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Chapter 11

Inference

Once we have pre-trained and fine-tuned an LLM, we can apply it to make predictions on
new data. This process is called inference, in which the LLM computes the probabilities of
different possible outputs given an input, and selects the output that maximizes the probability.
The inference problem is generally expressed in the following form:

ŷ = argmax
y

Pr(y|x) (11.1)

where x is the input sequence, y is a possible output sequence, and ŷ is the best output
sequence.

This is perhaps one of the most widely adopted formulas in NLP, and dates back to the early
days of speech recognition and machine translation systems based on probabilistic models.
Although for some applications, such as predicting a token using a very small language
model, solving this optimization problem seems trivial, for most situations the computational
challenges arise from both calculating Pr(y|x) and performing the argmax operation. The
problems we therefore wish to address in this chapter involve: 1) computing the prediction
probability efficiently given a trained LLM, and 2) devising an efficient (suboptimal) search
for ŷ.

At a high level, these are fundamental issues in artificial intelligence, which have been
extensively studied. So many well-established techniques can be directly applied, for example,
one can use greedy search algorithms to implement an efficient inference system. On the other
hand, model-specific optimizations, such as efficient attention models for Transformers, can be
considered to further improve efficiency. But, in many practical applications, we still need to
make a trade-off between accuracy and efficiency, by carefully combining various techniques.

The importance of the inference problem in LLMs also lies in the fact that many application
scenarios require processing extremely long sequences. Recent studies have found that injecting
additional prompts and contextual information, such as long chain-of-thought prompts, during
inference can significantly improve the performance of LLMs. This provides a new approach
to scaling LLMs: better results can be achieved by increasing the compute at inference time.
For instance, through inference-time scaling, OpenAI [2024]’s o1 and Deepseek [2025]’s R1
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4 Chapter 11. Inference

systems have demonstrated impressive performance on complex reasoning and programming
tasks. This, in turn, has encouraged the NLP field to focus more on the issue of efficient
inference.

In this chapter, we will introduce basic concepts and algorithms of LLM inference, includ-
ing prefilling-decoding frameworks, search (decoding) algorithms, and evaluation metrics of
inference performance. We will then present methods for improving the efficiency of LLM
inference, covering a range of techniques for speeding up the system and compressing the
model. Finally, we will discuss inference-time scaling, which is considered an important
application of inference optimization.

11.1 Prefilling and Decoding
In this section, we present the prefilling-decoding framework, which is the most commonly
used for interpreting and implementing LLM inference processes. We first introduce the
notation and background knowledge, and then describe the details of the framework, such as
the decoding algorithms for LLM inference.

11.1.1 Preliminaries
Although we have described LLMs many times in this book, we begin by briefly defining the
notation to facilitate the subsequent discussion, and to make this chapter self-contained.

x: The input token sequence. It is conceptually equivalent to a “prompt”,
which includes instructions, user inputs, and any additional context
intended as input to the LLM. x comprises m+1 tokens, denoted by
x0...xm, where x0 is the start symbol ⟨SOS⟩.

y: The output token sequence, also called the response to the input. y

comprises n tokens, denoted by y1...yn.

y<i: The output tokens that precede position i, that is, y<i = y1...yi−1.

Pr(y|x): The probability of generating y given x using the LLM. If the LLM is
parameterized by θ, we can write it as Prθ(y|x).

[x,y]: The concatenated token sequence of x and y. That is, [x,y] =

x0...xmy1...yn. Occasionally, we use the notation seqx,y to represent
[x,y].

Pr([x,y]): The probability of generating the token sequence [x,y] using the LLM.

As described in Eq. (11.1), the goal of LLM inference is to maximize Pr(y|x). Modeling
this conditional probability is common in NLP. At first glance, it seems to be a sequence-
to-sequence problem, where we transform a sequence into another using encoding-decoding
models. However, we are not discussing sequence-to-sequence problems or encoding-decoding
architectures. Instead, as discussed in earlier chapters, this modeling problem can be addressed



11.1 Prefilling and Decoding 5

by using decoder-only models. To do this, we can interpret the log-scale probability logPr(y|x)
as the difference between logPr([x,y]) and logPr(x)

logPr(y|x) = logPr([x,y])− logPr(x) (11.2)

where logPr([x,y]) and logPr(x) can be obtained by running the LLM on the sequences
[x,y] and x, respectively. For example, we can calculate the probability of generating x using
the chain rule

logPr(x) = logPr(x0...xm)

= log
[
Pr(x0)Pr(x1|x0) · · ·Pr(xm|x0...xm−1)

]
= logPr(x0)︸ ︷︷ ︸

=0

+

m∑
j=1

logPr(xj |x<j)

=
m∑
j=1

logPr(xj |x<j) (11.3)

In other words, we calculate the token prediction log-probability at each position of x, and
sum all these log-probabilities.

In common implementations of LLMs, however, we do not need to compute the log-
probability of the input sequence, but use the LLM to directly compute the log-probability of
the output sequence in the following form

logPr(y|x) =
n∑

i=1

logPr(yi|x,y<i) (11.4)

where [x,y<i] represents the context for predicting yi. We use Pr(yi|x,y<i) to denote
Pr(yi|[x,y<i]), following the commonly used notation in the literature.

Now, we have two sub-problems in addressing the inference issue described in Eq. (11.1):

• Model Computation: we model Pr(yi|x,y<i) and compute it in an efficient manner.

• Search: we find the optimal (or sub-optimal) output sequence in terms of logPr(y|x).

The second sub-problem is a classic issue in NLP. We will show in Section 11.1.3 that
there are several well-studied algorithms that can be applied to efficiently search the space
of possible output sequences. The first sub-problem requires a language model to produce a
distribution over a vocabulary V given a sequence of context tokens. We can do this by training
a Transformer decoder, which outputs the distribution

Pr(·|x,y<i) = Softmax(HWo)m+i (11.5)

H = Dec([x,y<i]) (11.6)

Here Dec(·) produces a sequence of representations, each corresponding to a position of the
input sequence. So, if we input [x,y<i] to the LLM, H is an i′× d matrix, where d is the
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x0 x1 · · · xm y1 · · · yi−1

Embedding Layer

decoder output

· · · · · ·

Linear Mapping

· · · · · ·

· · · · · ·

FFN

Self-attention L layers

Softmax Layer

· · · · · ·

Pr(·|x) Pr(·|x,y1) · · · Pr(·|x,y<i)

Figure 11.1: The decoder-only architecture for LLMs. The decoder consists of an embedding
layer and a stack of Transformer layers. In each Transformer layer, the input passes through a
linear mapping, a self-attention network, and an FFN. The output of the decoder is a sequence
of representations that are taken as input to a Softmax layer, which generates a distribution of
tokens for each position.

dimensionality of each representation, and i′ =m+ i is the number of context tokens. We
can then use a Softmax layer to transform these representations into distributions of tokens.
Wo ∈ Rd×|V | is the linear mapping matrix of the Softmax layer, and HWo transforms the
d-dimensional representations in H into the |V |-dimensional representations. The use of the
subscript m+ i indicates that the Softmax function is performed only on the representation at
position m+ i. See Figure 11.1 for an illustration of this architecture.

Dec(·) is a Transformer decoding network that consists of an embedding network and
a number of stacked self-attention and FFN networks. We will not discuss Transformers in
detail here, as readers can easily learn about these models from the literature. However, it is
worth pointing out that the difficulty of inference is in part from the use of the self-attention
mechanism in Transformers. Recall that a general form of single-head self-attention is given
by

Attqkv(qi′ ,K,V) = Softmax(
qi′K

T

√
d

)V (11.7)

where qi′ ∈ Rd is the query at the position i′ (i.e., position of yi ), and K and V ∈ Ri′×d are
the keys and values up to i′, respectively.

At each step during inference, we call the self-attention function Attqkv(·), followed by
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an FFN, to generate a d-dimensional representation that integrates information from both the
current token and its left context. This process is repeated through L layers of self-attention
and FFN, forming a stack of Transformer layers. The output of the L-th layer in this stack is
the final representation.

Each time, the model attends position i′ to all previous positions, which results in 2i′

vector products (i′ times for qi′K
T and i′ times for the product of Softmax(

qi′K
T

√
d

) and V).
Hence, generating a sequence of length len has a time complexity of O(L× len2) for the
self-attention network. Clearly, the inference of this model is slow for long sequences due to
its quadratic time complexity with respect to sequence length. Therefore, many improvements
to Transformers and alternative models have focused on efficient methods that are faster than
this quadratic time complexity, such as sparse attention mechanisms and linear-time models. A
detailed discussion of efficient Transformers can be found in the previous chapters, and this
section will focus on the standard Transformer architecture.

Note that in self-attention, the queries, keys, and values of a layer are linear mappings
from the same input (i.e., the output of the previous layer). Once a new key-value pair is
generated, it is repeatedly used in subsequent inference steps. Rather than regenerating these
key-value pairs during inference, a more desirable way is to store them in a structure, called
the key-value cache, or the KV cache. Thus, (K,V) can straightforwardly be considered a
KV cache. This cache is updated as follows

K = Append(K,ki′) (11.8)

V = Append(V,vi′) (11.9)

where (ki′ ,vi′) is the newly generated key-value pair at position i′, and Append(a,b) denotes
a function that appends a row vector b to a matrix a. Figure 11.2 shows how a Transformer
decoder works with a KV cache.

Finally, the process of computing logPr(y|x) is summarized as follows:

1. We concatenate x and y into a sequence [x,y]. For each position i′ of this sequence, we
perform the following steps.

(a) We compute the embedding of the token at position i′, and feed the resulting
embedding as an initial representation into the stack of Transformer layers.

(b) In each Transformer layer, we pass the input representation through the self-
attention network first and then through an FFN. In the self-attention network, the
input representation is transformed into qi′ , ki′ , and vi′ . Then, we update the KV
cache (K,V) using ki′ and vi′ (see Eqs. (11.8-11.9)). Then, we compute the
output of the attention model by attending qi′ to (K,V) (see Eq. (11.7)).

(c) If i′ >m (i.e., i = i′−m ≥ 0), we take the output of the Transformer stack and
compute the token prediction probability Pr(yi|x,y<i) via the Softmax layer (see
Eq. (11.5)).

2. When reaching the end of the sequence, we obtain logPr(y|x) by summing logPr(yi|x,y<i)

over i ∈ [1,n] (see Eq. (11.4)).



8 Chapter 11. Inference
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(a) Updating the KV Cache at Position i′
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(b) Updating the KV Cache at Position i′+1

Figure 11.2: Illustration of the KV cache. We update the KV cache at a position, perform the
attention operation, and then move to the next position to repeat the process.
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11.1.2 A Two-phase Framework

As we have seen, language modeling is a standard autoregressive process, where each token is
generated one at a time, conditioned on the previous tokens. For Transformers, this requires the
model to maintain a KV cache that stores past representations, and attend the newly generated
representation to this KV cache. If we think of the model Pr(y|x) from the perspective of
computing the KV cache, it is natural to divide inference into two phases:

• Prefilling. The prefilling phase computes the KV cache for the input sequence x. It
is called prefilling because the model prepares and stores the key-value pairs for each
token in the input before the actual inference begins. The process of prefilling in an
LLM can be expressed as

cache = Deckv(x) (11.10)

where Deckv(·) is the decoding network (i.e., the same as Dec(·)), but it returns the KV
cache in self-attention instead of the output representations. cache is a list, given by

cache = {cache1, ...,cacheL} (11.11)

where cachel represents the key-value pairs for the l-th layer.

• Decoding. The decoding phase continues generating tokens based on the KV cache, as
illustrated in Figure 11.2. When a new token is input into the decoder, we update the KV
cache in each layer by adding the new key-value pair. The updated cache is then used
for self-attention computation. The token generation stops when some stopping criterion
is met, such as when the generated token is the end symbol. The goal of decoding is to
find the best predicted sequence, which is given by

ŷ = argmax
y

Pr(y|cache) (11.12)

Here we use Pr(y|cache) instead of Pr(y|x) to emphasize that the decoding process
actually relies on the KV cache rather than x.

The prefilling and decoding processes are illustrated in Figure 11.3. Note that both these
processes are autoregressive. However, as shown in Table 11.1, they differ in several aspects,
which lead to very different implementations in practice.

In essence, while the underlying model of prefilling is based on token prediction, it can
be considered an encoding process. This is because our goal is not to generate tokens, but to
build a context representation (i.e., the KV cache) for the subsequent steps in the decoding
phase. In this sense, it is similar to BERT, where we encode the input sequence into a sequence
of contextualized token representations. On the other hand, unlike BERT which generates
bidirectional sequence representations, prefilling is based on standard language modeling tasks,
and is thus unidirectional. Note that, since the entire sequence x is input into the model all
at once, all queries can be packed together and the self-attention operation is performed on x
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Prefilling Decoding

Goal Set up initial context x. Continue generating tokens
y after the initial input.

All-at-once Visibility Tokens in x are presented
all at once.

Tokens in y are presented
sequentially, that is,
predicting a token requires
waiting for the previous
tokens to be predicted first.

Context Use Build the context or
encoded representation of
the input.

Use the cached key-value
pairs (from prefilling) to
generate further tokens.

Resource Limitation Compute-bound Memory-bound

Computational Cost High Very High

Table 11.1: Prefilling vs Decoding.

in parallel. Let Q be the queries that are packed into one matrix. The self-attention model in
prefilling can be defined as

Attqkv(Q,K,V) = Softmax(
QKT

√
d

+Mask)V (11.13)

where Q,K,V ∈ Rd×(m+1). Mask ∈ R(m+1)×(m+1) is a mask that ensures that each token
only attends to itself and the tokens that precede it in the sequence. It is represented by setting
the values in the mask corresponding to future tokens to a large negative number, for example,
for the query qi and the key kj , we set the value of the entry (i, j) to −∞ if i < j. One
advantage of processing the sequence with a single self-attention computation is that we can
make better use of the parallel computing capabilities of modern GPUs, and so speed up
prefilling. In general, the prefilling process is considered compute-bound. This is because
merging multiple computational operations into one operation reduces the number of data
transfers and the performance bottleneck usually comes from the computational capacity rather
than memory bandwidth.

Decoding is a standard left-to-right text generation process. The token sequence is gener-
ated autoregressively by predicting one token at a time based on the KV cache. Each time a new
token is generated, we need to attend it to previous tokens, following Eq. (11.7). Therefore,
the decoding process is memory-bound due to its frequent access to the KV cache. The cost
of decoding grows significantly as more tokens are generated. In most cases, decoding is
computationally more expensive than prefilling. Note that this is not just because, in decoding,
the LLM generates tokens one by one and repeatedly updates the KV cache. As we will see in
the following subsection, we may need to explore multiple different token sequences during
decoding, which makes the problem more complex and increases its cost further.
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Figure 11.3: Illustration of the prefilling and decoding processes. In prefilling, the entire input
sequence is processed together and the KV cache is filled. In decoding, the LLM generates the
output sequence step by step based on the prefilled KV cache.
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11.1.3 Decoding Algorithms

So far our discussion of LLM inference has primarily focused on the model computation
problem, that is, how to compute Pr(y|x). Now we turn to the discussion of the search
problem. The problem can be stated as: given an LLM Pr(y|x), how do we efficiently search
for the best output sequence ŷ given the input sequence x (or the generated KV cache)?
Naively, we can consider all of the output sequences, compute the prediction probability for
each, and then select the output sequence having the highest probability. This method can
guarantee the globally optimal solution, but direct exhaustive search is impractical for LLMs
as the number of possible output sequences grows exponentially with the length of y.

In practice, various heuristic search algorithms, such as greedy search and sampling-based
search, are commonly employed to approximate the solution. Each of these methods offers
trade-offs between search quality and computational efficiency. The search problem, therefore,
becomes a balancing act between exploration and exploitation, where the goal is to find an
efficient strategy that produces high-quality outputs without exploring the entire space.

Before giving a more detailed discussion of these methods, let us first informally define
what a search space is and how it is represented. In LLM inference, we define a hypothesis as a
tuple of input and output sequences. Since x is fixed during inference, we can simply consider
each hypothesis as an output sequence. The search space, denoted by Y , is then the set of all
possible hypotheses (i.e., output sequences) that the model can generate. The search problem
for LLM inference can be re-expressed as

ŷ = argmax
y∈Y

Pr(y|x) (11.14)

In NLP, Y is commonly represented in a tree data structure to facilitate search. Figure
11.4 shows an example of the search tree resulting from a small vocabulary. In this example,
a node represents a prefix subsequence that can be shared by many sequences. The search
starts with the root of the tree, which can be regarded as the beginning of all sequences that
can be generated1. Each child node extends the prefix of its parent node by adding one token
from the vocabulary to the sequence, along with the probability of predicting the token given
the prefix. This process continues as each node further branches out into additional child
nodes, each representing a new possible extension of the sequence with another token. The
search tree thus grows deeper and wider, representing an ever-increasing number of potential
sequences as more tokens are appended. This structure allows us to efficiently traverse through
possible sequences, evaluating each in terms of the log-probability accumulated over the path
from the root to that node. For example, in Figure 11.4, the path from the root to the node
17 corresponds to the output sequence “Cats are playful.”. The prediction log-probability
logPr(y|x) is the sum of the log-probabilities of all the nodes on this path.

In general, the search tree is organized as levels, where each level consists of all nodes that
are the same distance from the root node. Thus, a breadth-first search over the tree essentially
performs left-to-right generation of tokens. Nodes in the same level correspond to sequences

1Here, since the predictions in LLMs are based on x, we can think of the root as a representation of x.
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Output: cats are playful.
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node 0→ 0
node 3→ logPr("cats"|x)
node 9→ logPr("are"|x,"cats")
node 11→ logPr("playful"|x,"cats are")
node 17→ logPr("."|x,"cats are playful")

Figure 11.4: A search tree for decoding. At each node, we expand the tree by considering all
possible tokens, each leading to a new node representing a potential continuation of the text.
Here we highlight a path through nodes 0, 3, 9, 11, and 17. The path represents the output
sequence “cats are playful.”, whose log-probability can be computed by accumulating the
log-probabilities of these nodes.

of the same length. As the search progresses, new tokens are appended to these sequences,
expanding them incrementally.

Let Yi be the set of the sequences that the LLM generates at step i. Yi can be obtained by
expanding each sequence in Yi−1 with all possible next tokens in the vocabulary V , given in
the following recursive form

Yi = Yi−1×V (11.15)

where Yi−1×V denotes the Cartesian product of Yi−1 and V (i.e., each sequence in Yi−1 is
concatenated with each token in V ). Note that if a sequence in Yi−1 is complete (e.g., ending
with the ⟨EOS⟩ token), it will not be expanded any further. Let Ψ(Yi) be the set of all complete
sequences in Yi. Then, the search space can be expressed as

Y = Ψ(Y1)
⋃

Ψ(Y2)
⋃

· · ·
⋃

Ψ(Ynmax) (11.16)

where nmax is the maximum length of a sequence.

Most decoding algorithms follow this level-by-level search process. However, Y consists
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of an exponentially large number of sequences, and a direct search in such a vast space is
computationally infeasible. Therefore, practical decoding algorithms often rely on strategies
to prune the search space and avoid exploring low-quality sequences. For example, at each
decoding step, Yi can be obtained in the following way

Yi = Prune(Yi−1×V ) (11.17)

where Prune(·) is a function that selectively removes sequences less likely to result in high-
quality outcomes. In general, we expect that |Yi| << |Yi−1| · |V |. Thus we can drastically
reduce the number of sequences under consideration at each step, ensuring that the computa-
tional load does not grow exponentially with the sequence length.

Next, we will introduce these decoding algorithms. Some of them have already been
discussed in sequence-to-sequence models (see Chapter 5), while others are more commonly
used in LLMs.

1. Greedy Decoding

Greedy search (or greedy decoding) is one of the most widely used decoding methods in NLP,
particularly in text generation tasks like machine translation. The idea behind greedy search
is straightforward: at each step in generation, it selects the next token that has the highest
prediction probability. For each sequence y = y1...yi ∈ Yi−1×V , we can evaluate it using
logPr(y|x). This log-probability can be easily computed by noting that

logPr(y|x) = logPr(y1...yi|x)
= logPr(y<i|x)︸ ︷︷ ︸

accumulated up to the parent node

+ logPr(yi|x,y<i)︸ ︷︷ ︸
newly computed for the current node

(11.18)

Here the first term is the sum of the log-probabilities of the path from the root to the parent
node, which has been computed in the previous decoding steps. At step i, we only need to
compute the second term which is the standard token prediction log-probability produced by
the LLM.

The “best” token at step i is then chosen as

ytop1i = argmax
yi∈V

logPr(y1...yi|x)

= argmax
yi∈V

[
logPr(y<i|x)︸ ︷︷ ︸

fixed wrt. yi

+logPr(yi|x,y<i)
]

= argmax
yi∈V

logPr(yi|x,y<i) (11.19)

Thus, the “best” sequence generated up to step i is given by

ytop1 = y1...yi−1y
top1
i (11.20)
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Finally, Yi contains only this sequence

Yi = {ytop1} (11.21)

The greedy choice in one decoding step is illustrated in Figure 11.5 (a). Greedy search
offers computational efficiency and simplicity in implementation for LLM inference. Its
primary disadvantage, however, lies in its suboptimal nature — high-quality sequences are
likely pruned at early stages of decoding. Therefore, greedy search is appealing for tasks that
demand speed and simplicity. For tasks that require better search results, alternative strategies
such as beam search, which explores multiple potential paths simultaneously, are preferable.

2. Beam Decoding

Beam search (or beam decoding) is a natural extension of greedy search. Instead of selecting
the single most probable token at each step, beam search maintains a fixed number of the best
candidates at each step, known as the “beam width”. See Figure 11.5 (b) for an illustration of
beam search.

Let K be the beam width. Given a parent node, which corresponds to the prefix y1...yi−1,
we can select the top-K next tokens by

{ytop1i , ...,ytopKi } = argTopK
yi∈V

Pr(yi|x,y<i) (11.22)

where argTopK is a function that ranks the prediction probabilities of all possible next tokens
and selects the top K candidates. Given these tokens, the top-K sequences for step i are given
by

ytop1 = y1...yi−1y
top1
i (11.23)

...

ytopK = y1...yi−1y
topK
i (11.24)

Then, we can define Yi as

Yi = {ytop1, ...,ytopK} (11.25)

We can adjust the beam width K to balance search efficiency and accuracy. But a very large
beam width might not be helpful. In many practical applications, selecting a relatively small
number for K, such as K = 2 or K = 4, is often sufficient to achieve satisfactory performance
in LLM inference.

3. Sampling-based Decoding

Both greedy and beam search generate deterministic outputs, that is, given an LLM, the output
of the model will always be the same every time it processes the same input. The deterministic
nature of greedy and beam search ensures predictability and reliability in applications where
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Figure 11.5: Illustrations of greedy decoding, beam decoding, top-k decoding and top-p
decoding methods (in one decoding step).
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consistent outcomes are critical, such as in formal document generation, where varying outputs
could cause confusion or errors. On the other hand, one disadvantage of these methods is
the lack of diversity and flexibility. For example, in creative tasks like story generation or
conversational agents, generic or repetitive outputs generated by deterministic systems are
often less engaging.

To add variation into LLM outputs, we can use sampling-based decoding methods. There
are two commonly used methods.

• Top-k Sampling. This method selects the next token from the top-k most likely candi-
dates at each step of the generation process [Fan et al., 2018]. Let V i be the selection
pool for top-k sampling. We can define it as

V i = {ytop1i , ...,ytopki } (11.26)

where {ytop1i , ...,ytopki } are the top-k tokens selected based on their prediction prob-
abilities (see Eq. (11.22)). Once the selection pool is determined, we recompute the
prediction probability distribution over V i. One of the simplest ways to do this is to
renormalize their probabilities:

Pr(yi|x,y<i) =
Pr(yi|x,y<i)∑

yj∈V i
Pr(yj |x,y<i)

(11.27)

Alternatively, we can calculate the distribution by using the Softmax function:

Pr(yi|x,y<i) =
exp(uyi)∑

yj∈V i
exp(uyj )

(11.28)

where uyi is the logit for token yi. Then, we sample a token ȳi from this distribution:

ȳi ∼ Pr(yi|x,y<i) (11.29)

The corresponding sequence is ȳ = y1...yi−1ȳi, and Yi is given by

Yi = {ȳ} (11.30)

• Top-p Sampling. This sampling method, also known as nucleus sampling, follows
a procedure similar to that of top-k sampling. Instead of drawing from a fixed size
candidate pool, it selects the next token from the smallest set of tokens that together have
a cumulative probability higher than a predefined threshold p [Holtzman et al., 2020]. In
this way we prevent the prediction from choosing from low-probability tokens in the
long tail that could lead to incoherent or nonsensical outputs. To obtain the candidate
pool in the top-p sampling method, we can sort all tokens by their predicted probabilities.
Then, starting with the token with the highest probability, we continue to add tokens to
the candidate pool until the cumulative probability of the tokens in the pool reaches or
exceeds p (we denote the size of the candidate pool at this point as kp). The candidate
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(a) β = 0.1 (b) β = 0.8 (c) β = 2.0

Figure 11.6: Histogram estimates of the distributions generated by the Softmax function with
different values of the temperature parameter β.

pool can then be expressed as

V i = {ytop1i , ...,y
topkp
i } (11.31)

The subsequent steps, such as the renormalization of the distribution and sampling, are
the same as in the top-k sampling method (see Eqs.(11.27-11.30)).

See Figure 11.5 (c-d) for illustrations of the top-k and top-p sampling methods. By limiting
the choices to a smaller set of high-probability tokens, these methods strike a balance between
randomness and coherence. They allow for more diverse outputs while still maintaining a
reasonable level of relevance and fluency. However, the value of k or p must be carefully
chosen: if k or p is too small, the output may still be overly deterministic (more like greedy
decoding), and if k or p is too large, the LLM might produce degenerate outputs.

In order to further control the randomness of the token selection process, the renormalized
distribution Pr(·) is typically obtained by using the Softmax function with the temperature
parameter, given by

Pr(yi|x,y<i) =
exp(uyi/β)∑

yj∈V i
exp(uyj/β)

(11.32)

Here β is a temperature parameter β that controls the sharpness of the probability distribution
derived from logits. In Figure 11.6, we show simple examples involving distributions generated
by the above function with different temperatures. When the temperature is set to a higher
value, the resulting probability distribution becomes more uniform, as the differences between
the logits are diminished. This means that each token in the candidate pool has a more equal
chance of being selected, leading to greater diversity in the generated output. By contrast,
when the temperature is set to a lower value, the distribution becomes sharper, making the high-
probability tokens even more likely to be chosen, which often results in more deterministic
outputs. For example, if we set p to 1 and β to a very small number (approaching zero), the
top-p sampling method will become equivalent to the greedy search method.

4. Decoding with Penalty Terms

One common improvement to decoding methods in text generation is to modify the search
objective. For example, one can replace maximum a posteriori (MAP) decoding with minimum
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Bayes risk (MBR) decoding [Kumar and Byrne, 2004], where the focus shifts from selecting
the single most probable output to choosing an output that minimizes the expected risk over a
distribution of possible outputs. More details on MBR decoding can be found in Chapter 5.
Here we explore methods that incorporate penalty terms into decoding. These methods offer a
simple but effective way to make decoding more controllable.

Recall from Eq. (11.14) that the goal of decoding is to maximize the likelihood of the
output sequence. With penalty terms, the objective is extended to include additional factors
that penalize or reward certain behaviors in the generated text. A general form of the new
objective is given by

ŷ = argmax
y∈Y

[
Pr(y|x)−λ ·Penalty(x,y)

]
(11.33)

where Penalty(x,y) is a function that quantifies the degree to which the generated sequence
y violates certain constraints or exhibits undesirable behaviors given the input x. The design
of Penalty(·) is very flexible, thus allowing us to incorporate a wide range of constraints or
prior knowledge into it. Below, we present some common types of penalty functions.

• Repetition Penalty. A repetition penalty discourages the model from generating repeti-
tive or redundant text. The penalty function might measure the frequency of repeated
tokens or phrases in the generated sequence and impose a penalty proportional to their
occurrence.

• Length Penalty. A length penalty ensures that the generated sequence adheres to a
desired length. For example, in text summarization tasks, the penalty function could
penalize outputs that are too short or too long.

• Diversity Penalty. A diversity penalty promotes variation in the generated text. For
example, in beam search, we can measure the similarity between generated hypotheses,
and encourage the model to explore different hypotheses.

• Constraint-based Penalty. A constraint-based penalty enforces specific constraints
related to the content or style of the generated text. For example, in machine transla-
tion, the penalty function could penalize outputs that deviate from a desired tone or
terminology.

In general, we can consider Penalty(x,y) as a function that defines the cost of generating
the surface form of the output sequence y given the input sequence x. Alternatively, this
function can be defined to assess the hidden states of an LLM when generating y. For example,
Su et al. [2022] develop a penalty term that calculates the maximum distance between the
representation of the predicted token and the representations of the previously generated tokens.
Therefore, the search objective will penalize degenerated outputs, such as texts with many
repetitions.

The method described in Eq. (11.33) is general and can be easily adapted to different search
algorithms. For example, in greedy search, we can keep the single sequence that maximizes
Pr(y|x)−λ ·Penalty(x,y) at each decoding step; in sampling-based search, we can rank and



20 Chapter 11. Inference

select the top-ranked sequences based on Pr(y|x)−λ ·Penalty(x,y) to form the candidate
pool.

5. Speculative Decoding

Speculative decoding stems from the concept of speculative execution, where a system
makes educated guesses about future actions and performs them in advance. If the guess is
correct, the results are immediately available, which speeds up processing. In the case of LLM
inference, suppose we have two models. One is a smaller, faster model (called draft model),
and the other is the full, more accurate model (called verification model). These two models
represent two baselines in LLM inference: the draft model is efficient but not very accurate;
the verification model is usually the one we want to run, but it is very slow. Given a prefix,
we first use the draft model to speculatively predict a sequence of likely future tokens. This
is a standard autoregressive decoding process, but it is still fast in practice due to the high
efficiency of the draft model. Then, the verification model evaluates the speculated tokens in
parallel. It checks whether the predicted tokens are correct or need to be adjusted. Note that,
since we can deal with these tokens all at once, the verification can be done in a single step for
all the tokens simultaneously, rather than in a token-by-token manner. If the speculated tokens
are correct, they are accepted, and the process continues with the next set of tokens. If they
are incorrect, the incorrect speculations are discarded, and the verification model is used to
generate the correct tokens.

To be more specific, let us see the speculative decoding method presented in Leviathan
et al. [2023]’s work. In this method, the draft model is a small language model, denoted by
Prq(yi|x,y<i), while the verification model is a normal LLM, denoted by Prp(yi|x,y<i). The
goal is that, given a prefix, we use the draft model to autoregressively predict up to τ tokens.
The verification model is then employed to generate the last token at the point where errors
begin to occur in the speculative predictions. Figure 11.7 illustrates one step in this decoding
process.

The speculative decoding algorithm can be summarized as follows.

• Given the prefix [x,y≤i], we use the draft model to predict the next τ consecutive tokens,
denoted by {ŷi+1, ..., ŷi+τ}. This is a token-by-token generation process, given by

ŷi+t = argmax
yi+t

Prq(yi+t|x,y≤i, ŷi+1...ŷi+t−1) (11.34)

• We evaluate {ŷi+1, ..., ŷi+τ} using the verification model, that is, we compute {Prp(ŷi+1|x,y≤i)

, ...,Prp(ŷi+τ |x,y≤i, ŷi+1...ŷi+τ−1)}. Note that we can compute these probabilities in
parallel, and so this verification step is efficient.

• We determine the maximum number of accepted speculated tokens. In order to keep the
notation uncluttered, we denote Prq(ŷi+t|x,y≤i, ŷi+1...ŷi+t−1) and Prp(ŷi+t|x,y≤i, ŷi+1...ŷi+t−1)

simply by q(ŷi+t) and p(ŷi+t), respectively. We then define that, if q(ŷi+t)≤ p(ŷi+t),
then we accept this speculation. By contrast, if q(ŷi+t)> p(ŷi+t), we reject this specula-
tion with probability 1− p(ŷi+t)

q(ŷi+t)
. Starting from ŷi+1, the maximum number of accepted
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Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ŷi+4 ŷi+5

Draft Model Prq(·)

predict

(a) Predict the next τ tokens given the context using the draft model (τ = 5)

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ŷi+4 ŷi+5

Draft Model Prq(·)

Evaluation Model Prp(·)

evaluate

(b) Evaluate the predicted tokens using the evaluation model

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ŷi+4 ŷi+5

Draft Model Prq(·)

Evaluation Model Prp(·)
accepted rejected

(c) Determine the number of accepted tokens

Context (x,y<i) ŷi+1 ŷi+2 ŷi+3 ȳi+4

Draft Model Prq(·)

Evaluation Model Prp(·)

(d) Predict a new token following the accepted tokens using the evaluation model

Figure 11.7: Illustration of one step of speculative decoding. The goal is to predict as many
next tokens as possible using the draft model. There are four sub-steps. Given the context, we
first use the draft model to predict the next τ tokens. Then, we evaluate these predictions in
parallel using the evaluation model. Next, we determine the maximum number of predicted
tokens that can be accepted. Finally, we use the evaluation model to predict a new token
following these accepted tokens.
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consecutive speculated tokens is defined as

na = min

{
t−1|1≤ t≤ τ,rt >

p(ŷi+t)

q(ŷi+t)

}
(11.35)

where rt is a variable drawn from the uniform distribution U(0,1).
• Given na, we keep the speculated tokens {ŷi+1, ..., ŷi+na}. We then use the verification

model to make a new prediction at i+na+1

ȳi+na+1 = argmax
yi+ns+1

Prp(yi+ns+1|x,y≤i, ŷi+1...ŷi+ns) (11.36)

• Above, we have described one step of speculative decoding. The result sequence
(including both the context and predicted tokens) is illustrated as follows

[x, y<i] ŷi+1...ŷi+na ȳi+na+1

Context na tokens
predicted using
the draft model

One token
predicted using
the verification model

Once we have finished this step, we add the predicted tokens {ŷi+1, ..., ŷi+na , ȳi+na+1}
to the context, and repeat the above process.

In practice, we usually wish to use a smaller draft model so that predicting {ŷi+1, ..., ŷi+na}
would be computationally cheaper. But a very small draft model is less accurate and can result
in smaller na. We therefore need to carefully select the draft model to make the trade-off
between the computational efficiency and accuracy.

6. Stopping Criteria

Stopping criteria are a critical component of LLM inference. They typically involve rules or
conditions that specify when the model should stop generating text during decoding. Most
LLMs are trained to generate an end-of-sequence token (e.g., ⟨EOS⟩ or ⟨/s⟩) to signal the end
of the generated text. So one of the simplest strategies is that the generation process stops when
this token is produced. For beam search, which explores multiple hypotheses simultaneously,
the process can continue until a given number of complete sequences have been generated.

In practical applications, it will generally be undesirable to generate very long sequences,
and so we need to reduce the decoding cost and unnecessary verbosity. One commonly-used
stopping criterion is the maximum length of the output. The model stops generating text once
it has produced a predetermined number of tokens. Alternatively, we can stop the decoding
based on the real cost, such as the computational resources or time constraints. For example,
in real-time applications like chatbots, decoding may need to stop after a certain time limit to
ensure responsiveness.

Another approach is to design stopping criteria based on the behavior of LLMs. For
example, decoding can be stopped if the probability of predicting the next token falls below a
certain threshold. In addition to probability-based stopping, a repetition detection module can
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be implemented to trigger the model to stop if it begins repeating tokens or phrases beyond a
predefined limit. This helps prevent redundant or incoherent outputs.

11.1.4 Evaluation Metrics for LLM Inference
Evaluating the performance of LLMs during inference involves a variety of metrics to assess
how well these models meet desired standards, such as accuracy, robustness, usability, and
efficiency. As with most NLP systems, we can evaluate LLMs using accuracy-based metrics,
such as perplexity and F1 score. We can also examine their robustness by testing how well they
handle ambiguous or challenging inputs, including adversarial, perturbed, or out-of-distribution
data. Additionally, usability can be assessed by measuring how well the generated outputs
align with user expectations in terms of fluency, coherence, relevance, and diversity. Human
evaluators can rate the naturalness of the text or assess whether the responses are contextually
appropriate and logically consistent. Ethical and fairness metrics can also be included to ensure
LLMs avoid perpetuating biases or generating harmful content.

All of the evaluation metrics mentioned above essentially focus on assessing the quality of
the outputs. Given the high cost of deploying and applying LLMs, efficiency metrics are also
very important for practitioners. Below are some commonly used efficiency metrics [Nvidia,
2025]:

• Request Latency. This metric measures the total time taken from when a request is sent
to the LLM until the complete response is received. This includes the time taken for data
transmission, processing by the model, and the return of the output to the user.

• Throughput. It refers to the number of tokens or requests the model can process per
second.

• Time to First Token (TTFT). This metric measures the time it takes from the beginning
of a request being sent to the generation of the first token of the response. If data
transmission does not consume too much time, then TTFT is mainly the time for
prefilling and predicting the first token.

• Inter-token Latency (ITL). This metric refers to the time taken to generate each
subsequent token after the first one. It reflects the efficiency of the decoding process.

• Tokens Per Second (TPS). This metric quantifies the number of tokens that the model
can generate per second.

• Resource Utilization. This involves measuring the computational resource usage (e.g.,
CPU and GPU utilization) and memory consumption of the model during inference.

In addition to these metrics, energy efficiency and cost efficiency are practical considera-
tions for deploying LLMs at scale. Energy efficiency measures the amount of electrical power
consumed by the model during inference. Cost efficiency, on the other hand, evaluates the total
expenses related to deploying and maintaining the model.

In general, choosing the right evaluation metrics depends on the specific task and applica-
tion. While quality-focused metrics are essential for assessing LLMs, efficiency metrics are
equally crucial for their effective deployment in real-world applications. A comprehensive
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evaluation framework should include both sets of metrics to accurately estimate an LLM’s
performance and practicality.

11.2 Efficient Inference Techniques
In practical applications, we often wish a system to be as efficient as possible. For LLM
inference, this typically involves two types of improvements: reducing memory requirements
and accelerating the system. For example, we can modify the Transformer architecture to
avoid memory explosion when processing very long input sequences. Another example is that
we can compress input sequences to reduce computational overhead while preserving their
semantic information. In addition, techniques like quantization and pruning can be employed
to further optimize memory usage and inference speed.

Efficient inference is a wide-ranging topic that overlaps with several sub-fields of LLMs,
such as architecture design and model compression. Most of these topics have been covered in
previous chapters. For example, in Chapter 6, we discussed efficient Transformer architectures;
in Chapter 8, we discussed long-context LLMs; and in Chapter 9, we discussed prompt
compression methods for reducing prompt length. In this section, we focus on techniques that
are commonly used in LLM deployment and serving.

11.2.1 More Caching
In real-world applications, it is common practice to store frequent requests and their corre-
sponding responses in a cache. When a new request hits the cache, the system can retrieve
the response directly from the cache instead of recomputing the result. One straightforward
implementation is a key-value datastore (e.g., a hash table) that maps input sequences to
their LLM-generated output sequences. In the simplest case, we can collect frequent queries,
generate their responses using the LLM, and store these query-response pairs in the datastore.
This creates a basic sequence-level caching mechanism that allows the system to bypass LLM
computation when the input sequence exactly matches a cached query.

A straightforward extension of the caching mechanism is to cache prefixes and their
corresponding hidden states. Given an input sequence x in a dataset D, we can process it as in
the standard prefilling phase. Thus, we obtain a sequence of prefixes and their corresponding
KV cache states:

x0 (x<1) ⇒ cache<1

x0x1 (x<2) ⇒ cache<2

...

x0x1...xm−1 (x<m) ⇒ cache<m

where cache<i denotes the KV cache for the prefix x<i (see also Eq. (11.10)). All these
mappings can be stored in the prefix cache for efficient reuse.

When processing a new sequence that shares a common prefix with a previously seen
sequence in D, we can load the corresponding cached hidden states instead of recomputing
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them. Specifically, if a new input x′ has x<k (i.e., x′
<k = x<k for some k ≤ m), we can

initialize the KV cache with cache<k and only compute the hidden states for the remaining
tokens x′

≥k.
As usual, we can maintain a key-value datastore that maps frequently encountered prefixes

to their precomputed KV caches. The lookup can be performed using a hash of the prefix
tokens, allowing constant-time access to the cached states. Care must be taken to manage
memory usage, as storing all possible prefixes may be infeasible for large datasets. Practical
systems often employ least recently used (LRU) caching methods or other strategies to balance
between computational savings and memory constraints.

11.2.2 Batching
Batching in LLM inference refers to the process of processing multiple input sequences simul-
taneously as a group (called a batch) rather than one at a time. Because modern GPUs excel at
parallel processing, batching allows them to compute multiple sequences in a single forward
pass, keeping the hardware fully occupied. Therefore, when serving LLMs at scale, batching
is important for improving computational efficiency and maximizing hardware utilization2.

To illustrate the idea of batching, Figure 11.8 (a-b) show simple examples with batch
sizes of 1 and 4, respectively. When using a batch size of 1 (i.e., without batching), the GPU
processes one input sequence at a time. Thus, the processing is sequential: the next sequence
must wait for the current computation to finish. By contrast, when using a batch size of 4,
the GPU can process four sequences simultaneously in a single forward pass. As the input
sequences vary in length, we need to standardize their length using padding techniques. Here
we use left padding, which adds dummy tokens to the beginnings of short sequences, so all the
sequences in the batch would have the same length for prefilling. For decoding, tokens are
generated simultaneously for all these sequences, and the generation process continues until
the longest sequence reaches completion.

The above examples imply a trade-off between throughput and latency, which is a very
important consideration in designing and implementing LLM inference systems. If we choose
a smaller batch size, the latency would be lower, as fewer tokens need to be processed in a
single run of inference. Imagine that we have only one sequence. The result becomes available
immediately after generation completes, with no additional computational overhead. However,
this low-latency advantage comes at the cost of underutilizing parallel computing resources,
as the parallelism of GPUs remains largely idle during sequential processing. On the other
hand, if we use a larger batch, we can make better use of the parallelism, as GPUs can be
occupied by large-scale matrix computations. As a result, we can process more tokens in the
same period of time and the throughput is improved. However, since the result is obtained only
when the last token in the batch is predicted, the latency would be higher.

In practice, we usually prefer to use a slightly larger batch, but try to fill the batch with
sequences of similar lengths to reduce the number of padding tokens and improve device
utilization. For example, we can group the incoming user requests in a short period of time into

2See https://docs.nvidia.com/deeplearning/performance/
dl-performance-gpu-background/index.html#understand-perf for a simple evaluation.

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#understand-perf
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prefilling decoding

(a) batch size = 1

11111pad 1 1 1 1

2222padpad 2 2 2

333padpadpad 3 3

444444 4 4 4 4 4 4

prefilling decoding

(b) batch size = 4

11111pad 1 1 1 1 1 1

22222pad 2 2 2 2 2

333333 3 3 3 3 3

444444 4 4 4 4 4 4

prefilling decoding

(c) batch size = 4 (similar sequence lengths)

11111pad 1 1 1 1

222333 2 2 2

555544 3 3 3 3

666666 4 4 4

5 5 5 5 5

6 6 6 6 6 6

prefilling decoding

engine 1 engine 2

transfer the KV cache

(d) disaggregation of prefilling and decoding

Figure 11.8: Illustrations of basic batching methods. We use a 2D layout to illustrate the
batch, where each square represents a token. Red squares indicate tokens in the prefilling stage,
blue squares represent tokens in the decoding stage, green squares denote padding tokens,
and gray squares correspond to meaningless tokens. Subfigures (a) and (b) compare the cases
where the batch size is 1 and 4, respectively. Subfigure (c) shows the strategy of grouping
sequences with similar lengths into the same batch. Subfigure (d) illustrates the disaggregation
of prefilling and decoding. In this approach, we can make better use of the parallelism of GPUs
by concatenating multiple short sequences into a single long sequence for joint processing.
This allows us to maximize the number of tokens processed in a batch while minimizing the
number of padding tokens. However, as a trade-off, we need to copy the KV cache to the
decoding engine and reorganize it after the prefilling phase, which introduces additional data
transfer overhead.

buckets, each of which contains sequences with similar lengths. Then, we can fill the batch
with sequences in the same bucket, so that we can minimize wasted computational resources,
as illustrated in Figure 11.8 (c).

Another approach to implementing batching in LLMs is to disaggregate the prefilling and
decoding processes [Wu et al., 2023; Patel et al., 2024; Zhong et al., 2024]. For example, we
can perform prefilling on one GPU, and perform decoding on another GPU. One advantage of
disaggregation is that we can rearrange the input sequences in the batch to better fill it, because
there is no interference between prefilling and decoding. For example, we can concatenate
multiple short sequences into a longer one, thus ensuring that the lengths of sequences in
the batch are as consistent as possible, as illustrated in Figure 11.8 (d). In this way, we can
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maximize the throughput of the prefilling phase. However, as a trade-off, we need to transfer
the KV cache to the devices performing decoding, which also incurs extra communication
overhead. Typically, this method requires a high-bandwidth, low-latency network to achieve
optimal performance.

In this section, we will discuss several improvements to the above basic batching strategies.
Most of them are based on an aggregated architecture, that is, decoding and prefilling can be
considered as different stages of a model executed on the same device.

1. Scheduling

A practical LLM inference system typically consists of two components:

• Scheduler. Its primary role is to efficiently queue and dispatch tasks (i.e., input se-
quences) to the inference engine based on the current system load and task priorities.
This often involves a variety of batching strategies that group certain requests together
to maximize processing efficiency in some way.

• Inference Engine. It is responsible for the actual execution of the LLMs, processing
the queued requests as they come in. As discussed previously, this engine involves both
prefilling and decoding processes.

This architecture is illustrated in Figure 11.9. Incorporating scheduling into batch pro-
cessing provides a flexible way to optimize both the system’s throughput and latency, thereby
achieving a better balance between them. For example, the batching methods shown in Figure
11.8 (a) and (b) can be considered one of the simplest scheduling strategies, called request-
level scheduling. In this strategy, once a batch is filled and sent to the engine, the processing
of the entire batch cannot be interrupted. The scheduler waits for this batch to be processed
before handling the next batch [Timonin et al., 2022].

A more sophisticated scheduling strategy, called iteration-based scheduling, interacts
with the inference engine at each token prediction step rather than at the sequence level. This
approach allows dynamic batch adjustment during inference, as illustrated in Figure 11.10.
Such fine-grained control lets the system prioritize critical tokens or sequences in real-time. For
instance, if an urgent request arrives at some decoding step, the scheduler can add this request
into the batch so that it can be processed as early as possible. In the following subsections, we
will discuss batching methods based on iteration-based scheduling.

2. Continuous Batching

Continuous batching is an iteration-based scheduling method used in the Orca system [Yu
et al., 2022]. In this method, an iteration refers to either the entire prefilling procedure or
a single decoding step. For example, given an input sequence x = x0...xm and an output
sequence y= y1...yn, there are n+1 iterations in total: one for prefilling, and n for generating
the output tokens (one per token). During scheduling, the batch can be adjusted between
iterations. For example, we can either add a new input sequence to the batch, or remove a
complete sequence from the batch at some iteration, even if the batch processing is not yet
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batch (after processing)
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Figure 11.9: Illustration of the LLM inference architecture involving a scheduler and an
inference engine. Each time, the scheduler selects a number of user requests to form a batch
and sends it to the inference engine. The scheduler can interact with the inference engine and
adjust the batch at certain points during inference, such as at the beginning of batch processing
and at the start of each token prediction.

finished.
The general process of continuous batching includes the following steps:

• Initially, a batch is created with one or more input sequences, based on both the inference
engine’s processing capacity and the current user requests. The batch is then fed into the
inference engine.

• The inference engine processes the batch iteration by iteration. After each iteration, the
scheduler may adjust the batch in one of the following ways:

– If a sequence in the batch completes generation (i.e., generates the end-of-sequence
symbol), that sequence is removed from the batch.

– If a new user request arrives and the inference engine has additional processing
capacity, it is added to the batch.

– If no sequences are added to or removed from the batch, the batch remains un-
changed.

• The processing terminates only when all sequences have been completed and no new
user requests arrive.

See Figure 11.11 for an example of continuous batching. In this example, we start with two
user requests, x1 and x2. These two sequences are packed into a batch and sent to the inference
engine for processing. After the engine completes two iterations, a new user request, x3,
arrives. At this point, the scheduler adjusts the batch by adding x3 to it. The inference engine



11.2 Efficient Inference Techniques 29

1 1

2

3 3 3

1 1

2

3 3 3 3

2

1

1 1

2

3 3 3 3 3

2 2

1

1 1

2

3 3 3 3 3 3

2 2

1

Begin

End

Requests
x1, x2, x3 arrived

Request
x4 arrived

x4 is added to
the next batch

Iteration 1
(prefilling)

Iteration 2

Iteration 3

Iteration 4

(a) Request-level Scheduling

1 1

2

3 3 3

1 1

2

3 3 3 3

2

1

1 1

2

3 3 3

4 4 4

3 3

2 2

1

1 1

2

3 3 3

4 4 4

3 3 3

2 2

1

4

Begin

End

Requests
x1, x2, x3 arrived

Request
x4 arrived

prefilling for x4

one decoding step
for x1 , x2 , x3

Iteration 1
(prefilling)

Iteration 2

Iteration 3

Iteration 4

More iterations

(b) Iteration-level Scheduling

Figure 11.10: Illustrations of request-level scheduling and iteration-based scheduling. In
request-level scheduling, once a batch is created and sent to the inference engine, we cannot
adjust the batch. In other words, scheduling only occurs after the processing of a batch finishes.
In iteration-level scheduling, we can perform scheduling during batch processing. For example,
if a new request arrives at some point during inference, we can add it to the batch and continue
processing.

then continues processing the updated batch. Note that the inference engine now processes
different sequences in different ways: x1 and x2 proceed with the decoding process (i.e.,
predicting the next tokens), while x3 undergoes the prefilling process. After some time, the
generation for x2 completes. As it happens, two more user requests, x4 and x5, arrive. The
scheduler removes the completed sequence x2 from the batch and, considering the current load
of the inference engine, adds x4 to the batch. However, x5 must wait until another sequence in
the batch finishes before it can be added.

The idea behind continuous batching is to keep the inference engine fully utilized by
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Figure 11.11: Illustration of batch adjustment in continuous batching. Instead of fixing a
batch of input sequences and processing them to completion (as in request-level batching),
continuous batching dynamically updates the batch during inference. The system continuously
accepts and adds new requests (e.g., x3 and x4) into the current batch as long as there is
available compute capacity.

processing as many sequences as possible, thereby maximizing computational resource usage.
A key difference between continuous batching and standard batching (see Figure 11.8) lies
in the fact that, in continuous batching, prefilling and decoding can occur simultaneously
across different sequences, whereas in standard batching, these two phases are performed
sequentially for the entire batch. As discussed in Section 11.1.2, prefilling is considered a
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compute-bound process, while decoding is considered a memory-bound process. The intuition
behind overlapping prefilling and decoding is to reduce idle times for both computation and
data transfer. Consider two mini-batches: one for prefilling and one for decoding. While the
prefilling mini-batch keeps the GPUs occupied, the decoding mini-batch can perform memory
transfers concurrently.

Another difference between continuous batching and standard batching is that continuous
batching is prefilling-prioritized, while standard batching is decoding-prioritized [Agrawal
et al., 2024]. In continuous batching, once the inference engine has spare computational
resources, the scheduler will add new requests to the batch. In other words, these newly
added requests will be processed for prefilling as early as possible. This approach improves
system throughput, but at the cost of increased latency, as the newly added requests extend the
processing time of earlier ones. In contrast, in standard batching, once the batch is created, we
must wait for the last sequence in the batch to complete before processing new requests. This
ensures relatively low latency, but results in lower device utilization and system throughput.

It is important to note that the cost of continuous batching is that we need to continuously
reorganize the batches, which involves rearranging the data in memory. Each time a new
request is added, the scheduler needs to reassess and optimize the current batch structure. This
dynamic adjustment can incur additional memory and computational overhead, especially when
the batches are frequently adjusted. Therefore, while this method can improve throughput, it
may also lead to increased memory fragmentation and, in some cases, introduce additional
latency.

3. PagedAttention

PagedAttention (or paged KV caching) is a technique used in the vLLM system [Kwon et al.,
2023]. Inspired by operating system paging, it optimizes memory usage during LLM inference
— particularly for the KV cache — by addressing fragmented memory allocation in dynamic
batching scenarios with variable-length sequences. The idea behind PagedAttention is to
break down large memory requirements for KV caching into more manageable "pages" or
chunks of memory. In this way, we do not need to store the KV cache of the full sequence in
a continuous memory. Instead, the KV cache is divided into fixed-size blocks (analogous to
memory pages in an operating system), which can be non-contiguously allocated in physical
memory. One advantage of PagedAttention is that it enables flexible memory management,
supporting dynamic sequence growth without requiring expensive reallocation or copying of
large contiguous memory regions. Note that PagedAttention is not specifically designed for
batching. But it indeed helps improve memory efficiency in batched inference scenarios, where
memory management is more demanding and complicated.

Consider a simple example of memory allocation in Figure 11.12 in which self-attention
is performed for a batch consisting of two sequences. For each sequence, we need to attend
the current token to the key-value pairs in the KV cache of this sequence, as required by
self-attention. In the standard implementation of self-attention, the KV cache is stored in
a contiguous block of memory, allowing us to efficiently access this continuous memory.
However, in a paged KV caching system, the KV cache is divided into smaller, fixed-size
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(b) Memory allocation for KV caching in standard self-attention
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Figure 11.12: Illustration of memory allocation in PagedAttention. There are two sequences in
the batch, as illustrated in sub-figure (a). Since the memory is fragmented, the KV cache is
stored in a large unused block of memory in standard self-attention (see sub-figure (b)), but the
fragmented memory is not used. By contrast, in PagedAttention (see sub-figure (c)), the KV
cache is divided into smaller blocks and thus fits into fragmented memory.
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memory blocks which are not necessarily contiguous. These smaller KV cache blocks can
be more effectively allocated to fragmented memory regions, thereby improving memory
utilization. Another benefit of distributing chunks of the KV cache across different memory
blocks is that it enables parallelization of the caching process. For example, if the input
sequence is long and the memory bandwidth is sufficient, it would be beneficial to write and
read the key and value vectors of different segments of the sequence in parallel across multiple
memory blocks.

In general, storing contiguous data in non-contiguous regions can cause issues, for exam-
ple, accessing fragmented data requires additional seek time, which reduces I/O efficiency.
However, when handling large-scale data (e.g., performing multiplication on extremely large
matrices), we typically do not process all the data at once but instead divide it into smaller
blocks for block-level computation. From this perspective, it is also reasonable to partition
the attention computation. If the paging strategy is well designed, the additional overhead
in memory access can be minimal, while the improvement in memory utilization can be
significant.

4. Chunked Prefilling

We have seen that, in iteration-level scheduling, prefilling and decoding for different sequences
can occur simultaneously. This can be seen as a prefilling-prioritized strategy which can
maximize the throughput. However, one such iteration can take a long time if the input
sequence is very long and the prefilling process dominates the computation. In this case,
decoding for other sequences has to wait until the prefilling completes, leading to increased
latency for generating output tokens. Therefore, while prefilling-prioritized strategies are
effective for maximizing hardware utilization, they may introduce significant variability in
token generation latency, particularly when the system is handling a mix of long and short
input sequences.

A simple way to reduce decoding latency is to make computations for different sequences
in the batch comparable. One such method is to divide sequences into chunks and perform
prefilling chunk by chunk. This approach, often referred to as chunked prefilling, processes
smaller portions of each sequence at a time, allowing the system to better balance the computa-
tional load across sequences [Agrawal et al., 2023]. By choosing an appropriate chunk size,
we can ensure that when prefilling and decoding overlap for two sequences, their processing
within the same iteration tends to take a similar amount of time. As a result, decoding idle time
is reduced and overall throughput is improved.

Figure 11.13 shows an illustration of chunked prefilling in a few iterations. In this example,
the batch contains two sequences. The whole prefilling process of the first sequence is divided
into three prefilling steps, giving rise to the chunks denoted P11, P12 and P13. Each chunk
corresponds to one iteration and can thus overlap with one decoding step. In this way, during
the prefilling of the first sequence, we can perform three decoding steps, rather than only a
single decoding step, as is the case in standard iteration-level scheduling. As a result, the idle
time of the decoding process is reduced, and the output tokens can be generated earlier.

Chunked Prefilling improves decoding efficiency by overlapping prefilling and decoding,
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Figure 11.13: Comparison of simple iteration-based scheduling and chunked prefilling. Pxy

denotes the y-th prefilling step for sequence x, and Dxy denotes the y-th decoding step for
sequence x. In simple iteration-based scheduling (or prefilling-prioritized scheduling), since
prefilling is treated as a single iteration, D22 has to wait for the completion of the prefilling
of sequence 1. In chunked prefilling, the prefilling process can be divided into multiple steps.
Thus, D22 can execute during prefilling for sequence 1 (i.e., during P12).

but at the cost of additional memory overhead and scheduling complexity. In standard prefilling,
we process the whole input sequence once, building the KV cache in one go. By contrast, in
chunked prefilling, each chunk needs a separate forward pass to compute its attention outputs
and update the KV cache. As a result, we need to maintain the KV cache of early chunks while
processing later chunks. This also compromises the parallelism of completing the prefilling for
the entire sequence in a single pass. In practice, it is usually possible to balance throughput
and latency by choosing an appropriate chunk size.

It is worth noting that the methods discussed in this subsection can broadly be categorized
as priority-based scheduling methods. In these methods, we can give priority to certain requests,
or to certain prefilling or decoding steps, so that system resources are allocated in a way that
better aligns with specific performance goals. As presented above, for example, we may
prioritize decoding over prefilling to minimize token generation latency, or prioritize prefilling
over decoding to maximize overall throughput in batch-processing scenarios. Practitioners
can design custom priority policies for specific needs and operational constraints in real-world
applications, such as request deadlines and importance levels defined by users.
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11.2.3 Parallelization
Parallelization is a widely used approach to scale up LLM inference, especially for large-scale
deployments. In Chapter 7, we have discussed several common parallelization strategies
to parallelize LLM pre-training, such as model parallelism, tensor parallelism, and pipeline
parallelism. We have also discussed efficient architectures that are easy to deploy in distributed
computing systems. For example, in MoE models, we assigns different experts to different
devices3. Only the active experts for a given input are executed, which significantly improves
computational efficiency while maintaining model quality. Many of these methods can be
directly applied to LLM inference with minimal modifications.

However, applying these parallelization techniques to inference poses new challenges
compared to pre-training. These issues become especially pronounced in real-time or low-
latency inference scenarios, where load imbalance across devices and communication overhead
can significantly impact performance. For example, unlike pre-training, where batches can
be prepared in advance, inference must handle variable-length sequences in real time. This
makes it harder to maintain optimal device utilization and complicates scheduling across
heterogeneous computational resources. A related issue is load balancing. When a large
number of requests arrive in a short period of time, the system must efficiently distribute
workloads across available devices. For example, real-world requests typically exhibit highly
variable computational demands due to differences in task types and prompt lengths. Such
variability renders simple static load balancing approaches ineffective, and so we need to use
finer-grained strategies that can adapt to runtime conditions. The problem becomes even more
complicated when we deploy the system on heterogeneous hardware and there are strict latency
constraints.

In the development of LLMs, parallelization is closely related to LLM serving. Generally,
building a high-quality LLM serving system is not a simple task — it typically requires
the combination of multiple techniques, such as architectural design, workload distribution,
and LLM-specific hardware/software optimizations. As such, LLM serving constitutes an
exceptionally broad subject that often demands substantial engineering expertise. Here, we
will not go into the details of LLM serving. For related concepts and techniques, readers may
refer to relevant open-source systems (such as vLLM4, TensorRT-LLM5 and TGI6) and papers
[Pope et al., 2023; Li et al., 2024].

11.2.4 Remarks
We have considered many methods for improving the efficiency of LLMs in this and previous
chapters. Although these approaches address different issues, most of them essentially explore
trade-offs between various performance factors. One important trade-off is between inference
speed and accuracy. For example, techniques like quantization, pruning, and knowledge

3In LLMs, the experts are typically modular FFNs. So each expert is a part of the FFN component in the
Transformer architecture.

4https://github.com/vllm-project/vllm
5https://github.com/NVIDIA/TensorRT-LLM
6https://github.com/huggingface/text-generation-inference

https://github.com/vllm-project/vllm
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/huggingface/text-generation-inference
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distillation can significantly reduce computational overhead and latency but may introduce
minor degradations in model performance. Conversely, preserving full precision or using larger
models enhances accuracy but at the cost of slower inference and higher resource demands.

Another important consideration in LLM inference is the memory-compute trade-off. As
in computer system design, we need to consider the balance between memory usage and
computation required to generate the output. In particular, storing intermediate results such as
KV caches during inference can significantly reduce redundant computation, but at the cost of
increased memory usage. In KV caching, storing past attention states avoids recomputation
of self-attention over previous tokens, thereby reducing compute time per token. However,
as the number of tokens grows, so does the memory footprint of the KV cache, especially
when processing very long sequences or multiple sequences in parallel. In response, various
techniques have been developed to reduce memory consumption by partially recomputing
intermediate states. For instance, chunked or windowed attention limits the attention span to a
recent subset of tokens, reducing KV cache size at the cost of reduced context or additional
compute if past information must be reprocessed.

Note that considering the memory-compute trade-off is a very general principle. It can
be extended beyond attention mechanisms and Transformers to other components in system
design. An example is the choice of data precision. Using lower-precision formats such as
FP16 or INT8 can reduce both memory usage and memory bandwidth requirements, effectively
alleviating pressure on the memory subsystem. However, lower precision may lead to numerical
instability or slight accuracy degradation, requiring careful calibration or retraining. Thus, this
trade-off can also be seen as a memory-compute-accuracy triangle, where improvements in
one dimension may come at the expense of another.

Beyond speed, accuracy, and memory, several other dimensions also influence LLM
inference efficiency. Some of these dimensions have been discussed in this chapter, while
others have not. Here we outline them as follows.

• Throughput vs. Latency: In large-scale multi-user LLM serving scenarios, we often
aim to maximize system throughput. For example, as discussed in this section, we
can batch multiple requests together to increase the number of tokens processed at
the same time. However, batching increases waiting time and may lead to higher per-
request latency, especially for short or interactive requests. By contrast, optimizing for
low latency often requires serving requests individually or in smaller batches, which
underutilizes hardware resources and reduces throughput. Achieving a good balance
depends on the quality-of-service requirements and user interaction patterns.

• Generalization vs. Specialization: General-purpose LLMs are trained to perform a
wide range of tasks with a single set of parameters. While flexible, they may be less
efficient or accurate for specific tasks. Specialized models can yield better performance
and lower inference costs for targeted applications. However, maintaining multiple
specialized models increases system complexity and storage requirements. The trade-off
between maintaining a single general model versus multiple specialized models is an
important system-level design choice.
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Figure 11.14: Scaling for pre-training, fine-tuning and inference stages [Briski, 2025].

• Energy Efficiency vs. Performance: High-performance inference often requires run-
ning large models at high throughput on powerful accelerators, which consumes con-
siderable energy. This may be problematic for edge deployments or energy-sensitive
environments. Techniques like model compression can improve energy efficiency, but
usually with some degradation in output quality or increase in latency. Energy constraints
thus introduce another important dimension in optimizing LLM inference.

11.3 Inference-time Scaling
Scaling laws can be considered one of the fundamental principles guiding the development of
LLMs. In previous chapters, we discussed several times that scaling up training data, model
size, and compute can effectively improve the performance of pretraining. In fact, scaling laws
also apply to downstream stages such as fine-tuning and inference (see Figure 11.14). Here we
consider inference-time scaling, which has been widely employed by recent LLMs to solve
complex problems, such as complex math problems [Snell et al., 2025]. Unlike pre-training and
fine-tuning scaling, which focuses on improving LLMs via parameter updates, inference-time
scaling improves these models during inference without further training. This includes a large
variety of methods which scale LLMs in different dimensions, such as ensembling multiple
model outputs, increasing context length, adopting more aggressive decoding algorithms, and
using external tools to extend model capabilities.

While inference-time scaling is wide-ranging, in this section we consider those methods
that incorporate more compute into inference (called inference-time compute scaling). Here is
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a list of inference-time (test-time) compute scaling methods, organized by category:

• Context Scaling. It involves scaling the input or context to improve generation (or
potentially scale the output).

• Search Scaling. It involves increasing computational effort during decoding.

• Output Ensembling. It involves combining multiple model outputs.

• Generating and Verifying Thinking Paths. It involves guiding LLMs to generate and
verify thinking paths for solving complex reasoning problems.

We will describe these methods in the following subsections.

11.3.1 Context Scaling

Context scaling improves LLM performance by extending the input to the model. A straight-
forward approach is to incorporate more helpful context during inference, allowing the model
to condition its predictions on more prior information. One example is few-shot prompting.
It augments the context with multiple input-output examples, and so the model can learn
task behavior implicitly from these examples without parameter updates. On top of few-shot
prompting, we can use chain-of-thought prompting to encourage the model to produce inter-
mediate reasoning steps before final answers. Note that chain-of-thought prompting is one
of the most important methods in addressing reasoning problems. By explicitly providing
intermediate steps in problem-solving, we can prompt the model to break down complex
tasks into simpler sub-tasks, which is found to be very beneficial for generating accurate and
interpretable outputs.

Beyond extending the prompt with examples or reasoning steps, another approach to
context scaling involves dynamically incorporating external knowledge. This is often achieved
through RAG. RAG systems first retrieve relevant document snippets from a large collection of
documents or a database based on the current input. These retrieved pieces of information are
then added to the context provided to the LLM. This essentially expands the context to include
timely or specialized external knowledge. By doing so, the model grounds its responses in
specific knowledge found in the external source. The LLM thus can generate responses that
are not only relevant to the input but also factually accurate and up-to-date.

However, as the context grows, these methods often suffer from the constraints of finite
context window length. While model architectures and techniques (like efficient attention
models) are continually evolving to support longer contexts, processing extremely long inputs
still poses challenges. Increased computational cost is one factor. More critically, when the
context window becomes very large, the model might struggle to attend effectively to the
most relevant information (e.g., the “lost in the middle” phenomenon). Therefore, effective
context scaling is not just about adding more information, but also about strategically selecting,
structuring, and presenting the most pertinent information within the model’s processing
capabilities.

Here we omit the detailed discussion of these methods, as they have already been covered
in previous chapters. See Chapters 8 and 9 for more details, including prompting, RAG, and
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long-sequence modeling methods.

11.3.2 Search Scaling
In LLMs, decoding is a search process that aims to efficiently find the best output sequence
given the input sequence. Search scaling (or decoding scaling) typically involves two aspects:
scaling the output length and scaling the search space.

Scaling the output length refers to increasing the number of tokens generated during
inference. This is especially important in tasks that require long-form generation, such as
story writing. More recently, generating outputs with long thinking paths has shown strong
performance in math problem solving and code generation. For example, encouraging the
model to generate long thinking paths before producing the final answers has been found to be
very beneficial in performing complex reasoning. This idea has been widely used in developing
recent LLMs for reasoning, such as OpenAI [2024]’s o1 and Deepseek [2025]’s R1. We will
discuss more about output length scaling in Section 11.3.4.

Scaling the search space, on the other hand, refers to expanding the set of candidate output
sequences considered during search, so that higher-quality outputs can be found. As discussed
in Section 11.1.3, a simple example is that in beam search we increase the beam width to allow
more candidate sequences to be explored in parallel at each decoding step. This increases
the chance of discovering better outputs, especially in tasks where the optimal solution is not
immediately apparent from local decisions.

In addition to decoding algorithm adjustments, it is also possible to explore compact
structures to encode a large number of outputs. For example, we can construct and navigate a
tree or graph of reasoning steps [Yao et al., 2024]. In this paradigm, each node represents a
partial solution or intermediate step, and edges represent transitions between reasoning states.
Such structured search enables the model to consider multiple paths simultaneously. Another
related direction is Monte Carlo tree search-inspired decoding, where the model stochastically
explores and scores different paths based on learned heuristics or external reward models.

Search scaling is a very general idea, and it is often implicitly involved in the design of
search procedures that exploit search structure, heuristics, and model uncertainty. Many of the
above methods have been discussed previously, though they were not originally developed with
scaling as their primary goal. However, search scaling inherently comes with computational
costs. Increasing beam width, for instance, directly translates to higher memory usage and
longer inference times. In practice, there is often a point of diminishing returns, where further
expansion of the search space yields marginal improvements in output quality at a significant
computational expense. Therefore, an effective strategy often involves finding an optimal
balance between scaling and computational feasibility.

11.3.3 Output Ensembling
If we have multiple model outputs, it is often beneficial to combine them to mitigate the impact
of individual model errors and synthesize a superior final output. Each model might capture
different aspects of the underlying data distribution or possess unique strengths and weaknesses.
By ensembling, we can average out the noise or random errors present in individual predictions,
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leading to a more stable and reliable outcome. In LLM ensembling, one of the simplest
approaches is to average the probability distributions over the next token from each model, and
select the best token using this averaged distribution. Or, if we regard the problem as a discrete
decision-making task, majority voting can be employed. More sophisticated methods might
involve re-ranking candidate outputs generated by different models based on a separate scoring
function or even using a meta-learner to intelligently combine the predictions.

The “scaling” from output ensembling comes at the cost of running multiple models or
sampling multiple outputs. This not only increases the latency of inference but also leads
to the additional complexity of managing multiple models. But the quality of outputs does
not continue to improve indefinitely as more models are added. In some cases, the benefits
of output ensembling may diminish as the number of component models in the ensemble
exceeds a certain threshold. Instead, the benefits of ensembling are generally greater when the
individual models are diverse (i.e., they make different errors), even if there are a relatively
small number of component models. Therefore, it is common practice to use a set of diverse
LLMs which differ in their training data, model architectures, or fine-tuning objectives.

In LLMs, “scaling” often implies making things “bigger” for quality with more resources.
However, in addition to scaling up the quality, scaling can mean more. It can also signify
scaling up the robustness (making the system less prone to errors and more reliable) and
exploration (covering a wider range of potential solutions). In output ensembling, these
dimensions are naturally integrated. For instance, the very act of averaging or voting across
different model outputs is a direct strategy to scale up robustness against individual model
failures. Furthermore, by intentionally including varied models, ensembling increases the
chances of discovering novel or superior solutions. In this sense, scaling is not limited to
making models larger or running them longer — it also means strategies for making inference
more robust, exploratory, and adaptive.

11.3.4 Generating and Verifying Thinking Paths
So far, we have viewed inference-time scaling as a general class of methods for scaling various
aspects of inference, such as sequence length, model size, and/or search strategies. In fact, one
successful application is the use of inference-time scaling to enhance the reasoning capabilities
of LLMs. As we have seen, the reasoning performance of LLMs can be improved by using
chain-of-thought methods. We can therefore make use of the chain-of-thought prompts to
generate intermediate reasoning steps and reach a correct answer. However, reasoning problems
are often so complicated that we cannot obtain high-quality solutions by providing simple chain-
of-thought prompts. For example, when solving a math problem, we typically need to reason
over a sequence of steps. At each step, we need to work out some intermediate result, verify it,
and then determine what to do next. The reasoning path is not a fixed pattern but a dynamically
generated thinking process that often involves trial-and-error, backtracking, and self-correction.
This requires more sophisticated prompting strategies or search algorithms to navigate such
complex reasoning. In this subsection, we focus on inference-scaling methods that go beyond
simple chain-of-thought to address complex reasoning problems more effectively.

At a high level, methods for scaling the reasoning of LLMs can be categorized into two



11.3 Inference-time Scaling 41

classes:

• Training-free Methods. These methods aim to improve reasoning capabilities without
requiring any modification or retraining of the pre-trained parameters. Instead, they
focus on techniques applied during inference, such as sophisticated prompting strategies
(e.g., chain-of-thought) and algorithmic control over the reasoning process (e.g., search).

• Training-based Methods. These methods involve further training or fine-tuning the
model parameters to explicitly improve reasoning abilities, such as supervised fine-
tuning on datasets with reasoning examples (e.g., math problems with step-by-step
solutions).

In the following, we first discuss training-free methods, and then training-based methods.

1. Solution-level Search with Verifiers

Given an input sequence (e.g., a math problem), there are many possible output sequences
(e.g., solutions to the problem). If we have a model to evaluate or verify each solution, we can
select the best one. This is the fundamental principle behind methods like best-of-N sampling,
where multiple outputs are generated, and the optimal result is picked based on some selection
mechanism. Such a selection process can be viewed as a search problem, which involves two
components:

• Search Algorithm. This defines the strategy used to explore the space of possible
output sequences (solutions) and generate a set of candidates. It can range from simple
independent sampling to more sophisticated search techniques as discussed in Section
11.1.3.

• Verifier. This is a model or function responsible for evaluating the quality, correctness,
or utility of each candidate solution generated by the search algorithm. It provides
a score, a probability, or a judgment that allows the system to select the best among
the candidates. The verifier can be another LLM, or even a set of predefined rules or
heuristics.

Given an input problem x, we define that an output solution y can be represented as a
sequence of reasoning steps:

y = (a1,a2, ...,anr) (11.37)

where ai is the i-th reasoning step, and anr is the last step which should contain the answer to
the problem. See Figure 11.15 for an example of a multi-step reasoning path.

The search algorithm can efficiently generate a set of candidate solutions

Dc = {y1, ...,yK} (11.38)

Then, we can use a verifier, which evaluates each solution by the function V (y), to score
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Express (5−4i)−2(3+6i) as a x
complex number. Think step by step.

Now we distribute the 2 to the terms
in the parenthesis. 2(3+6i) = 6+12i.

So (5−4i)−2(3+6i) is equivalent to
(5−4i)− (6+12i).

Now we subtract the terms. x
5−4i−6−12i=−1−16i.

That’s the answer. x

You can also write it as −1−16i. x
Answer −1−16i.

Problem (x)

Step 1 (a1)

Step 2 (a2)

Step 3 (a3)

Step 4 (a4)

Step 5 (a5)

Solution with
A Reasoning Path

Figure 11.15: Illustration of multi-step reasoning. This example is from the PRM800K dataset
[Lightman et al., 2024]. Given a math problem, the LLM is prompted to generate a thinking
path (or reasoning path) consisting of several reasoning steps. Each step addresses a sub-
problem based on the results of the previous steps. The answer to the original problem is
contained in the last step.

the candidates in Dc. The final output is the best candidate selected by the verifier

ŷ = argmax
y∈Dc

V (y) (11.39)

Although verifying the entire reasoning path is possible, a simpler alternative is to verify
only the final reasoning step. In this way the verifier function V (y) is simplified to depend
solely on the final answer contained within anr . This can be achieved in various ways,
depending on the nature of the problem and the expected answer format.

• For some math and coding problems, we can use off-the-shelf tools as verifiers. Examples
include proof checkers for mathematical theorems, interpreters or compilers for code
execution, and unit test systems for verifying program correctness against predefined
test cases.

• If there is labeled data for evaluating the answer, such as human preference data, we can
train a reward model on such data. The learned reward model is then used as the verifier
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which assigns a scalar score to each candidate answer.

• If there are no existing systems or suitable reward models, we can use another LLM to
act as the verifier. This LLM is prompted to assess the quality of the candidate answer.
It could potentially be a more capable model, or the same LLM used with a specific
“evaluator” prompt.

• Alternatively, simpler heuristic-based verifiers can be designed. A commonly used
approach is to employ majority voting, where the most frequently occurring answer
among a set of candidates is selected.

Based on these verifiers, we can search to obtain a set of candidate solutions for selection.
One simple strategy, which is often referred to as parallel scaling [Brown et al., 2024; Snell
et al., 2024], involves generating K candidate solutions by running the base LLM K times
independently. In this process, we can adjust the temperature in sampling to control the
diversity in the outputs. The verifier then assesses each of these K complete solutions, and
the one with the highest score is selected as the final output. This is conceptually very similar
to best-of-N sampling, which in previous chapters we primarily described as a method of
selecting the best one from a set of sampled outputs using a reward model.

Another approach is sequential scaling, which builds a sequence of solutions incrementally
[Gou et al., 2024; Zhang et al., 2024]. It starts with an initial solution generated by the LLM
with prompting. Then, we use a verifier (often the same LLM) to evaluate the solution. This
can be seen as a critique stage. The output of this stage is some form of feedback, such as
textual critiques pinpointing errors or suggesting improvements, numerical scores reflecting
solution quality, or even a revised plan or intermediate step to guide the next generation. This
feedback, along with the original problem and the current solution, is then used to prompt
the LLM to generate a potentially improved solution. This can be seen as a refine stage. This
critique-refine cycle can be repeated, forming an iterative loop:

yk+1 = Refine(x,yk,Feedback(yk)) (11.40)

where Feedback(yk) represents the feedback from the verifier. The Refine(·) function gen-
erates the improved solution yk+1 by prompting the LLM with the original problem x, the
previous solution yk, and this feedback. The process can be iterated for K times, or until
the solution quality, as assessed by the verifier, converges to a satisfactory level. This iter-
ative framework, where a solution is progressively improved through cycles of generation,
evaluation (critique), and revision, is precisely what constitutes self-refinement [Shinn et al.,
2023; Madaan et al., 2024]. In such scenarios, the role of the verifieris not just to pick the best
complete solution from a static set, but to actively guide the generation process itself.

See Figure 11.16 for illustrations of parallel scaling and sequential scaling. Note that
there are other ways to perform search and obtain different sets of candidate solutions. One
alternative method is to organize search as a tree structure. This approach, often referred to as
tree search, provides a more structured way to explore the space of possible reasoning paths. In
solution-level search, each node of the tree represents a complete solution. During search, we
need to expand a node to a set of child nodes, representing new solutions that can be considered
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Self-refinement
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Figure 11.16: Illustrations of parallel scaling and sequential scaling. In parallel scaling, we
obtain multiple solutions by running the LLM several times independently. In sequential
scaling, the LLM generates an initial solution. Then, we use the LLM to refine it iteratively,
with each refinement yielding a new, possibly better solution.

in verification. The expansion process typically involves taking an existing solution (the parent
node) and using the LLM to generate variations or alternative solutions.

2. Step-level Search with Verifiers

While the methods discussed above primarily focus on generating complete solutions before
final selection, the search process can also be integrated more deeply into the step-by-step
generation of the reasoning path itself. This leads to approaches that perform step-level search
with verifiers, where guidance or pruning occurs at intermediate reasoning steps {a1, ...,ank

}
rather than only after a full solution y is formed.

Such fine-grained control is particularly beneficial for complex reasoning problems where
a single incorrect intermediate step can render the entire subsequent reasoning chain invalid.
By evaluating or guiding the generation at each intermediate step, the LLM can explore the
reasoning space more effectively, potentially pruning unpromising paths early or allocating
more resources to explore more plausible ones.

Step-level search with verifiers can also be modeled as a tree search problem. In this
paradigm, each node (or state) corresponds to a partial reasoning path, a≤i = (a1, ...,ai),
representing the sequence of i reasoning steps taken so far (i.e., a path from the root node to
the current node). The objective of the search process is to explore the underlying state space,
starting from an initial empty path, to find a complete path that constitutes a correct solution.
Note that we use a≤i here to represent a partial reasoning path instead of y≤i. While this
makes notation a bit inconsistent with that used for representing complete solutions (y) or full
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paths in solution-level search, it serves to highlight the focus on individual actions or steps.

The core components of step-level search with verifiers are:

• Node Representation. A node is a partial reasoning path a≤i = (a1, ...,ai). The root
node is an empty path, and terminal nodes are complete reasoning paths.

• Node Expansion. Given a current partial path a≤i, the LLM is used to generate one
or more candidate next reasoning steps {a(1)i+1, ...,a

(M)
i+1 }. Each candidate step, when

appended to a≤i, forms a new potential partial path a≤i+1 = (a1, ...,ai,a
(j)
i+1).

• Verification. The verifier V (·) evaluates the quality of a newly generated step in the
context of the current partial path a≤i = (a1, ...,ai) and the original problem x. As
with solution-level verification, step-level verifiers might output a numerical score, a
categorical label, and textual feedback.

• Search. This governs how the search space is explored. Based on the evaluations from
the verifier, the search strategy decides which partial paths to extend further, which to
prune, and the order of exploration.

This step-by-step verification allows for dynamic adjustments to the reasoning process. If a
step ai+1 is deemed incorrect or unpromising by V (·), the search algorithm can backtrack and
explore alternative steps from a≤i, or even from an earlier node a≤i′ (where i′ < i). Conversely,
if a step is highly rated, resources can be focused on extending that path. See Figure 11.17 for
an illustration of step-level search with verifiers.

Clearly, this search framework is very similar to that used in decoding methods for LLMs,
as discussed in Section 11.1.3. For example, beam search maintains a set of K most promising
partial sequences at each generation step. This is a form of step-level search where the “verifier”
is implicitly the LLM’s own probability model, and the “search” is the pruning mechanism to
maintain the beam size.

However, step-level search with explicit verifiers, as described here, presents differences
from standard decoding. One of them is that the verifier can be a much more sophisticated
component than just the raw output probabilities of the generative LLM. The design of step-
level verifiers basically follows that of solution-level verification. A step-level verifier might
be a language model that assesses the quality of an individual reasoning step within the context
of the preceding path. This LLM can even be fine-tuned to enhance its verification capability.
Alternatively, for domains with well-defined rules, it could be a symbolic engine or a set of
programmatic checks. Furthermore, verifiers can be designed to predict the future utility or
likelihood of success given the current partial path, drawing inspiration from value functions
in reinforcement learning. Human expertise can also be incorporated to provide judgments on
critical steps, especially in high-stakes scenarios.

One example of such a step-level verifier, particularly when using human feedback to assess
intermediate progress, is the process reward model (PRM). A PRM is typically a separate
language model trained to output a scalar reward for each reasoning step ai′ within a partial
path a≤i. It provides a more direct and fine-grained supervisory signal compared to outcome
reward models (ORMs) which only evaluate the final solution. However, the development
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Figure 11.17: Illustration of step-level search with verifiers. a(j)i = the j-th candidate for the
i-th reasoning step, ⊠ = candidate pruned by the LLM’s output probability, and ⊠ = candidate
pruned by the verifier. Given the input problem as the root node, we expand the tree by
generating multiple reasoning steps at each expansion. Each candidate can be pruned by either
likelihood (as in standard decoding) or step-level verification. The unpruned candidates are
then expanded to generate further reasoning steps. The process is iterated until a complete
reasoning chain leading to a final answer is generated, or until a predefined search limit is
reached.

of PRMs relies on step-level human annotations, such as preferences on different next steps.
Collecting supervision for each intermediate step is considerably more labor-intensive and
requires greater cognitive effort from human annotators than simply labeling final outcomes.

One alternative approach to developing training data for step-level verification is to use
LLMs to generate such annotations automatically. For example, we can take a strong LLM,
referred to as a teacher model, and prompt it to first generate a complete reasoning path for
a given problem. Then, at each intermediate step within this path, we can prompt the same
teacher LLM (or another capable LLM) to generate several alternative candidate next steps
in addition to the one it originally chose. The teacher LLM can then be prompted again to
evaluate these alternatives. These evaluation results (e.g., correct vs. incorrect) can then serve
as data annotations. Alternatively, the generalization capabilities of PRMs can be leveraged.
We can train a PRM on tasks where step-level verification is easier and then generalize this
PRM to other tasks with little or no additional training.



11.3 Inference-time Scaling 47

Note that step-level verification also comes with its own problems. Frequent verification,
especially if using an LLM as the verifier, can substantially increase computational costs
and latency. The design of effective step-level verifiers is non-trivial itself. An inaccurate
verifier might prematurely discard good reasoning paths or fail to identify flawed ones, thereby
misleading the search. This makes the development of such systems more complex and
difficult.

3. Encouraging Long Thinking

So far in this subsection, most of the methods are implicitly based on a simple idea: generating
longer reasoning paths can help. In addition to CoT and search with verifications, we can
consider alternative methods to achieve this. For example, we can prompt the LLM by explicitly
asking for extended deliberation. Beyond direct prompting, we can also make modifications
to the decoding process itself, such as adjusting token limits or applying penalties for short
outputs. Another approach is to employ multi-stage generation schemes where the model
incrementally builds upon its reasoning.

4. Training-based Scaling

As well as considering inference-time scaling methods without training, we also wish to
consider methods that can improve intrinsic reasoning capabilities of LLMs by modifying
their parameters through further training. While such training-based scaling methods typically
require additional training cost and computational resources, they instill stronger reasoning
skills directly into the model parameters, which in turn can lead to more effective and efficient
reasoning performance. We can even combine them with training-free methods for better
inference-time scaling results.

Although our discussion here is restricted to reasoning problems, methods for training-
based scaling are common. Most of them have been discussed in Chapter 10. Here, we will
briefly describe how these methods can be applied to improving inference-time scaling for
reasoning problems.

• Fine-tuning on Reasoning Data. One of the most direct ways to enhance reasoning
is by fine-tuning pre-trained LLMs on datasets specifically curated for reasoning tasks.
These datasets can range from simple input-output pairs to more structured formats that
include step-by-step reasoning processes. Typical examples include datasets of math
word problems, logical deduction exercises, or code generation with explanations. By
training on such data, the model learns from common reasoning patterns, and thus can
generate detailed and coherent reasoning paths at test time.

• Reinforcement Learning for Reasoning. If we regard a verifier as a reward model, we
can see that the methods discussed in the previous subsection are a direct application
of the reward model to reasoning problems, though they are training-free. Of course,
we can apply this reward model to LLM fine-tuning. This follows a standard paradigm
of reinforcement learning. Given a reward model, the LLM, acting as a policy, is fine-
tuned using reinforcement learning algorithms. The LLM generates reasoning steps
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or full solutions, receives feedback (rewards) from the reward model, and updates its
parameters to produce outputs that maximize these rewards. This process aligns the
LLM output with notions of high-quality reasoning, thereby encouraging the LLM to
generate more reliable reasoning paths. Another key issue is the training of the reward
model. Generally, this reward model could be an outcome reward model that evaluates
the correctness or quality of the final answer, or a process reward model that assesses
the quality of each intermediate reasoning step, as discussed in the context of step-level
verifiers. In some cases, we can even develop a reward model based on simple rules,
such as giving bonuses to longer outputs.

• Knowledge Distillation for Reasoning. In this approach, a smaller, more efficient
student LLM is trained to mimic the reasoning outputs or internal representations of a
larger, more capable teacher LLM. The teacher model might generate detailed reasoning
steps for a variety of problems. The student model then learns to reproduce these high-
quality reasoning demonstrations. This strategy makes stronger reasoning capabilities
more accessible by deploying them in smaller models that are less computationally
expensive at inference time.

• Iterative Refinement. Training-based scaling can also involve iterative refinement. For
example, an LLM can generate solutions to a set of problems. These solutions and their
reasoning paths are then verified, either by humans or automatic verifiers. The correct
reasoning paths are subsequently added to the training data, and the LLM is further
fine-tuned on this augmented dataset. This creates a cycle where the LLM progressively
improves its reasoning capabilities through repeated generation, critique, and learning.

The primary advantage of these training-based scaling methods is that they endow the LLM
with stronger inherent reasoning skills. This directly contributes to improved inference-time
scaling in several ways: it can lead to more efficient inference, as the LLM might require less
extensive search or fewer generation samples to arrive at a correct solution. Moreover, the
base quality of generated steps or solutions is higher. Therefore, a well-trained LLM might
generalize its learned reasoning abilities to novel problems more effectively than an LLM
relying solely on in-context learning or training-free inference schemes.

On the other hand, training-based approaches also present challenges, compared to the
training-free counterparts. The creation of high-quality, large-scale training datasets for
reasoning can be expensive and labor-intensive. The fine-tuning process itself, particularly for
the largest LLMs or when using RL, can be computationally intensive and require substantial
engineering effort. There is also the risk of the model overfitting to the specific types of
problems or reasoning styles present in the training data, potentially limiting its performance
on out-of-distribution tasks.

11.4 Summary
In this chapter, we have discussed the inference issue for LLMs. We have presented the
prefilling-decoding framework and related decoding algorithms for LLM inference. Then, we
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have described several techniques for efficient inference. We have also discussed inference-
time scaling, which has been considered one of the most important methods for improving
LLM reasoning.

Inference over sequential data has long been a concern in AI [Wozengraft and Reiffen,
1961; Viterbi, 1967; Forney, 1972]. In the context of NLP, this line of work dates back to the
very early days of speech recognition and statistical machine translation [Koehn, 2010], where
researchers faced the challenge of efficiently searching vast hypothesis spaces to find the most
probable output sequence. Techniques like beam search and various pruning strategies were
developed then to make this computationally tractable. At that time, models were relatively
weak, and much of the research focused on developing powerful search algorithms to reduce
search errors. These foundational ideas continue to influence modern approaches.

As we enter the era dominated by deep learning methods, models based on deep neural
networks have become extremely powerful. Even with very simple search algorithms, these
models can achieve excellent results. In this context, inference no longer seems as “important”
as it once was, and research attention has gradually shifted toward model architectures, training
methods, and scaling up models.

However, history tends to repeat itself. With the rise of LLMs, inference has once again
attracted significant attention. This renewed focus is primarily manifested in two aspects:

• The inference cost for LLMs is very high. For example, efficiently deploying LLMs
in high-concurrency, low-latency scenarios remains a challenging problem, making
inference efficiency critically important. In this context, efficient architecture designs,
optimized search algorithms, and various inference optimization strategies hold substan-
tial practical significance.

• Input and output sequence lengths have significantly increased in complex tasks. Es-
pecially in tasks like mathematical reasoning, the growth of sequence lengths further
highlights the importance of inference efficiency. Moreover, scaling the inference pro-
cess has recently proven to be an effective way to improve the reasoning capabilities of
models. Therefore, achieving efficient inference scaling is emerging as a particularly
promising research direction.

Inference is now a wide-ranging topic that encompasses many techniques. It involves not
only the development of model architectures and decoding algorithms, but is increasingly
shaped by the intricate engineering and sophisticated systems-level optimizations required to
deploy LLMs effectively and efficiently. Many of these techniques are beyond the scope of NLP
or a specific AI area. Instead, the frontier of LLM inference optimization now extends deeply
into domains traditionally considered core computer science and engineering. This systemic
perspective has brought many new ideas to the study of inference problems. Unfortunately,
this chapter cannot cover all relevant techniques — indeed, that would be an almost impossible
task in itself. Ultimately, the best way to better understand and master these techniques may
still lie in hands-on practice.
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