the prior over h, e.g., a Gaussian prior. The conditional probability pω(x|h)
describes how likely x is observed given the latent variable h. To model this generation
process, pω(x|h) is often assumed to be a Gaussian distribution that is parameterized with its
mean µp and variance σp:

pω(x|h) = Gaussian(µp,σp) (2.114)

where µp and σp are determined by a decoding network Decω(·) (we will explain later on why
it is called “decoding”):

(µp,σp) = Decω(h) (2.115)

However, Eq. (2.113) is still intractable even though pω(h) and pω(x|h) are both tractable,
because it is impossible to summing over all possible h’s. This also leads to an intractable
posterior:

pω(h|x) =
pω(h) ·pω(x|h)

pω(x)
(2.116)

It looks like we are stuck with pω(x) and pω(h|x)! Variational auto-encoders address this
issue by approximating pω(h|x) with a tractable posterior qθ(h|x):

qθ(h|x) ≈ pω(h|x) (2.117)

where θ is the parameter of the new model. Like Eqs. (2.114-2.115), qθ(h|x) is defined as
another Gaussian distribution:

qθ(h|x) = Gaussian(µq,σq) (2.118)

(µq,σq) = Encθ(x) (2.119)

where Encθ(·) is the encoding network that reads x and generates the mean and variance of
the distribution qθ(h|x). This is interesting! We now have a feasible path to compute Pr(x):
we first sample a latent variable h via qθ(h|x), and then compute pω(x) via the product of

2.6 Unsupervised Methods and Auto-encoders 49

pω(h) and pω(x|h). In this case, the log-scale probability of the observation is defined to be

logPr(x) ≡ Eh∼qθ(h|x) logpω(x)

= Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

pω(h|x)

= Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

pω(h|x)
· qθ(h|x)
qθ(h|x)

= Eh∼qθ(h|x) log
qθ(h|x)
pω(h|x)

+Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

qθ(h|x)
(2.120)

The first term of the right-hand side of Eq. (2.120) is the KL divergence (relative entropy)
between qθ(h|x) and pω(h|x), i.e.,

D(qθ(h|x)||pω(h|x)) = Eh∼qθ(h|x) log
qθ(h|x)
pω(h|x)

(2.121)

Thus, given D(qθ(h|x)||pω(h|x))≥ 0, we have15

logPr(x) ≥ Eh∼qθ(h|x) log
pω(h) ·pω(x|h)

qθ(h|x)

= Eh∼qθ(h|x)

[
logpω(x|h)+ log

pω(h)

qθ(h|x)

]
= Eh∼qθ(h|x) logpω(x|h)+D(pω(h)||qθ(h|x)) (2.122)

The right-hand side of Eq. (2.122) is a lower bound of the likelihood logPr(x). It
is also known as the evidence lower bound (ELBO). The first term of the ELBO can be
approximately computed by sampling different h’s. Also, computing the second term is not
difficult because there is an analytical form for D(pω(h)||qθ(h|x)) if the forms of pω(h) and
qθ(h|x)) are given. Let L(x,θ,ω) denote the negative ELBO. Then, the training process of a
variational auto-encoder can be framed as minimizing L(·) over a number of observed samples
{x(1), ...,x(m)}:

(θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L
(
x(i),θ,ω

)
(2.123)

Note that, because sampling h from qθ(h|x) is a non-continuous operation, Eh∼qθ(h|x) logpω(x|h)
is not straightforwardly differentiated. To fit the training of auto-encoders in standard back-
prorogation, a common way is to use the so-called reparameterization trick. Here we skip
the details and refer the reader to a few papers for more information [Kingma and Welling,
2014; Doersch, 2016].

Figures 2.18 illustrates how a variational auto-encoder works. It presents us with a two-step
generation process:

15The KL divergence between p and q is zero only if p= q, and is positive otherwise.

50 Chapter 2. Foundations of Neural Networks

0

5

-1

.8

Code h

3

7

.1

2

0

.1

Input x

Encoder
Encθ(x)

.1

.2

.1

.3

ρ2q
.1

4

-1

.9

µq

Gaussian(µq , ρ2q)

sampling

3

7

.1

2

0

.1

Input x

Decoder
Decω(h)

.1

.1

.3

.1

.2

.1

ρ2p

.1

.2

2

4

3

7

µp

Gaussian(µp , ρ2p)

sampling

Encoding Step: qθ(h|x) Decoding Step: pω(x|h)

Training Objective: (θ̂, ω̂) = argmin
(θ,ω)

m∑
i=1

L(x(i),θ,ω)

Figure 2.18: The generative story of a variational auto-encoder. For an input sample x, we
generate a latent variable h by using an encoder qθ(h|x). In the encoding step, a neural
network Encθ(·) is first used to produce the mean and variance of a Gaussian distribution, say,
µq and σ2q . The latent variable h is then drawn according to Gaussian(µq,σ

2
q). After that,

we regenerate the original sample x by using a decoder pω(x|h). In the decoding step, like
the generation process in the encoder, a neural network Decω(·) is used to generate the mean
µp and variance σ2p of Gaussian(µp,σ

2
p). The same input x is spitted out by sampling from

Gaussian(µp,σ
2
p).

• Encoding. For an input sample x, we sample a latent variable h from qθ(h|x). This
involves an encoding network Encθ(x) that generates the mean µq and variance σ2q of
the Gaussian distribution qθ(h|x). The latent variable is then generated by sampling
from Gaussian(µq,σ

2
q).

• Decoding. For the latent variable h, we sample the original input x from pω(x|h). It
follows again a Gaussian sampling process: a decoding network Decω(h) is used to
determine the mean µp and variance σ2p of the distribution. x is generated by following
Gaussian(µp,σ

2
p).

Sometimes, qθ(h|x) and pω(x|h) are called an “encoder” and a “decoder”, as they try to
“map” an input to a representation and then “map” it back to the input. However, qθ(h|x) and
pω(x|h) themselves imply some non-deterministic models, that is, they output the probability
density functions of the variables rather than point estimates. An important consequence of

2.7 Summary 51

this result is that variational auto-encoders do not tend to find the “best” representation for
the input. At first glance it sounds weird as every model we have talked about so far can
give a fixed value output. This, however, is the case of the Bayesian inference — we only
learn a distribution over possible values of a latent variable. On the empirical side, if you
want to obtain something like a good representation, it is fine to just sample a value from that
distribution you developed. It would be a high probability that you get a not-so-bad outcome if
your model works well [Knight, 2009].

In practice, the main use of variational auto-encoders is in generation but not representation.
At test time, provided the optimized parameters θ̂ and ω̂, the encoder (i.e., qθ̂(h|x)) is removed,
and the decoder (i.e., pω̂(x|h)) works with randomly generated h’s. More precisely, we sample
a latent variable hnew from a Gaussian distribution, and infer a sample xnew by pω̂(x|hnew)

as usual. We will see in the subsequent chapters that many NLP problems can be categorized
as generation problems where sequential or hierarchical data objects are generated on the
condition of some given data objects or latent variables.

2.7 Summary
In this chapter we have talked about what a neural network is, as well as a few basic architec-
tures, which are commonly used as building blocks in constructing powerful deep learning
systems. Also, we have talked about how to train neural networks, how to regularize the
training process, and how to apply neural networks to feature learning in an unsupervised
manner.

But neural networks and deep learning are wide-ranging topics and all of our discussions are
a little “peek” into them. For a more comprehensive introduction to these topics, Goodfellow
et al. [2016]’s book may be a good choice. It also covers several advanced techniques, such
as deep structured models and randomized methods, for developing state-of-the-art systems.
However, as always, there is a big difference between knowing what a technique is and being
fluent with using it in solving real-world problems. So, for practitioners who want to apply
neural networks and deep learning in even simple situations, there are a number of books on
implementation details of deep learning systems [Géron, 2019; Zhang et al., 2021; Chollet,
2021], and open-source projects that provide code-bases for reference16.

In the following chapters, we will dig into how to use neural models to address NLP
problems. Along the way, we will see how to learn the representation of words and sentences
using the methods we have discussed so far (Chapters 3-4), and how to model different NLP
problems by using several interesting neural network-based methods, including the attention
mechanism and Transformers (Chapters 5-6), pre-training (Chapter 7), large language models
(Chapters 8-10), and so on.

16URLs to a few popular online tutorials: https://pytorch.org/tutorials, https://keras.io/
examples/nlp, and https://www.tensorflow.org/tutorials

https://pytorch.org/tutorials
https://keras.io/examples/nlp
https://keras.io/examples/nlp
https://www.tensorflow.org/tutorials

Bibliography

[Ackley et al., 1985] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning
algorithm for boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[Alzantot et al., 2018] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani
Srivastava, and Kai-Wei Chang. Generating natural language adversarial examples. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2890–2896,
2018.

[Ba et al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[Belinkov and Bisk, 2018] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break
neural machine translation. In International Conference on Learning Representations, 2018.

[Bengio et al., 2000] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic
language model. Advances in Neural Information Processing Systems, 13, 2000.

[Bengio et al., 2003] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of Machine Learning Research, 3(Feb):1137–1155, 2003.

[Bickel and Doksum, 2015] Peter J Bickel and Kjell A Doksum. Mathematical statistics: basic ideas
and selected topics, volumes I-II package. Chapman and Hall/CRC, 2015.

[Bishop, 1995] Christopher Bishop. Regularization and complexity control in feed-forward networks.
In Proceedings International Conference on Artificial Neural Networks ICANN’95, pages 141–148,
1995a.

[Bishop, 1995] Christopher M. Bishop. Training with noise is equivalent to tikhonov regularization.
Neural computation, 7(1):108–116, 1995b.

[Chiang and Cholak, 2022] David Chiang and Peter Cholak. Overcoming a theoretical limitation of
self-attention. arXiv preprint arXiv:2202.12172, 2022.

[Chollet, 2021] François Chollet. Deep Learning with Python (2nd ed.). Manning Publications, 2021.

[Cybenko, 1989] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314, 1989.

[Dayan et al., 1995] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The
helmholtz machine. Neural computation, 7(5):889–904, 1995.

[Doersch, 2016] Carl Doersch. Tutorial on variational autoencoders. stat, 1050:13, 2016.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[Ebrahimi et al., 2018] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. HotFlip: White-box

54 BIBLIOGRAPHY

adversarial examples for text classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 31–36, Melbourne,
Australia, 2018.

[Elman, 1990] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[Feng et al., 2021] Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi,
Teruko Mitamura, and Eduard Hovy. A survey of data augmentation approaches for NLP. In Findings
of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 968–988, 2021.

[Géron, 2019] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed.). O’Reilly Media, 2019.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

[Goodfellow et al., 2015] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. In International Conference on Learning Representations, 2015.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[Goodman, 1996] Joshua Goodman. Parsing algorithms and metrics. In 34th Annual Meeting of the
Association for Computational Linguistics, pages 177–183, 1996.

[Graves et al., 2013] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech
and signal processing, pages 6645–6649. IEEE, 2013.

[Gulcehre et al., 2016] Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy
activation functions. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 3059–3068. PMLR, 2016.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[Hinton, 2018] Geoff Hinton. Coursera neural networks for machine learning lecture 6,
2018. URL http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_

slides_lec6.pdf.

[Hinton, 2007] Geoffrey E Hinton. Learning multiple layers of representation. Trends in cognitive
sciences, 11(10):428–434, 2007.

[Hinton and Salakhutdinov, 2006] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the
dimensionality of data with neural networks. science, 313(5786):504–507, 2006.

[Hinton et al., 2006] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

BIBLIOGRAPHY 55

[Hinton et al., 2012] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580, 2012.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[Holmström and Koistinen, 1992] Lasse Holmström and Petri Koistinen. Using additive noise in
back-propagation training. IEEE Transactions on Neural Networks, 3(1):24–38, 1992.

[Hopfield, 1982] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[Hopfield, 1984] John J Hopfield. Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the national academy of sciences, 81(10):
3088–3092, 1984.

[Huang et al., 2020] Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving
transformer optimization through better initialization. In Proceedings of International Conference on
Machine Learning, pages 4475–4483. PMLR, 2020.

[Hubel and Wiesel, 1959] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in
the cat’s striate cortex. The Journal of physiology, 148(3):574, 1959.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[Jia and Liang, 2017] Robin Jia and Percy Liang. Adversarial examples for evaluating reading
comprehension systems. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 2021–2031, 2017.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[Kingma and Welling, 2014] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes.
In Proceedings of 2nd International Conference on Learning Representations, ICLR 2014, 2014.

[Kingma and Welling, 2019] Diederik P. Kingma and Max Welling. An introduction to variational
autoencoders. Foundations and Trends® in Machine Learning, 2019.

[Knight, 2009] Kevin Knight. Bayesian inference with tears, 2009.

[Kochenderfer and Wheeler, 2019] Mykel J. Kochenderfer and Tim A. Wheeler. Algorithms for
Optimization. The MIT Press, 2019.

[Kumar and Byrne, 2004] Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for
statistical machine translation. In Proceedings of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,
pages 169–176, 2004.

[LeCun et al., 1989] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

[LeCun et al., 2012] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

56 BIBLIOGRAPHY

[Liu et al., 2020] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Under-
standing the difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 5747–5763, November 2020.

[McCulloch and Pitts, 1943] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[Minsky and Papert, 1969] Marvin Minsky and Seymour Papert. Perceptrons. MIT press, 1969.

[Mohri et al., 2018] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning (2nd ed.). MIT Press, 2018.

[Nair and Hinton, 2009] Vinod Nair and Geoffrey E Hinton. 3d object recognition with deep belief
nets. Advances in neural information processing systems, 22, 2009.

[Neelakantan et al., 2015] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser,
Karol Kurach, and James Martens. Adding gradient noise improves learning for very deep networks.
arXiv preprint arXiv:1511.06807, 2015.

[Nesterov, 1983] Yurii E Nesterov. A method for solving the convex programming problem with
convergence rate o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[Olive, 2022] David Olive. Robust statistics, 2022. URL http://parker.ad.siu.edu/Olive/
ol-bookp.htm.

[Olshausen and Field, 1997] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete
basis set: A strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

[Ott et al., 2018] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine
translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages
1–9, October 2018.

[Pearson, 1901] Karl Pearson. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572,
1901.

[Plaut et al., 1986] David C Plaut, Steven J Nowlan, and Geoffrey E Hinton. Experiments on learning
by back propagation. Technical report, Carnegie-Mellon University, 1986.

[Polyak, 1964] Boris T Polyak. Some methods of speeding up the convergence of iteration methods.
Ussr computational mathematics and mathematical physics, 4(5):1–17, 1964.

[Prechelt, 1998] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade,
pages 55–69. Springer, 1998.

[Rifai et al., 2011] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Con-
tractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of International
Conference on Machine Learning, 2011.

[Rosenblatt, 1957] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957.

[Rumelhart et al., 1986] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[Sennrich et al., 2016] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine
translation models with monolingual data. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 86–96, 2016.

http://parker.ad.siu.edu/Olive/ol-bookp.htm
http://parker.ad.siu.edu/Olive/ol-bookp.htm

BIBLIOGRAPHY 57

[Shorten and Khoshgoftaar, 2019] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data
augmentation for deep learning. Journal of big data, 6(1):1–48, 2019.

[Smith et al., 2018] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay
the learning rate, increase the batch size. In Proceedings of the 6th International Conference on
Learning Representations ICLR, 2018.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929–1958, 2014.

[Sutskever et al., 2013] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013.

[Szegedy et al., 2014] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of
the 2nd International Conference on Learning Representations, 2014.

[Szegedy et al., 2016] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[Uffink, 2017] Jos Uffink. Boltzmann’s Work in Statistical Physics. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2017
edition, 2017.

[Ulyanov et al., 2016] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization:
The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of
Advances in Neural Information Processing Systems, volume 30, 2017.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine
Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of machine learning research, 11(12), 2010.

[Waibel et al., 1989] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and
Kevin J Lang. Phoneme recognition using time-delay neural networks. IEEE transactions on
acoustics, speech, and signal processing, 37(3):328–339, 1989.

[Williams and Zipser, 1989] Ronald J Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[Wold et al., 1987] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[Wu and He, 2018] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European
conference on computer vision (ECCV), pages 3–19, 2018.

[Xu et al., 2020] Hongfei Xu, Qiuhui Liu, Josef van Genabith, Deyi Xiong, and Jingyi Zhang. Lipschitz
constrained parameter initialization for deep transformers. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 397–402, July 2020.

[Yao et al., 2007] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient
descent learning. Constructive Approximation, 26:289–315, 2007.

58 BIBLIOGRAPHY

[Zeiler, 2012] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[Zhang et al., 2021] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into deep
learning. arXiv preprint arXiv:2106.11342, 2021.

[Zhang et al., 2020] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial
attacks on deep-learning models in natural language processing: A survey. ACM Transactions on
Intelligent Systems and Technology (TIST), 11(3):1–41, 2020.

	2 Foundations of Neural Networks
	2.1 Multi-layer Neural Networks
	2.1.1 Single-layer Perceptrons
	2.1.2 Stacking Multiple Layers
	2.1.3 Computation Graphs

	2.2 Example: Neural Language Modeling
	2.3 Basic Model Architectures
	2.3.1 Recurrent Units
	2.3.2 Convolutional Units
	2.3.3 Gate Units
	2.3.4 Normalization (Standardization) Units
	2.3.5 Residual Units

	2.4 Training Neural Networks
	2.4.1 Gradient Descent
	2.4.2 Batching
	2.4.3 Parameter Initialization
	2.4.4 Learning Rate Scheduling

	2.5 Regularization Methods
	2.5.1 Norm-based Penalties
	2.5.2 Dropout
	2.5.3 Early Stopping
	2.5.4 Smoothing Output Probabilities
	2.5.5 Training with Noise

	2.6 Unsupervised Methods and Auto-encoders
	2.6.1 Auto-encoders with Explicit Regularizers
	2.6.2 Denoising Auto-encoders
	2.6.3 Variational Auto-encoders

	2.7 Summary

