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Chapter 10

Alignment

Alignment is not a new concept in NLP, but its meaning varies across different domains
and over time. In traditional NLP, the term alignment typically refers to the tasks that link
corresponding elements in two sets, such as aligning words between a Chinese sentence and
an English sentence. As LLMs become increasingly important in NLP research, this term is
more broadly used to refer to aligning model outputs with human expectations. The problem
that alignment addresses is that the output of a model may not align with the specific goals
or contexts intended by users. For example, pre-trained LLMs may not be able to follow
user instructions because they were not trained to do so. Another example is that LLMs may
generate harmful content or perpetuate biases inherent in their training data. This poses new
challenges in ensuring that LLM outputs are not only accurate and relevant, but also ethically
sound and non-discriminatory.

Simply pre-training LLMs can result in a variety of alignment problems. Our ultimate goal
is to resolve or mitigate all these problems to ensure LLMs are both accurate and safe. There
is an interesting issue here: since large language models are trained on vast amounts of data,
we have reason to believe that if we have sufficient data covering a variety of tasks and aligned
with human preferences, pre-training could make LLMs accurate and safe enough, perhaps
even eliminating the need for alignment. However, the reality is that it is nearly impossible
to gather data that encompasses all tasks or adequately represents human preferences. This
makes it difficult to achieve model alignment through pre-training alone, or at least, at this
stage, alignment remains a very necessary and critical step in the development of LLMs.

In this chapter, we will focus on alignment methods for LLMs. We will begin by discussing
the general alignment tasks. Then we will consider two widely-used approaches, known as
instruction alignment and human preference alignment, respectively. The former resorts to
supervised fine-tuning techniques and guides the LLMs to generate outputs that adhere closely
to user instructions. On the other hand, the latter typically relies on reinforcement learning
techniques, where the LLMs are trained based on feedback from humans. While these methods
are motivated by different goals, they are commonly used together to develop well-aligned
LLMs.

https://github.com/NiuTrans/NLPBook
https://niutrans.github.io/NLPBook
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10.1 An Overview of LLM Alignment

Alignment can be achieved in several different ways. We need different methods for LLM
alignment because this problem is itself complicated and multifaceted, requiring a blend of
technical considerations. Here we consider three widely-used approaches to aligning LLMs.

The first approach is to fine-tune LLMs with labeled data. This approach is straightforward
as it simply extends the pre-existing training of a pre-trained LLM to adapt it to specific tasks.
An example of this is supervised fine-tuning (SFT), in which the LLM is further trained
on a dataset comprising task-specific instructions paired with their expected outputs. The
SFT dataset is generally much smaller compared to the original training set, but this data is
highly specialized. The result of SFT is that the LLM can learn to execute tasks based on
user instructions. These tasks can either be ones previously encountered in SFT, or new tasks
similar to those. For example, by fine-tuning the LLM with a set of question-answer pairs,
the model can respond to specific questions, even if not directly covered in the SFT dataset.
This method proves particularly useful when it is relatively easy to describe the input-output
relationships and straightforward to annotate the data.

The second approach is to fine-tune LLMs using reward models. One difficulty in alignment
is that human values and expectations are complex and hard to describe. In many cases, even
for humans themselves, articulating what is ethically correct or culturally appropriate can be
challenging. As a result, collecting or annotating fine-tuning data is not as straightforward as
it is with SFT. Moreover, aligning LLMs is not just a task of fitting data, or in other words,
the limited samples annotated by humans are often insufficient to comprehensively describe
these behaviors. What we really need here is to teach the model how to determine which
outputs are more in line with human preferences, for example, we not only want the outputs
to be technically accurate but also to align with human expectations and values. One idea
is to develop a reward model analogous to a human expert. This reward model would work
by rewarding the LLM whenever it generates responses that align more closely with human
preferences, much like how a teacher provides feedback to a student. To obtain such a reward
model, we can train a scoring function from human preference data. The trained reward model
is then used as a guide to adjust and refine the LLM. This frames the LLM alignment task as a
reinforcement learning task. The resulting methods, such as reinforcement learning from
human feedback (RLHF), have been demonstrated to be particularly successful in adapting
LLMs to follow the subtleties of human behavior and social norms.

The third approach is to perform alignment during inference rather than during training
or fine-tuning. From this perspective, prompting in LLMs can also be seen as a form of
alignment, but it does not involve training or fine-tuning. So we can dynamically adapt an
LLM to various tasks at minimal cost. Another method to do alignment at inference time is to
rescore the outputs of an LLM. For example, we could develop a scoring system to simulate
human feedback on the outputs of the LLM (like a reward model) and prioritize those that
receive more positive feedback.

The three methods mentioned above are typically used in sequence once the pre-training
is complete: we first perform SFT, then RLHF, and then prompt the LLM in some way
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Instruction
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Figure 10.1: Schematic illustration of the pre-train-then-align method for developing LLMs.
In the pre-training stage, we train an LLM on vast amounts of data using next token prediction.
Then, in the alignment stage, we align the LLM to user instructions, intents, and preferences.
This includes instruction alignment, human preference alignment, and prompting.

during inference. This roughly divides the development of LLMs into two stages — the
pre-training stage and the alignment stage. Figure 10.1 shows an illustration of this. Since
prompting techniques have been intensively discussed in the previous chapter, we will focus
on fine-tuning-based alignment methods in the rest of this chapter.

10.2 Instruction Alignment
One feature of LLMs is that they can follow the prompts provided by users to perform various
tasks. In many applications, a prompt consists of a simple instruction and user input, and we
want the LLM to follow this instruction to perform the task correctly. This ability of LLMs is
also called the instruction-following ability. For example, below is a prompt where we want
the LLM to extract key points and provide a concise summary for a lengthy article.

Instruction Summarize this text in three sentences.

Input Daylight Savings Time (DST) - the process of moving clocks
forward by one hour in the summer - was started in Germany in
1916. During World War One it was a way to save ...

Output

This task requires the LLM to understand the instruction “Summarize this text in three sen-
tences” and perform the summarization accordingly. However, LLMs are typically trained for
next-token prediction rather than for generating outputs that follow instructions. Applying a
pre-trained LLM to the above example would likely result in the model continuing to write
the input article instead of summarizing the main points. The goal of instruction alignment
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(or instruction fine-tuning) is to tune the LLM to accurately respond to user instructions and
intentions. The rest of this section will discuss some issues related to instruction alignment,
including fine-tuning LLMs to follow instructions, generating or collecting instruction data,
and generalizing instruction alignment.

10.2.1 Supervised Fine-tuning
One straightforward approach to adapting LLMs to follow instructions is to fine-tune these
models using annotated input-output pairs [Ouyang et al., 2022; Wei et al., 2022]. Unlike
standard language model training, here we do not wish to maximize the probability of gener-
ating a complete sequence, but rather maximize the probability of generating the rest of the
sequence given its prefix (i.e., generating the output given the input). This approach makes
instruction fine-tuning a bit different from pre-training. Let x= x0...xm be an input sequence
(e.g., instruction + user input) and y= y1...yn be the corresponding output sequence. The SFT
data is a collection of such input-output pairs (denoted by S), where each output is the correct
response for the corresponding input instruction. For example, below is an SFT dataset

x (instruction + user input) y (output)
Summarize the following article. {∗summary∗}

Article: In recent years, solar energy has seen
unprecedented growth, becoming the fastest-growing ...
Analyze the sentiment of the following review. Positive

Review: I absolutely loved the new dining experience.
The food was divine and the service was impeccable.
Translate the following sentence into French. La pratique aide

Sentence: practice indeed helps. effectivement.
Extract the main financial figures from the following Revenue: $10 million,
earnings report. Profit Margin: 15%

Report: The company reported a revenue of $10 million
in the first quarter with a profit margin of 15% ...
Classify the following email as spam or not spam. Spam

Text: Congratulations! You’ve won a $500 gift card.
Click here to claim now.
Provide a solution to the following technical issue. First, check for ...

Issue: my computer is running slow and often freezes.

where the instructions are highlighted. This dataset contains instructions and the corresponding
outputs for several different NLP problems, and so we can fine-tune an LLM to handle multiple
tasks simultaneously.

In SFT, we aim to maximize the probability of the correct output given the input. Consider
an LLM with pre-trained parameters θ̂. The fine-tuning objective can then be formulated as:

θ̃ = argmax
θ̂+

∑
(x,y)∈D

logPrθ̂+(y|x) (10.1)
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x0 x1 x2 x3 y1

x1 x2 x3 y1 y2

Input Output

(a) Forward Pass

x0 x1 x2 x3 y1

x1 x2 x3 y1 y2

Loss = 0 Loss ̸= 0

(b) Backward Pass

Figure 10.2: Illustration of supervised fine-tuning for LLMs. We concatenate the input and the
output into a single sequence. During the forward pass, we run the LLM as usual. During the
backward pass, we compute the loss only for the output part and simply set the loss for the
input part to 0.

where θ̃ denotes the parameters optimized via fine-tuning, and θ̂+ represents an adjustment to θ̂.
Here we will omit the superscript + and use θ to represent θ̂+ to keep the notation uncluttered.
But the reader should keep in mind that the fine-tuning starts from the pre-trained parameters
rather than randomly initialized parameters.

The objective function logPrθ(yi|x,y<i) is computed by summing the log-probabilities
of the tokens in y, conditional on the input x and all the previous tokens y<i:

logPrθ(y|x) =
n∑

i=1

logPrθ(yi|x,y<i) (10.2)

This formulation is equivalent to minimizing the cross-entropy loss.

Note that minimizing the conditional log-probability logPrθ(y|x) is not a standard lan-
guage model training problem. If we concatenate x and y as a single sequence, a more general
form of language modeling is based on the joint log-probability logPrθ(x,y), that is, we
minimize the loss over all tokens of the sequence seqx,y = [x,y]. We can write the probability
of this sequence using the chain rule

logPrθ(seqx,y) = logPrθ(x,y)

= logPrθ(x)︸ ︷︷ ︸
set to 0

+logPrθ(y|x)︸ ︷︷ ︸
loss computation

(10.3)

There are two terms on the right-hand side of the equation. We can simply set the first term
logPrθ(x) to 0, focusing solely on the second term logPrθ(y|x) for loss computation. As a
result, the training can be implemented using standard LLMs. For the sequence seqx,y, we first
run the forward pass as usual. Then, during the backward pass, we force the loss corresponding
to x to be zero. Figure 10.2 shows an illustration of this process.

By taking logPrθ(seqx,y) as the objective function, we can describe SFT using a regular
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form of language model training:

θ̃ = argmax
θ

∑
(x,y)∈D

logPrθ(seqx,y) (10.4)

The problem we considered above is fundamentally a single-round prediction problem,
where the LLM generates a response based on a single input without any further interaction or
feedback from the user. The input is processed, and the output is generated in one go. This is
typical in scenarios where a single question is asked, and a single answer is provided, with
no follow-up questions or clarifications. However, in practice, we sometimes have to handle
multi-round prediction problems, for example, an LLM engages in a dialogue over multiple
turns. In this setting, the LLM not only generates responses based on the initial input but also
incorporates subsequent inputs that might refine or expand on earlier interactions. For example,
we can use the LLM to act as a healthcare assistant chatbot and have a conversation with the
user, like this

User I’ve been feeling very tired lately.

Chatbot I’m sorry to hear that. Besides feeling tired, have you noticed any
other symptoms?

User Yes, I’m also experiencing headaches frequently.

Chatbot How long have these symptoms been going on?

User About a week now.

Chatbot It might be good to check in with a healthcare professional. Would
you like help setting up an appointment?

User Yes, please. Can it be after work hours?

Chatbot Sure, I can arrange that. There are slots available next Wednesday

and Thursday after 5 PM. Which day works better for you?

...

In this task, there are several rounds of conversation, each involving the generation of
a response based on the user’s request or question and the conversational history. Suppose
we have K rounds of conversation, denoted by {x1,y1,x2,y2, ...,xK ,yK}. Here xk and yk

denote the user request and the response, respectively, for each round k. The log-probability
of generating the response can be written as logPrθ(y

k|x1,y1, ...,xk). Our goal is then to
maximize the sum of these log-probabilities

θ̃ = argmax
θ

K∑
k=1

logPrθ(y
k|x1,y1, ...,xk) (10.5)
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A straightforward implementation of this involves calculating the conditional probability
for each k. However, it requires running the LLM K times, each time with an increased conver-
sational history to make predictions. A more efficient method is to perform loss computation
of all responses in a single run of the LLM. To do this, we represent the conversation as a
sequence seqx1,y1,...,xK ,yK = [x1,y1, ...,xK ,yK ] (or seq for short). The log-probability of
this sequence is given by

logPrθ(seq) = logPrθ(x
1,y1, ...,xK ,yK)

= logPrθ(x
1)︸ ︷︷ ︸

set to 0

+logPrθ(y
1|x1)︸ ︷︷ ︸

loss computation

+ · · ·+

logPrθ(x
K |x1,y1, ...,yK−1)︸ ︷︷ ︸

set to 0

+

logPrθ(y
K |x1,y1, ...,xK)︸ ︷︷ ︸

loss computation

(10.6)

The trick here is that we ignore the loss for generating user inputs (i.e., logPrθ(x1),...,
logPrθ(x

K |x1,y1, ...,yK−1)), as illustrated in Figure 10.3. Hence we only compute the
probabilities of generating the responses given their conversational histories, in other words,
the value on the right-hand side of Eq. (10.6) is actually equal to the value on the right-hand
side of Eq. (10.5). As with Eq. (10.4), the training of this multi-round prediction model can be
achieved by maximizing the log likelihood over a training dataset D:

θ̃ = argmax
θ

∑
seq∈D

logPrθ(seq) (10.7)

While implementing the SFT methods introduced above seems trivial as they are funda-
mentally the same as regular language model training, there are still issues that need to be
considered in practice. For example,

• SFT requires labeled data. This makes SFT quite different from pre-training, where raw
text is used as training data and is readily available. As in other supervised machine
learning problems, data annotation and selection in SFT are not simple tasks. In general,
we wish to develop SFT data that is both substantial in quantity and high in quality, and
this data should be highly relevant to the tasks the LLM will perform. On the other hand,
there is a need to fine-tune LLMs with less data to minimize computational and data
construction costs. Often, the quality of LLMs is highly dependent on the data used in
SFT. Thus, such data must be carefully developed and examined. As we will see in later
subsections, SFT can be more efficient and effective through more advanced techniques
for data construction.

• SFT is still computationally expensive for LLMs due to their large size. As a result,
maintaining and updating such models is resource-intensive. For example, applying gra-
dient updates to billions of parameters within an LLM requires significant computational
power and memory. This often requires high-performance computing environments,
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User: I’ve been feeling very tired lately.

Chatbot: I’m sorry to hear that. Besides feeling tired,
have you noticed any other symptoms?

User: Yes, I’m also experiencing headaches frequently.

Chatbot: How long have these symptoms been going on?

...

x1 y1 x2 y2 · · ·
Prθ(x

1) Prθ(y
1|x1) Prθ(x

2|x1,y1) Prθ(y
2|x1,y1,x2)

Loss = 0 Loss ̸= 0 Loss = 0 Loss ̸= 0

Figure 10.3: Illustration of supervised fine-tuning for conversational models. Here the LLM
acts as a chatbot to respond to each request based on the conversational history. The conversa-
tion progresses by alternating between the user and the chatbot. In SFT, we treat the entire
conversation as a sequence, just like in standard LLMs, but compute the loss only for the
responses of the LLM.

which are costly to operate. To address these challenges, various optimization strategies,
such as pruning, quantization, and the use of more efficient training algorithms, have
been explored. In particular, there has been significant interest in parameter-efficient
fine-tuning methods which are designed to maintain state-of-the-art performance without
the need for extensive computational resources. We have seen in Chapter 9 that applying
techniques like soft prompts can make the fine-tuning process more efficient. For further
discussion on parameter-efficient methods, the reader can refer to related papers on this
issue [Houlsby et al., 2019; Hu et al., 2022; Han et al., 2024].

• SFT can be regarded as a post-training step following pre-training. It is a separate training
phase designed to preserve the advantages of the initial pre-training while incorporating
new adjustments. This may seem paradoxical because updating a pre-trained LLM
with further data potentially causes the model to forget some of its prior knowledge.
Imagine a scenario where we have a large amount of SFT data and extensively fine-
tune the LLM. In this case, the LLM could overfit the data, which in turn may reduce
generalization performance or cause catastrophic forgetting. A common strategy to
mitigate this issue is to employ regularization and early stopping techniques. Another
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practical approach is to use a smaller learning rate to gently adjust the weights of the
LLM. In addition, fine-tuning with data from diverse sources and problem domains can
also be beneficial. Nevertheless, in practice, the SFT step is often carefully examined
and requires substantial engineering and experimental efforts to optimize.

10.2.2 Fine-tuning Data Acquisition

Fine-tuning data is so important that much recent work in LLM has focused on developing
various datasets for instruction fine-tuning. As with most work in machine learning, there are
generally two approaches to data acquisition — manual data generation and automatic data
generation.

1. Manually Generated Data

One straightforward method is to recruit human annotators to create input-output pairs for the
tasks of interest. Unlike data annotation in conventional NLP, such as text classification, where
annotators simply assign labels to collected texts according to guidelines, creating fine-tuning
data for LLMs requires more steps and effort, making it thus more challenging. Suppose we
want to obtain fine-tuning data for the English-to-Chinese machine translation task. The first
step is to write a prompt template to describe the task and format the problem clearly. For
example,

Instruction Translate the text from English to Chinese.

User Input {∗text∗}

Output {∗translation∗}

Then, we collect pairs of source and target texts (i.e., Chinese texts and the corresponding
translations), and replace the variables {∗text∗} and {∗translation∗} to generate the fine-
tuning samples. For example, given a pair of English and Chinese sentences

How’s the weather today? → 今天天气怎么样？

{∗text∗} {∗translation∗}

we can generate a fine-tuning sample using the prompt template, like this

Instruction Translate the text from English to Chinese.

User Input How’s the weather today?

Output 今天天气怎么样？
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That is,

x = Translate the text from English to Chinese.\n How’s the weather today?

y = 今天天气怎么样？

We can use this (x,y) pair to fine-tune the LLM, as described in the previous subsection.
One difficulty here is that there are many, many different ways to write prompt templates

for the same task, and different people may produce prompt templates with varying qualities
and complexities. Sometimes, we may write prompt templates with overly complex or verbose
instructions. Sometimes, we may not even know exactly what the target task is and how
to describe it. A widely-adopted strategy is to create prompt templates for existing NLP
tasks, given that there have been so many well-established NLP problems and benchmarks
[Bach et al., 2022; Wang et al., 2022; Mishra et al., 2022]. In this case, annotators can be
given the original task description and many examples. Then, they can use their own ways
to express how to prompt the LLM to perform the tasks. Note that, while such a method
can ease the process of creating and writing prompts, we still need annotation frameworks
and crowdsourcing systems to manage the work and conduct quality control. For example,
we generally need to design annotation guidelines and a unified format for writing prompt
templates, especially when many annotators are contributing to the same task. One advantage
of inducing prompts from existing NLP tasks is that, once the prompt templates have been
developed, it is easy to generate prompts using the annotated samples in the original tasks. For
example, given a bilingual dataset for English-to-Chinese translation, we can easily create a
number of fine-tuning examples by filling the slots in the above template with the sentence
pairs in this dataset.

Another approach is to directly use the naturally existing data available on the internet. A
common example is by collecting question-and-answer pairs from QA websites to fine-tune
LLMs for open-domain QA tasks [Joshi et al., 2017]. Many benchmarks in QA are built in
this way because there are so many types of questions that it is impossible to think of them all
by a small group of people. Instead, using data from those websites can ensure that the LLM
fine-tuning data is at a good or acceptable level in terms of quantity and quality.

In addition to employing existing resources, another straightforward way to develop a
fine-tuning dataset is to crowdsource the data. A simple approach is to allow users to input
any question, after which responses are either manually given or automatically generated by
an LLM and then manually annotated and corrected. It is thus possible to capture real user
behavior and consequently gather inputs and outputs for a large number of “new” problems
that traditional NLP tasks do not cover.

An issue related to the construction of the fine-tuning datasets is that we usually want the
data to be as diverse as possible. Many studies have found that increasing the diversity of
fine-tuning data can improve the robustness and generalization ability of LLMs. For this reason,
there has been considerable interest in involving more diverse prompts and tasks in LLM
fine-tunining datasets. We will provide further discussion on the generalization of fine-tuning
in Section 10.2.4.



10.2 Instruction Alignment 13

2. Automatically Generated Data
One limitation of manual data generation is that the quality and diversity largely depend on
human experience and creativity. Therefore, if we want LLMs to handle a broad range of
tasks, that is, to effectively execute any instruction, relying on human-annotated data for LLM
fine-tuning is often inefficient. Moreover, the coverage of such data can be limited, and the
data may even contain biases introduced by the annotators themselves. An alternative approach
is to generate data automatically. For example, we can collect a number of questions through
crowdsourcing, and employ a well-tuned LLM to generate answers to the questions. These
question-answer pairs are then used as fine-tuning samples as usual. This method, though very
simple, has been extensively applied to generate large-scale fine-tuning data for LLMs.

The above way of producing synthetic fine-tuning data is similar to those used in data
augmentation for NLP. If we have an LLM, we can produce a prediction in response to any
input. Repeating this process for different inputs allows us to create a sufficient number of
fine-tuning samples. Such a method is particularly useful for fine-tuning new LLMs using a
well-tuned LLM. However, one disadvantage of this approach is that it relies on human-crafted
or collected inputs for data generation, which may turn out to be inappropriate for generalizing
LLMs. In many LLM applications, a significant challenge arises from the broad range of users’
questions and requests, many of which are not covered in existing NLP tasks and datasets.
In these cases, it becomes necessary to generate not only the predictions but also the inputs
themselves.

Here we consider self-instruct as an example to illustrate how to generate LLM fine-tuning
samples [Wang et al., 2023c; Honovich et al., 2023]. The idea is that we can prompt an LLM
to create a new instruction by learning from other instructions. Given this instruction, the LLM
can then fill in other fields (such as the user input) and produce the predictions. Figure 10.4
shows a schematic illustration of self-instruct. Here we give a brief outline of the key steps
involved.

• The self-instruct algorithm maintains a pool of tasks. Initially it contains a number
of seed hand-crafted tasks, each with an instruction and input-output sample. As the
algorithm proceeds, LLM-generated instructions and samples will be added to this pool.

• At each step, a small number of instructions are drawn from the instruction pool. For
example, we can randomly select a few human-written instructions and a few LLM-
generated instructions to ensure diversity.
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Initialization
Initialize the task pool with a number of instructions
and corresponding input-output samples.

Sample 1: (Instruction,User-input,Output)

Sample 2: (Instruction,User-input,Output)

· · ·

Task Pool

Sampling
Draw a few instructions from the pool

Instructiona

Instructionb

Instructionc

Task Pool
sampling

Instruction
Generation

Prompt the LLM to generate a new instruction based on
the drawn instructions.
You are provided several different instructions for performing
some tasks. Please generate an instruction based on these.

Task 1: Instructiona

Task 2: Instructionb

Task 3: Instructionc

New Task: Instructionnew

Sample
Generation

Given the newly-generated instruction and a few
input-output samples, generate a new sample.

You are provided with a set of input-output samples tasks,
each composed of an instruction, a user input, and an output.
Please generate a new sample based on these.

Sample 1: Samplea
Sample 2: Sampleb
New Sample: Instructionnew User-inputnew Outputnew

Filtering
Filter out invalid and low-quality samples.
Add the remaining samples into the pool.

Figure 10.4: Illustration of self-instruct [Wang et al., 2023a]. This method maintains a pool of
instructions and corresponding input-output samples. Initially, the pool contains a number of
hand-crafted instructions and samples. Each time, we draw a few instructions from the pool.
An LLM is then prompted to generate new instructions and samples based on those drawn.
Finally, the newly-generated instructions and samples are filtered and added to the pool.

• The selected instructions are then used as demonstration examples. Thus, the LLM
can in-context learn from these examples and produce a new instruction. Below is an
example template for prompting the LLM.



10.2 Instruction Alignment 15

You are provided several different instructions for performing some
tasks. Please generate an instruction based on these.

Task 1: {instruction1}

Task 2: {instruction2}

Task 3: {instruction3}

Task 4: {instruction4}

New Task:

• Given the generated instruction, the LLM is then prompted to complete the sample by
filling in the remaining input fields and generating the corresponding output. Below is a
prompt template.

You are provided with a set of input-output samples, each composed
of an instruction, a user input, and an output. Please generate a new
sample based on these.

Sample 1: {instruction1}
Input: {user-input1}
Output: {output1}

Sample 2: {instruction2}
Input: {user-input2}
Output: {output2}

New Sample: {new-instruction}

• This newly-generated sample is examined by some heuristic rules (such as filtering out
samples or instructions that are similar to those already in the pool). If it passes, the
sample and instruction are added to the pool.

This generation process can be repeated many times to obtain a sufficient number of
fine-tuning samples. Note that, above, we just show simple prompt templates for generating
instruction and fine-tuning samples. Of course, we can develop better templates to generate
more diverse and accurate instruction and fine-tuning samples. For example, for certain tasks
like text classification, the LLM may tend to produce biased predictions, for example, most
generated samples belong to a single class. In such cases, we can adjust the order of generation
of different fields. More specifically, we can specify the output (i.e., the class) with some prior,
and prompt the LLM to generate user input given both the instruction and the output. This
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method resembles input inversion, where the LLM generates the input based on the specified
output [Longpre et al., 2023].

Using LLM-generated instructions and fine-tuning samples has been a common method
for developing LLMs, especially given that manually developing such data is so expensive that
most research groups cannot afford it. In several well-tuned LLMs, their fine-tuning datasets
include a certain amount of synthetic data, which has proved useful [Ouyang et al., 2022; Taori
et al., 2023; Chiang et al., 2023]. There have been further studies on synthetic data generation
for LLM fine-tuning. For example, one can generate more diverse instructions by introducing
evolutionary algorithms [Xu et al., 2024], or use synthetic data as supervision signals in a
more advanced fine-tuning process [Chen et al., 2024b]. More recently, there has also been
considerable interest in using synthetic data in the pre-training stage [Gunasekar et al., 2023;
Allal et al., 2024].

In many applications, a real-world scenario is that, given a task, we can collect or annotate
a relatively small amount of fine-tuning data, for example, we can recruit experts to create
questions for QA tasks in a specific domain. But the quantity and diversity of this data are
in general not sufficient. In this case, we can use self-instruct techniques to generate more
diverse question-answer pairs, and thus augment the fine-tuning data. This provides a way
of bootstrapping the LLM starting from a seed set of fine-tuning samples. Note that using
self-generated data is a common practice and has long been applied in NLP. For example,
this approach has been successfully used in parsing and machine translation [Charniak, 1997;
Sennrich et al., 2016].

10.2.3 Fine-tuning with Less Data
With the increasing prominence of instruction fine-tuning, there has been a surge in demand for
large-scale, high-quality fine-tuning data. For example, the FLAN fine-tuning dataset, which is
compiled from 1,836 tasks, contains 15 million samples [Longpre et al., 2023]. Fine-tuning
LLMs with such large datasets is typically a computationally expensive task, especially given
that updating the large number of parameters in LLMs is resource-intensive. One approach
for mitigating this issue is to explore efficient model training methods, for example, one can
use parameter-efficient methods to update only a small portion of the model. However, many
fine-tuning datasets contain a large amount of synthetic data, where errors and biases are still
inevitable.

Another approach to efficient fine-tuning is to consider only the most relevant and impactful
examples for fine-tuning. We can thus reduce the amount of data that needs to be processed
while still maintaining the quality of the model updates. There are several methods to achieve
this. For example, Zhou et al. [2023] built an instruction-following dataset containing only
1,000 samples by carefully crafting the prompts and collecting samples from a variety of
NLP tasks. They showed that the LLaMa 65B model fine-tuned with this dataset could be
competitive with or even better than models with much more fine-tuning effort. This suggests
that LLMs can be adapted to respond to diverse tasks without necessarily needing fine-tuning
on all types of instruction-following data. Chen et al. [2024a] developed a system based on
the GPT-3.5 model to assess the quality of each instruction-following sample. Therefore,
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they could select high-quality samples from existing datasets, showing better fine-tuning
performance with fewer fine-tuning samples. Researchers have also developed methods to
either select or filter out data using heuristics [Zhao et al., 2024; Ge et al., 2024], or to prioritize
data that more significantly influences the fine-tuning process [Xia et al., 2024]. In fact, most
of these methods can be seen as instances of larger families of data selection and filtering
methods. And it is often the case that using higher quality (but maybe less) data is beneficial
for training NLP models.

The discoveries in instruction fine-tuning somewhat differ from traditional views in NLP:
the ability of models to handle complex problems can be activated with a small amount of
annotated data, rather than requiring massive amounts of supervised data for extensive training.
One possible explanation is that the ability of generating correct responses given instructions
has been learned during pre-training, but such instruction-response mappings are not with
high probabilities during inference. Fine-tuning can slightly adjust the models to get them
to follow instructions, requiring significantly less training effort than pre-training. This is
closely related to what is known as the superficial alignment hypothesis, which suggests
that learning primarily occurs during pre-training, and the subsequent fine-tuning or alignment
phase does not significantly contribute to the underlying knowledge base of an LLM [Zhou
et al., 2023]. Since the core abilities and knowledge of the model are already established
from pre-training, effective fine-tuning for alignment with user needs can be achieved with
relatively small training fine-tuning effort. This implies the possibility of fine-tuning LLMs
with very little data. In another direction, it may not be necessary to restrict fine-tuning to paired
instruction-response data. For example, Hewitt et al. [2024] found that instruction-following
can be implicitly achieved by fine-tuning LLMs only on responses, without corresponding
instructions.

A concept related to the discussion here is sample efficiency. A machine learning method
is called sample efficient if it can learn effectively from a small number of training examples.
In this sense, instruction fine-tuning is sample efficient compared with pre-training. From
the perspective of machine learning, sample-efficient methods can be seen as efficient ways
to sample the space of data, and are advantageous as they make optimal use of scarce data.
Therefore, sampling-based learning techniques, such as many reinforcement learning algo-
rithms, can benefit from these sample efficient approaches. For example, in human preference
alignment, we can either efficiently sample preference data via reward models [Liu et al., 2024]
or improve the sampling efficiency in policy learning [Wang et al., 2024].

10.2.4 Instruction Generalization
In many machine learning and NLP problems, training a model to generalize is a fundamental
goal. For example, in text classification, we expect our model to correctly classify new texts
that were not seen during training. However, generalization poses additional challenges in
instruction fine-tuning. We expect instruction-fine-tuned LLMs to not only generate appropriate
responses for different inputs within a task but also to accurately perform various tasks as
described by different instructions. To illustrate this issue, consider an LLM Pr(y|c,z),
where c is an instruction, z is a user input, and y is the corresponding model output (i.e., the
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response). Suppose that the performance of this model is evaluated in terms of a metric, written
as Performance(Pr(y|c,z)) or P(c,z,y) for short. Informally, when we say this model can
generalize within a given task (indicated by the instruction c∗), we mean that there may be a
value ϵ such that the average performance on new inputs is above this value:

1

|Z|
∑
z′∈Z

P(c∗,z′,y′)> ϵ (10.8)

where Z is the set of new inputs, and z′ and y′ are an input in this set and the corresponding
output, respectively.

Likewise, we can say that this model can generalize across tasks if the average performance
over all instruction-input pairs is above some ϵ:

1

|D|
∑

(c′,z′)∈D

P(c′,z′,y′)> ϵ (10.9)

where D is the set of new instruction-input pairs.
Here, we need to deal with variations in two dimensions: instruction and user input. This

makes the generalization problem very complex, because, intuitively, a model needs to learn
from a vast number of tasks and different input-output pairs associated with each task to
achieve good generalization. As we have discussed several times in this book, achieving such
generalization incurs much lower cost than pre-training. In general, fine-tuning LLMs with
instruction-response data to some extent can lead to models yielding instruction following on
new tasks. Nevertheless, it is typically believed that certain efforts are still needed to adapt
LLMs to make them understand and execute instructions broadly.

One way to generalize instruction fine-tuning is to increase the diversity of the fine-
tuning data. In earlier studies on instruction fine-tuning, researchers developed many datasets,
covering a wide variety of NLP tasks and different instructions for each task [Wang et al., 2022;
Sanh et al., 2022; Longpre et al., 2023]. By transforming these tasks into a unified format, one
can fine-tune an LLM with a sufficiently large number of samples, for example, there have
been several instruction fine-tuning datasets that involve over 100 NLP tasks and 1M samples.
However, these early datasets mostly focus on existing academic problems, but not those that
users want to deal with in real-world applications. Much recent work has shifted focus to
addressing new and more practical problems. For example, there has been considerable interest
in constructing datasets that contain large and complicated demonstrations and responses from
SOTA models to real user queries [Wang et al., 2023b; Teknium, 2023].

Perhaps the use of large and diverse fine-tuning datasets has its origins in attempts to scale
LLMs in different dimensions. Indeed, scaling laws have been used broadly to motivate the
development of a wide range of different instruction-fine-tuned LLMs. And it is reasonable to
scale instruction fine-tuning to make an LLM follow broad instructions. From the perspective
of LLM alignment, however, scaling instruction fine-tuning might not be efficient to achieve
generalization.

One problem is that instruction fine-tuning relies on supervised learning that learns to
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generalize and perform tasks based on instruction-response mappings. However, such an
approach does not capture subtle or complex human preferences (e.g., tone, style, or subjective
quality) because these are hard to encode as explicit instruction-response data. Moreover, the
generalization performance is bounded by the diversity and quality of the instruction-response
dataset. Given these limitations, we would instead like to employ preference models as an
additional fine-tuning step following instruction fine-tuning, so the LLMs can generalize
further (see Section 10.3).

Another view is that some instruction-response mappings may already be learned during
pre-training, and so the pre-trained LLMs have encoded such mappings. However, since we
often do not know exactly what data is used in the pre-training, it is hard to judge whether
we need to learn such mappings in the fine-tuning. A related question is whether out-of-
distribution generalization is primarily achieved during pre-training or fine-tuning. While
directly answering this question is beyond the scope of this chapter, it has been shown that pre-
training on large and diverse datasets is effective in improving out-of-distribution performance
[Hendrycks et al., 2020; Radford et al., 2021; Gunasekar et al., 2023]. This raises an interesting
problem: if an LLM has been well pre-trained at scale, fine-tuning may not be as essential for
out-of-distribution generalization, since the model may have already encountered sufficient
distributional variation. This prompts researchers to fine-tune LLMs with modest effort or
to explore new methods to achieve instruction-following. As discussed in the previous sub-
section, for example, instruction following can be yielded by fine-tuning on a small number of
carefully selected instruction-response pairs [Zhou et al., 2023], or even by using methods that
are not explicitly designed to do so [Kung and Peng, 2023].

The above discussion provides two different strategies: one requires scaling up fine-tuning
datasets for larger diversity, the other requires small but necessary fine-tuning datasets for
efficient LLM adaptation. However, in practice, involving diverse instructions often helps.
In many cases, we need to adapt our LLM for specific purposes. But the LLM, which has
possibly encoded broad instruction-following mappings during pre-training, might tend to
behave as a general-purpose instruction executor even with modest fine-tuning. An interesting
phenomenon is that when fine-tuning on math data, the resulting LLM might not specialize in
math outputs. Instead, this model might respond normally to general instructions, for example,
it could generate poetry if instructed to do so [Hewitt, 2024]. This is not a bad thing, but it
shows that LLMs may not easily change their nature of following general instructions. In this
case, additional adaptations with more diverse data may help adjust the way the LLM follows
instructions, particularly for those tasks we aim to address.

10.2.5 Using Weak Models to Improve Strong Models
So far we have explored a variety of instruction fine-tuning methods based on labeled data.
One of the limitations of many such methods is that they require the data to be annotated
by humans or generated by strong LLMs, which can provide accurate supervision signals
in fine-tuning. However, in many cases, the LLM we have in hand is already strong (or at
least is advantageous in specific aspects of problem solving), and thus it is not easy to find a
superior model for supervision. Even for human experts, when the problem becomes complex,
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providing correct and detailed answers might be difficult, or sometimes infeasible. For example,
when faced with an extremely long document, the experts would find it challenging to identify
any inconsistencies, subtle biases, or missing key points without conducting an exhaustive and
time-consuming review.

One may ask at this point: can we use weak LLMs to supervise strong LLMs? This seems
to be a significant challenge, but it may reflect a future scenario where we need to supervise
AI systems that are smarter than humans or any other AI systems [Burns et al., 2023b]. The
problem of using smaller, less complex models to improve the training of larger, more complex
models is also called the weak-to-strong generalization problem. While there have not been
mature approaches to weak-to-strong generalization, using smaller models to assist stronger
models has indeed proven useful in several areas of LLMs.

For instruction fine-tuning, one of the simplest ways of applying weak LLMs is to use
these models to generate synthetic fine-tuning data. Suppose we have a collection of inputs X ,
where each input includes an instruction and a user input if necessary. For each x ∈X , we use
a weak LLM Prw(·) to generate a prediction ŷ = argmaxyPr

w(y|x). Then, the strong LLM
Prsθ(·) can be trained on these generated predictions (see Eq. (10.1)):

θ̃ = argmax
θ

∑
x∈X

logPrsθ(ŷ|x) (10.10)

where θ is the model parameters.

The above form transforms the fine-tuning problem into a knowledge distillation problem,
in other words, we distill knowledge from the weak model to the strong model. Consequently,
we can employ various knowledge distillation methods to achieve this goal. However, ex-
plaining weak-to-strong fine-tuning from the perspective of knowledge distillation is not
straightforward. A major concern is that the strong model may merely imitate or overfit the
errors of the weak model and fail to generalize. For example, the fine-tuned strong model still
cannot solve difficult problems that the weak model cannot accurately predict. Fortunately,
preliminary experiments in this line of research have shown positive and promising results. For
example, Burns et al. [2023a] found that fine-tuning the strong pre-trained GPT-4 model with
GPT-2-level supervision could improve generalization across several NLP tasks. To measure
how the weak model improves the generalization of the strong model, we define the following
terms:

• Weak Performance (Pweak). This is the test-set performance of the weak model, which
can be regarded as the baseline performance.

• Weak-to-strong Performance(Pweak→strong). This is the test-set performance of the
strong model that is fine-tuned with the weak model.

• Strong Ceiling Performance (Pceiling). This is the test-set performance of the strong
model that is fine-tuned with ground truth data. For example, we fine-tune the strong
model with human-annotated predictions and take the resulting model as a ceiling.
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Then, the performance gap recovered (PGR) can be defined as

PGR = max
{
0,
Pweak→strong−Pweak

Pceiling−Pweak

}
(10.11)

This metric measures how much of the performance gap between the ceiling model and
the weak model can be recovered by the weak-to-strong model. A PGR of 1 indicates that
the weak-to-strong fine-tuning can completely closes the performance gap, whereas a PGR
of 0 indicates no improvement. In Burns et al. [2023a]’s work, it is shown that PGR can
be around 0.8 on 22 NLP classification tasks. It should be noted that, while the potential of
weak-to-strong fine-tuning is promising, achieving substantial weak-to-strong generalization
remains a challenging goal that needs further investigation [Aschenbrenner, 2024].

Fine-tuning LLMs with weak supervision is just one choice for using small models to
improve large models. Although this section primarily focuses on fine-tuning LLMs, we
also mention other methods here to give a more complete discussion (see Figure 10.5 for
illustrations of these methods).

• Instead of using small models to generate synthetic data, it is also straightforward to
incorporate knowledge distillation loss based on these models. For example, a simple
loss function that measures the difference between the small and large models can be
defined as:

Losskd = KL(Prw(·|x) || Prsθ(·|x)) (10.12)

Then, we can add this loss to the original loss of language modeling, and yield the
following training objective

θ̃ = argmax
θ

∑
(x,y)∈D

logPrsθ(y|x)−λ ·Losskd (10.13)

where D is the set of input and output pairs, and λ is the coefficient of the interpolation.
This method can be employed in either the pre-training or fine-tuning phase. We can
adjust λ to control how much the small model influences the training. For example,
we can gradually decrease λ to make the training rely more on the original language
modeling loss as the large model becomes more capable.

• Another approach to involving small models in LLM pre-training and fine-tuning is
to use them to do data selection or filtering. Given a sequence, we can compute the
likelihood or cross-entropy using a small model. These quantities can then be used as
criteria for selecting or filtering data. For example, sequences with low likelihood or
high cross-entropy might be excluded from the training set, as they are less aligned with
the small model’s learned distribution. Conversely, sequences with high likelihood or
low cross-entropy can be prioritized, ensuring that the training focuses on more relevant
or high-quality data.

• Ensemble learning is a simple and effective way to build a strong model by combining
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Figure 10.5: Illustrations of using small models to improve large models in LLMs. One
approach involves using smaller models for the fine-tuning or pre-training of larger models.
This includes generating synthetic data (a), incorporating auxiliary loss (b), and selecting
appropriate data (c). Another approach involves combining small models and large models.
This includes learning a strong model by aggregating multiple small models (d), and cascading
small models with large models (e).

multiple weak models. Applying this technique to LLMs is straightforward. We can
aggregate distributions predicted by multiple small models or specialized submodels,
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and derive the final prediction from the aggregated results. This aggregation can be done
using methods such as majority voting, weighted averaging, or stacking.

• Small models can also be employed at inference time to improve overall efficiency.
Suppose we have a large model that is slow but more accurate, and a small model that is
fast but less accurate. In model cascading, the small model first processes the input data,
quickly generating preliminary results. If these results meet certain pre-defined criteria,
they can be directly used. However, if the initial results are not sufficiently good, the
input is then passed to the larger, more accurate model to produce a better result. This
approach significantly reduces computational costs and latency, as the small model can
effectively handle many inputs without access to the large model.

10.3 Human Preference Alignment: RLHF
So far in this chapter, we have focused on fine-tuning LLMs using input-output paired labeled
data. This approach allows us to adapt LLMs for instruction-following via supervised learning.
In many applications, however, LLMs are required not only to follow instructions but also to
act in ways that are more aligned with human values and preferences. Consider a scenario
where a user asks an LLM how to hack into a computer system. If the LLM is not appropriately
aligned, it may respond by providing details on how to perform this illegal activity. Instead,
a more desirable response might be to advise the user against engaging in illegal activities
and offer a general overview of the consequences of such actions. The difficulty in achieving
this is that the ethical nuances and contextual considerations required for an LLM to respond
appropriately in such scenarios are not always straightforward to encode into a fine-tuning
dataset. What’s even more challenging is that, often, humans themselves cannot precisely
express their own preferences.

In this section, we discuss an alternative LLM fine-tuning method, called reinforcement
learning from human feedback or RLHF for short [Christiano et al., 2017; Stiennon et al.,
2020]. The basic idea behind RLHF is that LLMs can learn from comparisons of model
outputs using reward models (see Figure 10.6). To do this, we can recruit human experts who
indicate their preferences between pairs of outputs generated by the LLM. This preference
data is used to train a reward model that can predict the perceived quality of LLM outputs.
Once trained, the reward model provides feedback by assigning scores to new outputs that the
LLM generates in response to the inputs. The LLM uses these scores to update its parameters
through reinforcement learning algorithms. In the rest of this section, we will first introduce
the basic knowledge of reinforcement learning to facilitate the discussion, and then discuss
methods for training reward models and aligning LLMs with these models.

10.3.1 Basics of Reinforcement Learning
We begin by looking at some basic concepts of reinforcement learning. Note that the notation
used here slightly differs from that used in the previous sections and chapters because we want
to make our description more consistent with those in the reinforcement learning literature.
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(b) Reinforcement Learning from Human Feedback

Figure 10.6: Supervised fine-tuning vs. reinforcement learning from human feedback. In
supervised fine-tuning, we optimize the LLM by maximizing the probability of the prediction
given the input. In reinforcement learning from human feedback, we first train a reward model
on human preference data (on each pair of predictions, evaluators are asked to choose which
one they prefer). Then, we use this reward model to supervise the LLM during fine-tuning.

Nevertheless, we will show how this notation corresponds to the language modeling notation.
The reader who is already familiar with reinforcement learning techniques may skip or skim
this subsection.

A general reinforcement learning framework describes how an agent interacts with a
dynamic environment. This interaction is modeled as a sequence of actions taken by the
agent in response to the state of the environment. At each time step, the agent observes the
current state, chooses an action based on its policy, performs the action, and then receives
feedback from the environment in the form of a reward and a new state. This sequence of
observe-act-receive feedback is repeated until the agent achieves its goal.

A reinforcement learning system involves several components:

• Agent. This is the learner or decision-maker in reinforcement learning. In the context of
LLMs, it can be seen as the LLM itself.

• Environment. This includes everything external to the agent with which the agent
interacts. But the environment in LLMs is less about a physical or virtual space and
more about the framework within which the agent (e.g., an LLM) receives feedback and
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learns.

• State (s). A state represents the current situation of the environment. Given a sequence
of tokens for language modeling, a state at a time step can be viewed as the tokens we
observed so far, that is, the context tokens we take to predict the next token. For example,
we can define (x,y<t) as the state when predicting the next token at the time step t.

• Action (a). Actions represent possible decisions the agent can make. We can see them
as possible predicted tokens in the vocabulary.

• Reward (R). The reward is the feedback from the environment that evaluates the success
of an action. For example, r(s,a,s′) denotes the reward the agent receives for taking the
action a at the state s and moving to the next state s′. If the state-action sequence is given,
we can denote the reward at the time step t as rt = r(st,at,st+1). Also note that if the
decision-making process is deterministic, we can omit st+1 because it can be determined
by st and at. In such cases, we can use r(st,at) as shorthand for r(st,at,st+1).

• Policy (π). For an LLM, a policy is defined as the probability distribution over the
tokens that the LLM predicts, given the preceding context tokens. Formally, this can be
expressed as

π(a|s) = Pr(yt|x,y<t) (10.14)

where a corresponds to the token yt, and s corresponds to the context (x,y<t). Figure
10.7 illustrates how an LLM can be treated as a policy in the reinforcement learning
framework.

• Value Function (V and Q). A state-value function (or value function, for short)
assesses the expected discounted return (i.e., accumulated rewards) for an agent starting
from a particular state s and following a specific policy π. It is defined as:

V (s) = E
[
r(s0,a0,s1)+γr(s1,a1,s2)+γ2r(s2,a2,s3)+ · · ·

∣∣ s0 = s,π
]

= E
[
r0+γr1+γ2r2+ · · ·

∣∣ s0 = s,π
]

= E
[ ∞∑
t=0

γtrt
∣∣ s0 = s,π

]
(10.15)

where γ ∈ [0,1] is the discount factor that adjusts the importance of future rewards,
s0 = s indicates that the agent starts with the state s, and the expectation E is performed
over all possible trajectories (i.e., state-action sequences). Similarly, an action-value
function (or Q-value function) measures the expected return starting from a state s

taking an action a and thereafter following a policy π, given by

Q(s,a) = E
[ ∞∑
t=0

γtrt
∣∣ s0 = s,a0 = a,π

]
(10.16)

where a0 = a indicates that the action taken at the initial state is a.
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Figure 10.7: LLM as policy in reinforcement learning. At each step t, the LLM predicts a
token yt given the model input x and the previously-generated tokens y<t. This process can
be framed as a reinforcement learning problem, where yt serves as the action, (x,y<t) as the
state, and the predicted distribution Pr(yt|x,y<t) as the policy. Once yt is predicted, the LLM
inputs both (x,y<t) and yt to the reward model, which evaluates how effectively the chosen
token contributes to achieving the desired textual outcome. This evaluation generates reward
scores which are used to compute the value functions V (st) and Q(st,at). These functions
then provide feedback to the LLM and guide the policy training.

The goal of reinforcement learning is to learn a policy that maximizes the cumulative
reward (or return) the agent receives over the long run. Given a state-action sequence
τ = {(s1,a1), ...,(sT ,aT )}1, the cumulative reward over this sequence can be written as

R(τ) =

T∑
t=1

rt (10.17)

The expectation of this cumulative reward over a space of state-action sequences is given
in the form

J(θ) = E
τ∼D

[
R(τ)

∣∣πθ]
=

∑
τ∈D

Prθ(τ)R(τ)

=
∑
τ∈D

Prθ(τ)
T∑
t=1

rt (10.18)

where τ ∼D indicates that τ is drawn from the state-action sequence space D, and the subscript

1We assume the state-action sequence begins with s1 and a1, rather than s0 and a0, to align with the notation
commonly used in this chapter, where the prediction y typically starts from y1. Of course, it is also common to
denote a state-action sequence as {(s0,a0), ...,(sT ,aT )} or {(s0,a0), ...,(sT−1,aT−1)} in the literature. But
this variation in notation does not affect the discussion of the models presented here.
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θ indicates the parameters of the policy. J(θ) is also called the performance function.

Then the training objective is to maximize J(θ):

θ̃ = argmax
θ

J(θ) (10.19)

Now, we have a simple reinforcement learning approach: 1) we sample a number of
state-action sequences; then, 2) we evaluate each sequence using the performance function;
then, 3) we update the model to maximize this performance function. If we take Eq. (10.18)
and use gradient descent to optimize the policy, this approach would constitutes a form of
policy gradient methods [Williams, 1992].

Note that in many NLP problems, such as machine translation, rewards are typically sparse.
For instance, a reward is only received at the end of a complete sentence. This means that
rt = 0 for all t < T , and rt is non-zero only when t= T . Ideally, one might prefer feedback to
be immediate and frequent (dense), and thus the training of the policy can be easier and more
efficient. While several methods have been proposed to address sparse rewards, such as reward
shaping, we will continue in our discussion to assume a sparse reward setup, where the reward
is available only upon completing the prediction.

The model described in Eqs. (10.17-10.19) establishes a basic form of reinforcement
learning, and many variants and improvements of this model have been developed. Before
showing those more sophisticated models, let us take a moment to interpret the objective
function J(θ) from the perspective of policy gradient. In gradient descent, we need to compute
the gradient of J(θ) with respect to θ:

∂J(θ)

∂θ
=

∂
∑

τ∈DPrθ(τ)R(τ)

∂θ

=
∑
τ∈D

∂Prθ(τ)

∂θ
R(τ)

=
∑
τ∈D

Prθ(τ)
∂Prθ(τ)/∂θ

Prθ(τ)
R(τ)

=
∑
τ∈D

Prθ(τ)
∂ logPrθ(τ)

∂θ
R(τ) (10.20)

In some cases, we will assume that every sequence in D is equally probable (i.e., Prθ(τ) =
1/|D|). In this case we can simplify Eq. (10.20) and need only consider the terms ∂ logPrθ(τ)

∂θ

and R(τ):

∂J(θ)

∂θ
=

1

m

∑
τ∈D

∂ logPrθ(τ)

∂θ
R(τ) (10.21)

One advantage of this result is that R(τ) does not need to be differentiable, which means that
we can use any type of reward function in reinforcement learning.



28 Chapter 10. Alignment

By treating the generation of the sequence τ as a Markov decision process, we can further
derive ∂ logPrθ(τ)

∂θ , and obtain:

∂ logPrθ(τ)

∂θ
=

∂

∂θ
log

T∏
t=1

πθ(at|st)Pr(st+1|st,at)

=
∂

∂θ

T∑
t=1

logπθ(at|st)︸ ︷︷ ︸
policy

+
∂

∂θ

T∑
t=1

logPr(st+1|st,at)︸ ︷︷ ︸
dynamics

(10.22)

where the gradient is decomposed into two parts: the policy gradient and the dynamics
gradient. The policy component, logπθ(at|st), determines the log-probability of taking action
at given state st, and it is parameterized by θ. The dynamics component, logPr(st+1|st,at),
represents the log-probability of transitioning to state st+1 from state st after taking action
at. In typical reinforcement learning settings, the dynamics are not directly influenced by
the policy parameters θ, and thus, their derivatives are often zero. In this case, therefore, Eq.
(10.22) can be simplified to:

∂ logPrθ(τ)

∂θ
=

∂

∂θ

T∑
t=1

logπθ(at|st) (10.23)

In other words, we only concentrate on optimizing the policy without concerning ourselves
with the underlying dynamics.

Substituting Eq. (10.23) into Eq. (10.21), and expanding R(τ), we then obtain

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

( T∑
t=1

logπθ(at|st)
T∑
t=1

rt

)
(10.24)

While this policy gradient approach is straightforward, it suffers from the problem that the
variance of the estimated gradients can be very high, making the learning process noisy and
inefficient. One reason for this high variance problem is that rewards can vary greatly across
different steps or scenarios. Imagine that in a sequence of action decisions, the reward model
tends to assign small rewards to good actions (e.g., Rt = 2) and large penalties to poor actions
(e.g., Rt =−50). Such varying reward scales for good and poor actions can result in a very
low total reward for the entire sequence, even if it includes good actions.

One simple method for reducing the variance of the gradient is to set a baseline b and
subtract it from

∑T
t=1 rt, resulting in

∑T
t=1 rt− b.2 Here, the baseline can be interpreted as a

reference point. By centering the rewards around this baseline, we remove systematic biases in

2In fact, the use of a baseline b does not change the variance of the total rewards
∑T

t=1 rt. However, it is
important to note that while introducing a baseline does not alter the overall variance of the rewards, it helps reduce
the variance of the gradient estimates. This is because subtracting the baseline from the total rewards effectively
reduces fluctuations around their mean, which makes the gradient estimates more stable. In general, the operation∑T

t=1 rt− b centers the rewards around zero (e.g., b is defined as the expected value of
∑T

t=1 rt), which can lead
to reduced variance in the product

∑T
t=1 logπθ(at|st)(

∑T
t=1 rt− b).
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the reward signal, making the updates more stable and less sensitive to extreme fluctuations in
individual rewards.

This policy gradient model with a baseline can be given by

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

( T∑
t=1

logπθ(at|st)
)( T∑

t=1

rt− b
)

=
1

|D|
∑
τ∈D

∂

∂θ

[ T∑
t=1

logπθ(at|st)
( T∑
k=1

rk− b
)]

=
1

|D|
∑
τ∈D

∂

∂θ

[ T∑
t=1

logπθ(at|st)
( t−1∑
k=1

rk+
T∑

k=t

rk− b
)]

(10.25)

Here we write
∑T

k=1 rk as the sum of two terms
∑t−1

k=1 rk and
∑T

k=t rk to distinguish between
the rewards accrued before and after the action at time step t. Note that in Markov decision
processes, the future is independent of the past given the present. Therefore, the action taken
at time step t cannot influence the rewards received before t, or in other words, the rewards
prior to t are already “fixed” by the time the action at t is chosen. The term

∑t−1
k=1 rk does not

contribute to the gradient and can be omitted, leading to a simplified version of Eq. (10.25)

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

[ T∑
t=1

logπθ(at|st)
( T∑

k=t

rk− b
)]

(10.26)

Also note that removing
∑T

k=t rk can further reduce the variance of the gradient.

There are many ways to define the baseline b. Here we consider the value function of
the state st, that is, the estimated value of being in state st: V (st) = E(rt+ rt+1+ · · ·+ rT ).
Hence we have

A(st,at) =

T∑
k=t

rk− b

=
T∑

k=t

rk−V (st) (10.27)

where
∑T

k=t rk represents the actual return received, and V (st) represents the expected return.
A(st,at) (or At for short) is called the advantage at time step t, which quantifies the relative
benefit of the action at compared to the expected value of following the policy from the state
st onward.

By using the advantage function A(st,at), the gradient of J(θ) can be written in the form

∂J(θ)

∂θ
=

1

|D|
∑
τ∈D

∂

∂θ

( T∑
t=1

logπθ(at|st)A(st,at)
)

(10.28)
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This optimization objective corresponds to the advantage actor-critic (A2C) method in
reinforcement learning [Mnih et al., 2016]. In this method, the actor aims at learning a policy.
It updates the policy parameters using Eq. (10.28) to help focus more on actions that are
likely to improve performance. The critic, on the other hand, updates its estimation of the
value function, which is used to calculate the advantage function A(st,at), thus serving as the
evaluator of the policy being learned by the actor.

In the A2C method, A(st,at) is typically expressed as the difference of the action-value
function Q(st,at) and the state-value function V (st)

A(st,at) = Q(st,at)−V (st) (10.29)

At first glance, this model may seem challenging to develop because it requires two separate sub-
models to calculate Q(st,at) and V (st) respectively. Fortunately, considering that Q(st,at)

can be defined as the return rt+V (st+1), we can rewrite Eq. (10.29) as

A(st,at) = rt+V (st+1)−V (st) (10.30)

or alternatively, introduce the discount factor γ to obtain a more general form

A(st,at) = rt+γV (st+1)−V (st) (10.31)

A(st,at) = rt+γV (st+1)−V (st) is also called the temporal difference (TD) error. What
we need is to train a critic network for the value function V (st), and then use it to compute the
advantage function3.

Up to this point, we have spent considerable space discussing the basics of reinforcement
learning, especially on how to derive the optimization objective for the A2C method. However,
reinforcement learning is a vast field, and many technical details cannot be covered here.
The interested reader can refer to reinforcement learning books for more details [Sutton and
Barto, 2018; Szepesvári, 2010]. Nevertheless, we now have the necessary knowledge to
further discuss RLHF. In the subsequent subsections, we will return to the discussion on LLM
alignment, demonstrating how to use the A2C method for aligning with human preferences.

10.3.2 Training Reward Models
We have shown that reward models play a very important role in the general reinforcement
learning framework and form the basis for computing value functions. We now consider the
problem of training these reward models.

In RLHF, a reward model is a neural network that maps a pair of input and output token

3The training loss for the value network (or critic network) in A2C is generally formulated as the mean squared
error between the computed return rt+γV (st+1) and the predicted state value V (st). Suppose that the value
network is parameterized by ω. The loss function is given by

Lv(ω) =
1

M

∑(
rt+γVω(st+1)−Vω(st)

)2 (10.32)

where M is the number of training samples, for example, for a sequence of T tokens, we can set M = T .
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x0 x1 x2 · · · xm y1 y2 · · · yn

(Last Token ⟨EOS⟩)

hx0 hx1 hx2 · · · hxm hy1 hy2 · · · hlast

Transformer Decoder (LLM)

Representation
at Each Position

Reward (Scalar)

Wr Linear Map

Figure 10.8: Architecture of the reward model based on Transformer. The main component of
this model is still an LLM. We use the Transformer decoder as the sequence representation
model. We extract the representation of the last position of the decoder as the representation
of the entire sequence [x,y]. We then map this representation to a scalar through a linear
transformation, which serves as the reward score for [x,y].

sequences to a scalar. Given an input x and an output y, the reward can be expressed as

r = Reward(x,y) (10.33)

where Reward(·) is the reward model. r can be interpreted as a measure of how well the output
y aligns with the desired behavior given the input x. As discussed in the previous subsection,
both x and y are assumed to complete texts. This means that the reward model evaluates the
relationship between inputs and outputs that provide full semantic content. For example, when
applying the reward model, it assigns a value of 0 (or another predetermined value) at each
position t in the output sequence y = y1...yn. Only at the final position, when t= n, does the
reward model generate the actual reward score. To keep the notation uncluttered, we will use
r(x,y) to denote the reward model Reward(x,y) from here on.

There are many ways to implement the reward model. One simple approach is to build the
reward model based on a pre-trained LLM. More specifically, we can concatenate x and y to
form a single token sequence seqx,y = [x,y]. We run a pre-trained LLM on this sequence, as
usual, and at each position, we obtain a representation from the top-most Transformer layer.
Then, we take the representation at the last position (denoted by hlast) and map it to a scalar
via linear transformation:

r(x,y) = hlastWr (10.34)

where hlast is a d-dimensional vector, and Wr is a d× 1 linear mapping matrix. This
architecture of the reward model is illustrated in Figure 10.8.

To train the reward model, the first step is to collect human feedback on a set of generated
outputs. Given an input x, we use the LLM to produce multiple candidate outputs {y1, ...,yN}.
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Human feedback can be obtained in several ways:

• Pairwise Comparison (Pairwise Ranking). Given two different outputs, human experts
select which one is better.

• Rating. Human experts provide a score or rating to each output. This score is often
a continuous or discrete numerical value, such as a score on a scale (e.g., 1-5 stars,
or 1-10 points). In some cases, the rating might be binary, indicating a “yes/no” or
“positive/negative” preference.

• Listwise Ranking. Human experts are asked to rank or order the given set of possible
outputs.

Here we consider pairwise comparison feedback as it is one of the simplest and most
common forms of human feedback used in RLHF. In this setting, each time, two outputs
(ya,yb) are randomly drawn from the candidate pool {y1, ...,yN}. Human experts are then
presented with these pairs and asked to decide which output they prefer based on specific
criteria, such as clarity, relevance, and accuracy. The human feedback can be encoded as a
binary label, ya ≻ yb for a preference for ya, and yb ≻ ya for a preference for yb.

One simple and widely used model for describing such pairwise comparisons is the
Bradley-Terry model [Bradley and Terry, 1952]. It is a probabilistic model that estimates the
probability that one item is preferred over another. Adapting this model to the notation used
here, we can write the probability that ya is preferred over yb in the form

Pr(ya ≻ yb|x) =
er(x,ya)

er(x,ya)+er(x,yb)

=
er(x,ya)−r(x,yb)

er(x,ya)−r(x,yb)+1
= Sigmoid(r(x,ya)− r(x,yb)) (10.35)

When training the reward model, we want to maximize this preference probability. A loss
function based on the Bradley-Terry model is given by

Lr(ϕ) = −E(x,ya,yb)∼Dr

[
logPrϕ(ya ≻ yb|x)

]
(10.36)

where (x,ya,yb) is drawn from a human-annotated dataset Dr consisting of preference pairs
of outputs and their corresponding inputs. ϕ represents the parameters of the reward model,
which includes both the parameters of the Transformer decoder and the linear mapping matrix
Wr. In practice, assuming (x,ya,yb) is uniformly sampled from Dr, we can replace the
expectation with a summation

Lr(ϕ) = − 1

|Dr|
∑

(x,ya,yb)∈Dr

logPrϕ(ya ≻ yb|x) (10.37)

The goal of training the reward model is to find the optimal parameters ϕ̂ that minimize
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this loss function, given by

ϕ̂ = argmin
ϕ

Lr(ϕ) (10.38)

Since the reward model itself is also an LLM, we can directly reuse the Transformer training
procedure to optimize the reward model. The difference from training a standard LLM is that
we only need to replace the cross-entropy loss with the pairwise comparison loss as described
in Eq. (10.37). After the training of the reward model, we can apply the trained reward model
rϕ̂(·) to supervise the target LLM for alignment.

It is worth noting that although we train the reward model to perform pairwise ranking,
we apply it to score each input-output pair independently during the alignment process. The
pairwise ranking objective ensures that the reward model is sensitive to subtle differences
between outputs, but we rely on the continuous scores produced by the reward model to guide
the optimization of the LLM. An advantage of this approach is that we can choose from or
combine various ranking loss functions, and still apply the resulting reward models in the same
way as we have done in this subsection. This consistency ensures a unified framework for
aligning the LLM, regardless of the specific ranking loss used during reward model training.

10.3.3 Training LLMs

Having obtained the reward model, we then train the policy (i.e., the LLM) via the A2C method.
Recall from Section 10.3.1 that a state-action sequence or trajectory τ can be evaluated by the
utility function

U(τ ;θ) =
T∑
t=1

logπθ(at|st)A(st,at) (10.39)

where A(st,at) is the advantage of taking the action at given the state st. An estimate of
A(st,at) is defined as the TD error rt+γV (st+1)−V (st), where the value function V (st) is
trained with the reward model.

Given this utility function, the A2C-based loss function can be written in the form

L(θ) = −Eτ∼D
[
U(τ ;θ)

]
= −Eτ∼D

[ T∑
t=1

logπθ(at|st)A(st,at)
]

(10.40)

where D is a space of state-action sequences. As usual, the goal of training the policy is to
minimize this loss function

θ̃ = argmin
θ

L(θ) (10.41)

If we map the problem back to the language modeling problem and adopt the notation
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from LLMs, the loss function can be written as:

L(θ) = −E(x,y)∼D
[
U(x,y;θ)

]
(10.42)

where

U(x,y;θ) =

T∑
t=1

logπθ(yt|x,y<t)A(x,y<t,yt) (10.43)

Here πθ(yt|x,y<t) = Prθ(yt|x,y<t) is the LLM parameterized by θ.
In general, we do not have a human annotated input-output dataset D in RLHF, but a

dataset containing inputs only. The outputs, in this case, are typically the predictions made by
the LLM. The loss function is then defined as

L(θ) = −Ex∼DEy∼πθ(·|x)
[
U(x,y;θ)

]
(10.44)

where D denotes the input-only dataset, and y ∼ πθ(·|x) denotes that the output y is sampled
by the policy πθ(·|x).

The above formulation provides a basic form of the A2C method for LLMs. Improved
versions of this model are more commonly used in RLHF. In the following discussion, we will
still use the reinforcement learning notation to simplify the presentation and will get back the
language modeling notation later.

One common improvement of policy gradient methods is to use importance sampling to
refine the estimation of U(τ ;θ). This can be written as

U(τ ;θ) =

T∑
t=1

πθ(at|st)
πθref (at|st)

A(st,at) (10.45)

Here we replace the log-probability logπθ(at|st) with the ratio πθ(at|st)
πθref

(at|st) . θref denotes the
parameters of the previous policy (such as an initial model from which we start the training).
So πθ(at|st)

πθref
(at|st) , also called the ratio function, can be interpreted as the log-probability ratio

between the current policy πθ and the previous policy πθref (call it the reference policy). By
using the ratio function we reweight the observed rewards based on the likelihood of the
actions under the current policy versus the reference policy. When πθ(at|st)

πθref
(at|st) > 1, the action

at is more favored by the current policy compared to the reference policy. By contrast, when
πθ(at|st)

πθref
(at|st) < 1, the action at is less favored by the current policy4.
A problem with the model presented in Eq. (10.47) (as well as in Eq. (10.39)) is that

the variance in the gradient estimates is often high, making the learning process unstable. To

4Consider a more general case where we wish to evaluate the policy using its expected reward (also see Eq.
(10.18))

J(θ) = Eτ∼πθ

[
R(τ)

]
(10.46)

Here τ ∼ πθ means that the sequence τ is generated by the policy πθ . Alternatively, we can write J(θ) in another
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mitigate this issue, techniques such as clipping are often employed to bound the importance
weights and prevent large updates. A clipped version of the utility function (also called the
clipped surrogate objective function) is given by

Uclip(τ ;θ) =
T∑
t=1

Clip
( πθ(at|st)
πθref (at|st)

)
A(st,at) (10.49)

Clip
( πθ(at|st)
πθref (at|st)

)
= min

( πθ(at|st)
πθref (at|st)

,bound
( πθ(at|st)
πθref (at|st)

,1− ϵ,1+ ϵ
))

(10.50)

Here the function bound( πθ(at|st)
πθref

(at|st) ,1− ϵ,1+ ϵ) constrains the ratio function to the range

[1− ϵ,1+ ϵ].

A further improvement to the above model is to consider trust regions in optimization
[Schulman et al., 2015]. In reinforcement learning, a large update to the policy can lead to
instability, where the agent may start performing worse after an update. A reasonable idea is to
optimize the model in the trust region, which refers to a region around the current parameter
estimate where the model is well-behaved. One approach to incorporating trust regions is to
impose a constraint on the size of the policy update, ensuring that the current policy does not
deviate too significantly from the reference policy. This can be achieved by adding a penalty
based on some form of divergence between the current and reference policies to the objective
function. A simple form of such a penalty is given by the difference in the log-probability of
the sequence τ under the current policy versus the reference policy:

Penalty = logπθ(τ)− logπθref (τ) (10.51)

form

J(θ) = Eτ∼πθref

[ Prθ(τ)

Prθref (τ)
R(τ)

]
(10.47)

It is not difficult to find that the right-hand sides of these equations are essentially the same since
Eτ∼πθref

[
Prθ(τ)

Prθref (τ)
R(τ)

]
=

∑
τ Prθref (τ)

Prθ(τ)
Prθref (τ)

R(τ) =
∑

τ Prθ(τ)R(τ) = Eτ∼πθ

[
R(τ)

]
Note that this equivalence holds only when the expectation is performed over the entire sequence space. In

practice, however, we often only sample a relatively small number of sequences using a policy in policy learning.
As a result, the sampling method itself matters. Eq. (10.47) offers an interesting manner to separate the sampling
and reward computation processes: we first use a baseline policy (with θref ) to sample a number of sequences,
and then use the target policy (with θ) to compute the expected reward. In this way, we separate the policy used
for collecting the data, and the policy used for computing the gradient. This approach avoids the need to directly
sample from the policy we are evaluating, which can be beneficial in cases where generating sequences from
the target policy is expensive or difficult. In reinforcement learning, Eτ∼πθref

[
Prθ(τ)

Prθref (τ)
R(τ)

]
is often called a

surrogate objective.
Eq. (10.47) can also be interpreted from a policy gradient perspective. For Eτ∼πθref

[
Prθ(τ)

Prθref (τ)
R(τ)

]
, the

gradient at θ = θref is given by

∂

∂θ
Eτ∼πθref

[ Prθ(τ)

Prθref (τ)
R(τ)

]∣∣∣
θ=θref

= Eτ∼πθref

[∂Prθ(τ)|θ=θref

∂θ
R(τ)

]
(10.48)

The right-hand side is a standard form used in policy gradient methods, meaning that we compute the direction
of the parameter update at the point θ = θref on the optimization surface.
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In practice, this penalty can be approximated by considering only the policy probabilities and
ignoring the dynamics. This gives

Penalty =

T∑
t=1

logπθ(at|st)−
T∑
t=1

logπθref (at|st) (10.52)

By including this penalty in the optimization objective, we encourage the current policy to
remain close to the reference policy, limiting very large updates that could destabilize learning.

We can incorporate this penalty into the clipped surrogate objective function, and obtain

Uppo-clip(τ ;θ) = Uclip(τ ;θ)−βPenalty (10.53)

where β is the weight of the penalty. This training method is called proximal policy optimiza-
tion (PPO), which is one of the most popular reinforcement learning methods used in LLMs
and many other fields [Schulman et al., 2017].

Now we can write the objective of training LLMs in the form of PPO.

U(x,y;θ) = Uppo-clip(x,y;θ)−βPenalty (10.54)

where

Uppo-clip(x,y;θ) =
T∑
t=1

Clip
( πθ(yt|x,y<t)

πθref (yt|x,y<t)

)
A(x,y<t,yt) (10.55)

Penalty = logPrθ(y|x)− logPrθref (y|x)

=
T∑
t=1

logPrθ(yt|x,y<t)−
T∑
t=1

logPrθref (yt|x,y<t) (10.56)

Although the notation here appears a bit tedious, the idea of PPO is simple: we develop an
objective by combining the clipped likelihood ratio of the target and reference policies with an
advantage function, and then impose a penalty that ensures policy updates are not too large.
The PPO-based RLHF is illustrated in Figure 10.9.

To summarize, implementing RLHF requires building four models, all based on the
Transformer decoder architecture.

• Reward Model (rϕ(·) where ϕ denotes the parameters). The reward model learns from
human preference data to predict the reward for each pair of input and output token
sequences. It is a Transformer decoder followed by a linear layer that maps a sequence
(the concatenation of the input and output) to a real-valued reward score.

• Value Model or Value Function (Vω(·) where ω denotes the parameters). The value
function receives reward scores from the reward model and is trained to predict the
expected sum of rewards that can be obtained starting from a state. It is generally based
on the same architecture as the reward model.
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θ

−
∑

x∈D,y∼Prθold
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Prθold
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)
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β ·
(
logPrθ(yt|x,y<t)−
logPrθold (yt|x,y<t)
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min
ω

1
M

∑
x∈D

∑T
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∗∗ rt = r(x,y<t+1) denotes the reward received as step t.

∗∗At denotes the advantage at step t, and can be defined as rt +γVω(x,y<t+1)−Vω(x,y<t)

Figure 10.9: Illustration of RLHF. The first step is to collect human preference data and train
the reward model using this data. Once the reward model is optimized, along with the reference
model, we proceed to train both the policy and the value function. At each prediction step, we
compute the sum of the PPO-based loss and update the parameters of the policy. This requires
access to the reward model, the reference model, and the value function at hand. At the same
time, we update the parameters of the value function by minimizing the MSE loss.
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• Reference Model (πθref (·) =Prθref (·) where θref denotes the parameters). The reference
model is the baseline LLM that serves as a starting point for policy training. In RLHF, it
represents the previous version of the model or a model trained without human feedback.
It is used to perform sampling over the space of outputs and contribute to the loss
computation for policy training.

• Target Model or Policy (πθ(·) = Prθ(·) where θ denotes the parameters). This policy
governs how the LLM decides the most appropriate next token given its context. It is
trained under the supervision of both the reward model and the value model.

In practice, these models need to be trained in a certain order. First, we need to initialize
them using some other models. For example, the reward model and the value model can
be initialized with a pre-trained LLM, while the reference model and the target model can
be initialized with a model that has been instruction fine-tuned. Note that, at this point, the
reference model is ready for use and will not be further updated. Second, we need to collect
human preference data and train the reward model on this data. Third, both the value model
and the policy are trained simultaneously using the reward model. At each position in an output
token sequence, we update the value model by minimizing the MSE error of value prediction,
and the policy is updated by minimizing the PPO loss.

10.4 Improved Human Preference Alignment
In the previous section, we reviewed the basic concepts of reinforcement learning and the
general framework of RLHF. In this section, we will discuss some refinements of RLHF and
alternative methods to achieve human preference alignment.

10.4.1 Better Reward Modeling

In Section 10.3.2, we highlighted the task of learning from human preferences as well as the
use of pairwise ranking loss for training reward models. Here we consider more methods
for reward modeling. Our discussion will be relatively general, and since the reward model
is widely used in many reinforcement learning problems, it will be easy for us to apply the
methods discussed here to RLHF and related applications.

1. Supervision Signals

The training of reward models can broadly be seen as a ranking problem, where the model
learns to assign scores to outputs so that their order reflects the preferences indicated by
humans. There are several methods to train a reward model from the perspective of ranking.

One approach is to extend pairwise ranking to listwise ranking. For each sample in a
dataset, we can use the LLM to generate multiple outputs, and ask human experts to order
these outputs. For example, given a set of four outputs {y1,y2,y3,y4}, one possible order of
them can be y2 ≻ y3 ≻ y1 ≻ y4. A very simple method to model the ordering of the list is
to accumulate the pairwise comparison loss. For example, we can define the listwise loss by
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accumulating the loss over all pairs of outputs:

Llist = −E(x,Y )∼Dr

[ 1

N(N −1)

∑
ya∈Y,yb∈Y

ya ̸=yb

logPr(ya ≻ yb|x)
]

(10.57)

where Y is a list of outputs, and N is the number of outputs in the list. Pr(ya ≻ yb|x) can be
defined using the Bradley-Terry model, that is, Pr(ya ≻yb|x) = Sigmoid(r(x,ya)−r(x,yb)).
Here we omit the ϕ superscript on the Pr(·) to keep the notation uncluttered.

An extension to the Bradley-Terry model for listwise ranking could involve a ranking mech-
anism that takes into account the entire list of outputs rather than just pairwise comparisons.
One such model is the Plackett-Luce model, which generalizes the Bradley-Terry model to
handle multiple items in a ranking [Plackett, 1975]. In the Plackett-Luce model, for each item
in a list, we define a “worth” for this item that reflects its relative strength of being chosen over
other items. For the reward modeling problem here, the worth of y in the list Y can be defined
as

α(y) = exp(r(x,y)) (10.58)

Then the probability of selecting y from Y is given by

Pr(y is selected|x,Y ) =
α(y)∑

y′∈Y α(y′)

=
exp(r(x,y))∑

y′∈Y exp(r(x,y′))
(10.59)

Suppose Y̊ is an ordered list yj1 ≻ yj2 ≻ ·· · ≻ yjN . The overall log-probability of this
ordered list can be defined as the sum of the conditional log-probabilities at each stage of
selection, given by

logPr(Y̊ |x) = logPr(yj1 ≻ yj2 ≻ ·· · ≻ yjN |x)
= logPr(yj1 |x,{yj1 ,yj2 , ...,yjN })+

logPr(yj2 |x,{yj2 , ...,yjN })+
· · ·+
logPr(yjN |x,{yjN })

=

N∑
k=1

logPr(yjk |x, Y̊≥k) (10.60)

where Y̊≥k represents the subset of the list of outputs that remain unselected at the k-th stage,
i.e., Y̊≥k = {yjk , ...,yjN }. Given the log-probability logPr(Y̊ |x), we can define the loss
function based on the Plackett-Luce model by

Lpl = −E(x,Y̊ )∼Dr

[
logPr(Y̊ |x)

]
(10.61)
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There are also many other pairwise and listwise methods for modeling rankings, such
as RankNet [Burges et al., 2005] and ListNet [Cao et al., 2007]. All these methods can be
categorized into a large family of learning-to-rank approaches, and most of them are applicable
to the problem of modeling human preferences. However, discussing these methods is beyond
the scope of this chapter. Interested readers can refer to books on this topic for more details
[Liu, 2009; Li, 2011].

In addition to pairwise and listwise ranking, using pointwise methods to train reward models
offers an alternative way to capture human preferences. Unlike methods that focus on the
relative rankings between different outputs, pointwise methods treat each output independently.
For example, human experts might assign a score to an individual output, such as a rating on a
five-point scale. The objective is to adjust the reward model so that its outputs align with these
scores. A simple way to achieve pointwise training is through regression techniques where
the reward of each output is treated as a target variable. Let φ(x,y) be the score assigned to y

given x by humans. Pointwise reward models can be trained by minimizing a loss function,
often based on mean squared error or other regression losses, between the predicted reward
r(x,y) and the actual human feedback φ(x,y). For example, the loss function could be

Lpoint = −E
[
φ(x,y)− r(x,y)

]2 (10.62)

While pointwise methods are conceptually simpler and can directly guide the reward model
to predict scores, they might not always be the best choice in RLHF. A problem is that these
methods may struggle with high variance in human feedback, especially when different experts
provide inconsistent scores for similar outputs. Because they focus on fitting to absolute
scores rather than relative differences, inconsistencies in scoring can lead to poor model
performance. Moreover, fitting to specific scored outputs might discourage generalization,
particularly given that training data is often very limited in RLHF. In contrast, methods that
consider relative preferences can promote the learning of more generalized patterns of success
and failure. Nevertheless, there are scenarios where pointwise methods might still be suitable.
For example, in tasks where training data is abundant and the costs of obtaining accurate,
consistent annotations are low, pointwise methods can prove effective.

In fact, to make the supervision signal for training the reward model more robust, we can
also introduce additional regularization terms into training. For example, if we consider the
first term Uppo-clip(x,y;θ) in Eq. (10.54) as a type of generalized reward, then the second term
(i.e., the penalty term) can be viewed as a form of regularization for the reward model, except
that here the goal is to train the policy rather than the reward model. Another example is that
Eisenstein et al. [2023] develop a regularization term based on the squared sum of rewards,
and add it to the pairwise comparison loss in RLHF:

Lreg = Lpair+(−E(x,ya,yb)∼Dr

[
r(x,ya)+ r(x,yb)

]2
)

= −E(x,ya,yb)∼Dr

[
logPrϕ(ya ≻ yb|x)

]
−E(x,ya,yb)∼Dr

[
r(x,ya)+ r(x,yb)

]2 (10.63)
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Optimizing with this regularization term can help mitigate the underdetermination of reward
models5.

2. Sparse Rewards vs. Dense Rewards

As discussed in Section 10.3, the rewards in RLHF are very sparse: they are observed only
at the end of sequences, rather than continuously throughout the generation process. Dealing
with sparse rewards has long been a concern in reinforcement learning, and has been one
of the challenges in many practical applications. For example, in robotics, it often needs to
shape the reward function to ease optimization rather than relying solely on end-of-sequence
rewards. Various methods have been developed to address this issue. One common approach
is reward shaping, where the original function is modified to include intermediate rewards,
thereby providing more immediate feedback. Also, one can adopt curriculum learning to
sequentially structure tasks in a way that the complexity gradually increases. This can help
models to master simpler tasks first, which prepares them for more complex challenges as their
skills develop. There are many such methods that can mitigate the impact of sparse rewards,
such as Monte Carlo methods and intrinsic motivation. Most of these methods are general and
the discussion of them can be found in the broader literature on reinforcement learning, such
as Sutton and Barto [2018]’s book.

Although we do not discuss methods for mitigating sparse rewards in detail here, an
interesting question arises: why are sparse rewards so successful in RLHF? Recall from
Section 10.3.1 that the supervision signal received at each time step t is not the reward for
the current action, but rather some form of the accumulated rewards from t until the last time
step. Such supervision signals are dense over the sequence, because the reward obtained at the
end of the sequence can be transferred back to that time step, regardless of which time step
it is. In other words, the sparse rewards are transformed into the dense supervision signals.
Furthermore, from the perspective of reward shaping, Ng et al. [1999] show that the reward at
t can be defined as

r′(st,at,st+1) = r(st,at,st+1)+f(st,at,st+1) (10.64)

where r′(·) is the transformed reward function, r(·) is the original reward function, and f(·)
is the shaping reward function. To ensure the optimality of the policy under the transformed
reward function, the shaping reward function can be given in the form

f(st,at,st+1) = γΦ(st+1)−Φ(st) (10.65)

where Φ(s) is called the potential value of the state s. If we define Φ(s) as the common value
function as in Eq. (10.15) and substitute Eq. (10.65) into Eq. (10.64), we obtain

r′(st,at,st+1) = r(st,at,st+1)+γV (st+1)−V (st) (10.66)

5A model is called underdetermined if there are multiple alternative sets of parameters that can achieve the
same objective.
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It is interesting to see that this function is exactly the same as the advantage function used in
PPO. This relates advantage-based methods to reward shaping: the advantage is essentially a
shaped reward.

On the other hand, one of the reasons for adopting end-of-sequence rewards lies in the
nature of the RLHF tasks. Unlike traditional reinforcement learning environments where the
agent interacts with a dynamic environment, RLHF tasks often involve complex decision-
making based on linguistic or other high-level cognitive processes. These processes do not lend
themselves easily to frequent and meaningful intermediate rewards because the quality and
appropriateness of the actions can only be fully evaluated after observing their impact in the
larger context of the entire sequence or task. In this case, the reward signals based on human
feedback, though very sparse, are typically very informative and accurate. Consequently, this
sparsity, together with the high informativeness and accuracy of the human feedback, can make
the learning both robust and efficient.

3. Fine-grained Rewards
For many applications, our objective will be more complex than merely evaluating an entire
text. For example, in sentiment analysis, we often do not just determine the sentiment of a
text, but need to analyze the sentiment in more detail by associating it with specific aspects
of a topic discussed in the text. Consider the sentence "The camera of the phone is excellent,
but the battery life is disappointing." In this example, we would need to separately analyze
the sentiments expressed about the camera and the battery. Such analysis, known as aspect-
based sentiment analysis, helps provide a finer-grained understanding of the customer review
compared to general sentiment analysis.

For the problem of reward modeling, we often need to model different parts of a sequence
as well. A simple and straightforward way to do this is to divide a sequence into different
segments and then compute the reward for each segment [Wu et al., 2023]. Suppose that an
output token sequence y can be divided into ns segments {ȳ1, ..., ȳns} by some criterion. We
can use the reward model to evaluate each of these segments. By taking x, y and ȳk as input
to the reward model, the reward score for the k-th segment is given by

rk = r(x,y, ȳk) (10.67)

Then the reward score for the entire output sequence is given by

r(x,y) =

ns∑
k=1

r(x,y, ȳk) (10.68)

Here r(x,y) can be used to train the policy as usual.
A problem with this model is that training reward models at the segment level is not

as straightforward as learning from human preferences on entire texts, as it is difficult to
obtain segment-level human preference data. For rating-like problems (e.g., we rate a segment
according to its level of misinformation), one simple approach is to assign a rating score to
each segment and train the reward model using pointwise methods. For example, we can use a



10.4 Improved Human Preference Alignment 43

strong LLM to rate the sequences ȳ1...ȳk−1 and ȳ1...ȳk, and obtain the scores s(ȳ1...ȳk−1)

and s(ȳ1...ȳk). We can then define the score of the segment ȳk as the difference between
s(ȳ1...ȳk) and s(ȳ1...ȳk−1)

s(ȳk) = s(ȳ1...ȳk)−s(ȳ1...ȳk−1) (10.69)

Using these segment-level scores, we can train the reward model with a regression loss
function

Lrating = −Eȳk

[
s(ȳk)− r(x,y, ȳk)

]2 (10.70)

Sometimes, alignment can be treated as a classification problem, for example, we assess
whether a segment has ethical issues. In this case, the segment can be labeled as ethical or
unethical, either by humans or using additional classifiers. Given the label of the segment, we
can train the reward model using some classification loss function. For example, suppose that
r(x,y, ȳk) = 1 if the segment is classified as unethical, and r(x,y, ȳk) =−1 otherwise6. The
hinge loss of training binary classification models is given by

Lhinge = max(0,1− r(x,y, ȳk) · r̂) (10.71)

where r̂ ∈ {1,−1} denotes the ground truth label.
The remaining issue here is how to split y into segments. One approach is to define a

fixed-length segmentation, where y is divided into equal-length chunks. However, this may
not always be ideal, as the content of the sequence may not align well with fixed boundaries.
An alternative approach is to segment y based on specific linguistic or semantic cues, such as
sentence boundaries, topic shifts, or other meaningful structures in the text. Such a segmenta-
tion can be achieved by using linguistic segmentation systems or prompting LLMs to identify
natural breaks in the sequence. Another approach is to use dynamic segmentation methods
based on the complexity of the sequence. For example, segments could be defined where there
is a significant change in the reward score, which might correspond to shifts in the task being
modeled.

4. Combination of Reward Models

A reward model can be viewed as a proxy for the environment. Since the true environment is
often too complex or unknown, developing a perfect proxy for the environment is generally not
possible. As a result, over-aligning LLMs with this imperfect proxy might lead to decreased
performance, known as the overoptimization problem [Stiennon et al., 2020; Gao et al.,
2023]7. We can also explain this through Goodhart’s law, which states: when a measure

6To allow the reward model to output categories, we can replace the linear layer described in Section 10.3.2
with a Softmax layer.

7This problem is also called reward hacking or reward gaming [Krakovna et al., 2020; Skalse et al., 2022;
Pan et al., 2022], which refers to the phenomenon where the agent attempts to trick the reward model but fails
to align its actions with the true intended objectives of the task. Imagine a student who is assigned homework
and is rewarded with points or praise for completing it. The student might then find ways to finish the homework
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becomes a target, it ceases to be a good measure [Goodhart, 1984].
Addressing the overoptimization problem is not easy, and there is no mature solution yet.

The ideal approach might be to develop an oracle reward model that can perfectly capture
the true objectives of the task and prevent the agent from “tricking”. However, creating such
a model is extremely difficult due to the complexity of the real-world environment, as well
as the challenge of defining all the relevant factors that contribute to the desired outcome.
Instead, a more practical approach is to combine multiple reward models, thereby alleviating
the misalignment between the training objective and the true objective that arises from using a
single, specific reward model [Coste et al., 2024].

Given a set of reward models, combining them is straightforward, and in some cases,
we can simply treat this problem as an ensemble learning problem. A simple yet common
approach is to average the outputs of these models to obtain a more precise reward estimation:

rcombine =
1

K

K∑
k=1

wk · rk(x,y) (10.72)

where rk(·) is the k-th reward model in the ensemble, wk is the weight of rk(·), and K

is the number of reward models. This combined reward can then be used to supervise the
training of a policy. In fact, there are many ways to combine different models, for example,
one can make predictions using Bayesian model averaging or develop a fusion network to
learn to combine the predictions from different models. Alternatively, one can frame this
task as a multi-objective optimization problem, and use multiple reward models to train the
policy simultaneously. These methods have been intensively discussed in the literature on
optimization and machine learning [Miettinen, 1999; Bishop, 2006].

In addition to model combination methods, another important issue is how to collect or
construct multiple different reward models. One of the simplest approaches is to employ
ensemble learning techniques, such as developing diverse reward models from different subsets
of a given dataset or from various data sources. For RLHF, it is also possible to construct
reward models based on considerations of different aspects of alignment. For example, we
can develop a reward model to evaluate the factual accuracy of the output and another reward
model to evaluate the completeness of the output. These two models are complementary to
each other, and can be combined to improve the overall evaluation of the output. Another
approach is to employ different off-the-shelf LLMs as reward models. This approach is simple
and practical, as there have been a lot of well-developed LLMs and we just need to use them
with no or little modification. An interesting issue, though not closely related to the discussion
here, arises: can an LLM that aligns with other LLMs outperform those LLMs? Probably
not at first glance. In part, this is because the target LLM merely imitates other LLMs based
on limited supervision and thus cannot capture well the nuances of the behaviors of these
supervisors. However, given the strong generalization ability of LLMs, this approach can, in
fact, be quite beneficial. For example, using open-sourced or commercial LLMs as reward

with minimal effort to maximize the reward, such as copying and pasting solutions from the internet or previous
assignments, rather than solving the problems themselves.
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Figure 10.10: Standard RLHF (PPO) vs. DPO. In RLHF, the human preference data is used
to train a reward model, which is then employed in training the policy as well as the value
function. In DPO, the use of human preference data is more direct, and the policy is trained on
this data without the need for reward model training.

models has demonstrated strong performance in aligning LLMs, even achieving state-of-the-art
results on several popular tasks [Lambert et al., 2024].

10.4.2 Direct Preference Optimization

Although learning reward models is a standard step in reinforcement learning, it makes the
entire training process much more complex than supervised training. Training a reliable reward
model is itself not an easy task, and a poorly trained reward model can greatly affect the
outcome of policy learning. We now consider an alternative alignment method, called direct
preference optimization (DPO), which simplifies the training framework by eliminating the
need to explicitly model rewards [Rafailov et al., 2024]. This method directly optimizes the
policy based on user preferences, rather than developing a separate reward model. As a result,
we can achieve human preference alignment in a supervised learning-like fashion. Figure
10.10 shows a comparison of the standard RLHF method and the DPO method.

Before deriving the DPO objective, let us first review the objective of policy training used
in RLHF. As discussed in Section 10.3.3, the policy is typically trained by optimizing a loss
function with a penalty term. The DPO method assumes a simple loss function where the
quality of the output y given the input x is evaluated by the reward model r(x,y). The training
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objective is thus given by

θ̃ = argmin
θ

Ex∼DEy∼πθ(·|x)
[
−r(x,y)︸ ︷︷ ︸

loss

+β (logπθ(y|x)− logπθref (y|x))︸ ︷︷ ︸
penalty

]
(10.73)

Note that in this optimization problem, only the term πθ(y|x) depends on the target policy
πθ(·). Both the reward model r(x,y) and the reference model πθref (y|x) are assumed to be
fixed given x and y. This is a strong assumption compared with PPO, but as will be shown
later, it simplifies the problem and crucial for deriving the DPO objective.

Since θ is the variable we want to optimize, we rearrange the right-hand side of Eq. (10.73)
to isolate πθ(y|x) as an independent term:

θ̃ = argmin
θ

Ex∼DEy∼πθ(·|x)
[
β logπθ(y|x)−β logπθref (y|x)− r(x,y)

]
= argmin

θ
Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)−

(
logπθref (y|x)+

1

β
r(x,y)

)]
= argmin

θ
Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)︸ ︷︷ ︸
dependent on θ

− logπθref (y|x)exp
( 1
β
r(x,y)

)
︸ ︷︷ ︸

not dependent on θ

]
(10.74)

This equation defines the objective function as the difference between the log-probability
distribution function of y and another function of y. This form of the objective function
seems not “ideal”, as we usually prefer to see the difference between two distributions, so
that we can interpret this difference as some kind of divergence between the distributions.
A simple idea is to convert the second term (i.e., logπθref (y|x)exp(

1
β r(x,y))) into a log-

probability distribution over the domain of y. If we treat πθref (y|x)exp(
1
β r(x,y)) as an

unnormalized probability of y, we can convert it into a normalized probability by dividing it
by a normalization factor:

Z(x) =
∑
y

πθref (y|x)exp
( 1
β
r(x,y)

)
(10.75)

Hence we can define a probability distribution by

π∗(y|x) =
πθref (y|x)exp

(
1
β r(x,y)

)
Z(x)

(10.76)
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We then rewrite Eq. (10.74) as

θ̃ = argmin
θ

Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)− log

πθref (y|x)exp
(
1
β r(x,y)

)
Z(x

)
− logZ(x)

]
= argmin

θ
Ex∼DEy∼πθ(·|x)

[
logπθ(y|x)− logπ∗(y|x)− logZ(x)

]
= argmin

θ
Ex∼D

[
Ey∼πθ(·|x)

[
logπθ(y|x)− logπ∗(y|x)

]
−Ey∼πθ(·|x)

[
logZ(x)

]]
= argmin

θ
Ex∼D

[
KL

(
πθ(·|x) || π∗(·|x)

)︸ ︷︷ ︸
KL divergence

− logZ(x)︸ ︷︷ ︸
constant wrt. θ

]
(10.77)

Since logZ(x) is independent of θ, it does not affect the result of the argminθ operation,
and can be removed from the objective. Now we obtain a new training objective which finds
the optimal policy πθ by minimizing the KL divergence between πθ(·|x) and π∗(·|x)

θ̃ = argmin
θ

Ex∼D

[
KL

(
πθ(·|x) || π∗(·|x)

)]
(10.78)

Clearly, the solution to this optimization problem is given by

πθ(y|x) = π∗(y|x)

=
πθref (y|x)exp

(
1
β r(x,y))

Z(x
) (10.79)

Given this equation, we can express the reward r(x,y) using the target model πθ(y|x), the
reference model πθref (y|x), and the normalization factor Z(x):

r(x,y) = β

(
log

πθ(y|x)
πθref (y|x)

+ logZ(x)

)
(10.80)

This is interesting because we initially seek to learn the policy πθ(·) using the reward
model r(x,y), but eventually obtain a representation of the reward model based on the policy.
Given the reward model defined in Eq. (10.80), we can apply it to the Bradley-Terry model to
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calculate the preference probability (also see Section 10.3.2):

Prθ(ya ≻ yb|x) = Sigmoid(r(x,ya)− r(x,yb))

= Sigmoid

(
β
(
log

πθ(ya|x)
πθref (ya|x)

+ logZ(x)
)
−

β
(
log

πθ(yb|x)
πθref (yb|x)

+ logZ(x)
))

= Sigmoid

(
β log

πθ(ya|x)
πθref (ya|x)

−β log
πθ(yb|x)
πθref (yb|x)

)
(10.81)

This formula is elegant because it converts the difference in rewards into the difference
in ratio functions, and we do not need to calculate the value of Z(x). A direct result is that
we no longer need a reward model, but only need the target policy and reference model to
calculate the probability of preferences. Finally, we can train the target policy by minimizing
the following DPO loss function

Ldpo(θ) = −E(x,ya,yb)∼Dr

[
logPrθ(ya ≻ yb|x)

]
(10.82)

The form of this loss function is very similar to that used in training reward models in RLHF
(see Eq. (10.36)). But it should be noted that the loss function here depends on the parameters
of the policy (i.e., θ) rather than the parameters of the reward model (i.e., ϕ).

The main advantage of DPO lies in its simplicity and efficiency. The DPO objective is very
straightforward — it directly optimizes for preference-based feedback, rather than relying on
separately developed reward models. Moreover, DPO is generally more sample-efficient, as it
learns from a fixed dataset without the need for the computationally expensive sampling process
used in PPO. This makes DPO a popular method for human preference alignment, especially
when developing and applying reward models via reinforcement learning is challenging.

DPO can broadly be viewed as an offline reinforcement learning method, where the
training data is pre-collected and fixed, and there is no exploration. In contrast, online rein-
forcement learning methods like PPO, which require exploring new states through interaction
with the environment (using the reward model as a proxy), also have their unique advantages.
One of the benefits of online reinforcement learning is that it allows the agent to continuously
adapt to changes in the environment by learning from real-time feedback. This means that,
unlike offline methods, online methods are not constrained by the static nature of pre-collected
data and can discover new problem-solving strategies. In addition, exploration can help the
agent cover a wider range of state-action pairs, thus improving generalization. This could be
an important advantage for LLMs, as generalization is considered a critical aspect in applying
such large models.

10.4.3 Automatic Preference Data Generation
Although learning from human preferences is an effective and popular method for aligning
LLMs, annotating preference data is costly. Using human feedback does not only faces the
problem of limited scalability, but it may also introduce bias because human feedback is
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inherently subjective. As a result, one can turn to AI feedback methods to address these
scalability and consistency issues without the limitations associated with human annotators.

As with data generation for instruction fine-tuning, generating preference data using LLMs
is straightforward. Given a set of inputs, we first use an LLM to generate pairs of outputs.
Then, we prompt the LLM to label the preference between each pair of outputs, along with
its corresponding input. Below is an example of prompting the LLM to generate a preference
label for a pair of consumer service responses.

Consider a customer service scenario where a customer poses a request. You
will review two responses to this request. Please indicate which response is
preferred. Note that a good response should be courteous, clear, and concise.
It should address the customer’s concern directly, provide helpful information
or a solution, and maintain a positive tone.

Request:

Hello, I noticed that my order hasn’t arrived yet, though it was scheduled to
arrive several days ago. Could you please update me on its status? Thank
you!

Response A:

I’m very sorry for the delay and understand how disappointing this can be.
We’re doing our best to sort this out quickly for you.

Response B:

Hey, stuff happens! Your package will get there when it gets there, no need to
stress.

Response A is preferred.

Once we collect such preference labels, we can use them, along with the output pair and
input, to train the reward model. Of course, we can consider demonstrating a few examples
or using advanced prompting techniques, such as CoT, to improve labeling performance. For
example, we can include in the prompt an example showing how and why one of the two
responses is preferred based on a CoT rationale.

In addition to preference labels, we can also obtain the probability associated with each
label [Lee et al., 2023]. A simple method is to extract the probabilities for the label tokens,
such as “A” and “B”, from the probabilities output by the LLM. We can then use the Softmax
function or other normalization techniques to re-normalize these probabilities into a distribution
over the labels. These probabilities of preferred labels can serve as pointwise supervision
signals for training the reward model, as discussed in Section 10.4.1.

For data generation, although it is easy to scale up, it is often necessary to ensure the
data is accurate and diverse. Here, the data quality and diversity issues involve not only the
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labeling of preferences but also the inputs and outputs of the model. Therefore, we often need
to use a variety of techniques to obtain large-scale, high-quality data. For example, one can
generate diverse model outputs and annotations by using different LLMs, prompts, in-context
demonstrations, and so on [Cui et al., 2024]. Dubois et al. [2024] report that the variability in
pairwise preference data is important for training LLMs from either human or AI feedback.

While learning from AI feedback is highly scalable and generally objective, this method
is more suited to well-defined tasks where objective performance metrics are available. By
contrast, learning from human feedback is more advantageous when aligning AI systems with
human values, preferences, and complex real-world tasks that require understanding of subtle
or subjective context. These methods can be combined to train LLMs that benefit from both
human insights and the scalability of AI feedback.

10.4.4 Step-by-step Alignment

So far, our discussion of alignment has primarily focused on the use of reward models for
evaluating entire input-output sequence pairs. These methods can be easily adapted to scenarios
where the correctness of an output can be examined by checking whether the desired result is
included. For example, in the task of calculating a mathematical expression, a reward model
can provide positive feedback if the answer is correct, and negative feedback if the answer is
wrong. However, in many problems that require complex reasoning, simply examining the
correctness of the final result is insufficient for learning. Imagine a student who is only given
the final answer to a challenging math problem. Knowing whether the final answer is right or
wrong does not help the student figure out where they went wrong and how to calculate the
correct answer. A better approach would be to guide the student with a step-by-step breakdown
of the problem-solving process and encourage understanding of the underlying concepts and
logic behind these steps.

In Chapter 9, we studied CoT methods to prompt LLMs to explicitly write out intermediate
steps or the reasoning process needed to reach a conclusion or solve a problem. We saw that
breaking down a problem into smaller parts could make it easier to understand the solution
path and increase the accuracy of the output. These methods can be naturally extended to
the alignment of LLMs, that is, we supervise the model during the intermediate steps of
reasoning. Consider a reasoning task where an LLM produces a sequence of reasoning steps
y = {ȳ1, ..., ȳns} for the given input. The result of the reasoning is assumed to be included in
the last step ȳns , and can be easily verified. For this reasoning problem, Uesato et al. [2022]
categorize LLM fine-tuning approaches into two classes:

• Outcome-based Approaches. Supervision occurs only when the end result is verified.
This is a standard method for learning from human feedback we have discussed in this
chapter. For example, the LLM is optimized to maximize some form of the reward
r(x,y).

• Process-based Approaches. Supervision is involved in all intermediate steps in addition
to the last step. To do this, we need to develop a model to give a supervision signal at
each step, and develop loss functions that can make use of such supervision signals.
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Question (from The International Junior Math Olympiad):
Jessica has a lot of apps on her phone. The number of apps she has is divisible by 5. If she
downloaded 10 more apps, she would still have less than 50 apps. What is the maximum
original number of apps Jessica could have?

Response 1:

x must be a multiple of 5, i.e.,
x≡ 0 (mod 5).

x
ȳ1:

After downloading 10 apps, the total
total number of apps should still be less
than 50: x+10< 50. Solving this
inequality: x < 40.

x

ȳ2:

Since x must be a multiple of 5 and
less than 40, the largest value of x is 35.

x
ȳ3:

Verify the result. If x= 35, then after
downloading 10 apps, Jessica would
have: 35+10 = 45 which satisfy
45< 50.

x

ȳ4:

The maximum original number of
apps is 35.

x
ȳ5:

correct

Response 2:

The number of apps is divisible by 5,
so x must be a multiple of 5.

x
ȳ1:

If she downloads 10 more apps, her
new total will be x+10, and this must
be less than 50. Therefore, x+10< 50.
Simplifying this gives x < 40.

x

ȳ2:

x must be less than or equal to
the largest multiple of 5, which is 40.

x
ȳ3:

But x+10 should not be more
than or equal to 50. So we need to
subtract 5 from 40.

x
ȳ4:

Therefore, the final result is 35. xȳ5:

correct

problematic

problematic

Figure 10.11: Two LLM responses to a math problem. In response 1, both the final result
and all the reasoning steps are correct. In response 2, the final result is correct, but there are
mistakes in the reasoning process (highlighted in red). For outcome-based approaches, both
responses are considered correct. For process-based approaches, the mistakes in response 2
can be considered in reward modeling.

Figure 10.11 shows two LLM outputs for an example math problem. Although the LLM
gives the correct final answer in both cases, it makes mistakes during the problem-solving
process in the second output. Outcome-based approaches overlook these mistakes and give
positive feedback for the entire solution. By contrast, process-based approaches can take these
mistakes into account and provide additional guidance on the detailed reasoning steps.

An important issue for process-based approaches is that we need to get step-level feedback
during a (potentially) long reasoning path. We can collect or generate reasoning paths corre-
sponding to problems from existing datasets. Human experts then annotate each step in these
paths for correctness. These annotations can be used to directly train LLMs or as rewards in
reward modeling. However, in practice, richer annotations are often introduced [Lightman
et al., 2024]. In addition to the correct and incorrect labels, a step can also be labeled as
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neutral to indicate that while the step may be technically correct, it might still be problematic
within the overall reasoning process. Furthermore, to improve the efficiency of data annotation,
techniques such as active learning can be employed. Identifying obvious errors usually does
not significantly contribute to learning from reasoning mistakes. Instead, annotating steps that
the model confidently considers correct but are actually problematic is often more effective.

Given a set of step-level annotated reasoning paths and corresponding inputs, we can train
a reward model to provide feedback for supervising policy learning. The reward model can be
treated as a classification model, and so its architecture can be a Transformer decoder with a
Softmax layer stacked on top. At step k, the reward model takes both the problem description
(denoted by x) and the reasoning steps generated so far (denoted by ȳ≤k) as input and outputs
a probability distribution over the label set {correct, incorrect} or {correct, incorrect,neutral}.
Then the learned reward model is used to evaluate reasoning paths by assessing the correctness
of each step. A simple method to model correctness is to count the number of steps that are
classified as correct, given by

r(x,y) =

ns∑
k=1

δ(correct,C(x, ȳ≤k)) (10.83)

where C(x, ȳ≤k) denotes the label with the maximum probability. We can also use log-
probabilities of classification to define the reward of the entire path

r(x,y) =

ns∑
k=1

logPr(correct|x, ȳ≤k) (10.84)

where Pr(correct|x, ȳ≤k) denotes the probability of the correct label generated by the reward
model. The reward score r(x,y) can then be used to train the policy in RLHF as usual.

While we restrict our discussion to math problems, the approaches described here are
general and can be applied to a wide variety of tasks that involve multi-step reasoning and
decision-making. Moreover, we can consider various aspects when assessing the quality of a
step, rather than just its correctness. For example, in dialogue systems, responses must not
only be accurate but also contextually appropriate across multiple turns of conversation. If a
model provides a correct response but fails to maintain coherence in the context of the ongoing
dialogue, step-level feedback could help the model identify and correct such discrepancies.
Also note that the process-based approaches are related to the fine-grained reward modeling
approaches discussed in Section 10.4.1. All these approaches essentially aim to provide more
detailed supervision to LLMs by breaking their outputs into smaller, more manageable steps.
However, process-based feedback focuses more on evaluating the correctness of a step based
on its preceding steps, while the approaches in Section 10.4.1 emphasize evaluating each step
independently.

The idea of aligning LLMs step by step has great application potential, especially consider-
ing the recent shift towards more complex reasoning tasks in the use of LLMs. For example,
both the GPT-o1 and GPT-o3 models are designed with more advanced reasoning techniques
(such as long internal CoT) to solve challenging problems like scientific and mathematical
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reasoning [OpenAI, 2024]. These tasks often rely on long and complex reasoning paths, and
therefore, it seems essential to introduce detailed supervision signals in the reasoning process.
Moreover, from a practical perspective, effective supervision on long reasoning paths not
only improves reasoning performance, but it also helps the model eliminate redundant or
unnecessary reasoning steps, thereby reducing reasoning complexity and improving efficiency.

10.4.5 Inference-time Alignment

In this section we explored a variety of methods to align models with human preferences
and annotations. However, one of the significant limitations of many such methods is that
LLMs must be fine-tuned. For RLHF and its variants, training LLMs with reward models can
be computationally expensive and unstable, leading to increased complexity and costs when
applying these approaches. In this case, we can consider aligning models at inference time,
thus avoiding the additional complexity and effort involved.

One simple way to achieve inference-time alignment is to use the reward model to select
the best one from N alternative outputs generated by the LLM, a method known as Best-of-N
sampling (BoN sampling). We can consider BoN sampling as a form of reranking. In fact,
reranking methods have been widely used in NLP tasks, such as machine translation, for a long
time. They are typically applied in situations where training complex models is costly. In such
cases, directly reranking the outputs allows for the incorporation of these complex models at a
very low cost8.

In the BoN sampling process, the LLM takes the input sequence x and generates N

different output sequences {ŷ1, ..., ŷN}:

{ŷ1, ..., ŷN} = argTopN
y

[Pr(y|x)] (10.85)

where the argTopN operation returns the top-N outputs that maximize the function Pr(y|x).
These outputs can be generated in a variety of ways, depending on the search algorithm used by
the model (e.g., sampling or beam search). Once the N -best output candidates are generated,
the reward model is used to evaluate and select the best one:

ŷbest = max{r(x, ŷ1), ..., r(x, ŷN )} (10.86)

It is worth noting that the result of BoN sampling is also influenced by the diversity of
the N -best list. This is a common issue with most reranking methods. Typically, we wish the
N -best output candidates to have relatively high quality but be sufficiently different from each
other. In many text generation systems, the N -best outputs are very similar, often differing by

8Reranking methods can also help us explore what are known as model errors and search errors, although these
issues are not often discussed in the context of LLMs. For example, suppose we have an old model and a new,
more powerful model. We can use the new model to select the best output from the N -best list of the old model
as the oracle output. The performance difference between the oracle output and the top-1 output of the original
N -best list reflects the performance gain brought by the new model. If the performance gain is significant, we can
say that the old model has more model errors. If the gain is small, it may indicate that the issue lies in search errors,
as the best candidates were not found.
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just one or two words. The diversity issue is even more challenging in LLMs, as the N -best
outputs generated by an LLM can be different in their wordings, yet their semantic meanings
are often quite similar. In practice, one can adjust the model hyperparameters and/or adopt
different LLMs to generate more diverse output candidates for reranking. Nevertheless, as with
many practical systems, we need to make a trade-off between selecting high-quality candidates
and ensuring sufficient variation in the generated outputs.

BoN sampling can be used for training LLMs as well. A closely related method is rejection
sampling. In this method, we first select the “best” outputs from the N -best lists via the reward
model, and then take these selected outputs to fine-tune the LLM. In this way, we can introduce
human preferences into the training of LLMs via a much simpler approach compared to RLHF.
Many LLMs have adopted rejection sampling for fine-tuning [Nakano et al., 2021; Touvron
et al., 2023].

10.5 Summary
In this chapter, we have explored a range of techniques for aligning LLMs. In particular, we
have discussed fine-tuning methods that enable LLMs to follow instructions and align them
with human preferences. One of the benefits of fine-tuning LLMs is computation efficiency.
Unlike pre-training based on large-scale neural network optimization, fine-tuning is a post-
training step and so is less computationally expensive. Moreover, it is better suited to address
problems that are not easily solved in pre-training, such as human value alignment. The
widespread attention to the alignment issue has also led to a surge of research papers on this
topic, which has posed challenges in writing this chapter, as it is difficult to cover all the
latest techniques. However, we have tried to provide a relatively detailed introduction to the
fundamental approaches to alignment, such as instruction fine-tuning and RLHF.

While we have focused on LLM alignment techniques in this chapter, the term AI alignment
is a wide-ranging concept. It generally refers to the process of ensuring that the behavior of an
AI system aligns with human values, goals, and expectations. The idea of AI alignment can be
traced back to the early days of AI. A widely cited description of AI alignment comes from
an article by the mathematician and computer scientist Norbert Wiener [Wiener, 1960]. The
quote is as follows

If we use, to achieve our purposes, a mechanical agency with whose opera-
tion we cannot efficiently interfere ... we had better be quite sure that the
purpose put into the machine is the purpose which we really desire.

At that time, AI alignment was a distant concern for researchers. But today, it greatly
influences the design of various AI systems. For example, in robotics, alignment is critical
to ensuring that autonomous robots safely interact with humans and their environments. In
autonomous driving, cars must not only follow traffic laws but also make complex, real-time
decisions that prioritize human safety, avoid accidents, and navigate ethical dilemmas.

In current AI research, alignment is usually achieved by developing a surrogate objective
that is analogous to the real goal and steering the AI system towards this objective. However,
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designing the objective of AI alignment is very difficult. One reason is that human values are
diverse and often context-dependent, making it difficult to distill them into a single, universally
applicable objective function. Also, the complexity of real-world environments, where values
and goals often conflict or evolve over time, further complicates alignment efforts. Even if
we could define an appropriate objective, AI systems may find unintended ways to achieve it,
leading to “misaligned” outcomes that still technically satisfy the objective but in a harmful or
counterproductive way.

These challenges have motivated and are motivating AI research towards more aligned
systems, either through developing new mechanisms for perceiving the world or more efficient
and generalizable methods to adapt these systems to given tasks. More importantly, as AI
systems become more powerful and intelligent, especially given that recent advances in LLMs
have shown remarkable capabilities in dealing with many challenging problems, the need for
AI alignment has become more urgent. Researchers have started to be concerned with AI
safety and warn the community that they need to develop and release AI systems with great
caution to prevent these systems from being misaligned [Russell, 2019; Bengio et al., 2024].
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